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CHAPTER 8:

NONPARAMETRIC
METHODS



Nonparametric Estimation

SN
1 Parametric (single global model), semiparametric
(small number of local models)

7 Nonparametric: Similar inputs have similar outputs

o Functions (pdf, discriminant, regression) change
smoothly

1 Keep the training data;"“let the data speak for
itself”

o Given x, find a small number of closest training
instances and interpolate from these

o Aka lazy /memory-based /case-based/instance-
based learning



Density Estimation

Given the training set X={x}, drawn iid from p(x)

Divide data into bins of size h

#{xlt inthe samebinas x}‘
Nh

plx)=

. t
ﬁ(x): #{x h;il(hﬁx+h}

f)(x):iiw(x—xfj W(u):{l/Z if [u] <1

0 otherwise

or
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Histogram: h=2
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Kernel Estimator
2 1

1 Kernel function, e.g., Gaussian kernel:

2
K(u)= . exp — —

N2 2

1 Kernel estimator (Parzen windows)

ﬁ(x)=$lek(x;xtj
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k-Nearest Neighbor Estimator
N

1 Instead of fixing bin width h and counting the

number of instances, fix the instances (neighbors) k
and check bin width

n k
plx)= 2Nd, (x)

d,(x), distance to kth closest instance to x
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Multivariate Data

Kernel density estimator

. 1 & (x=X
X)= K

Multivariate Gaussian kernel

. 1 d
spheric K(u):( j exp

ellipsoid




Nonparametric Classification

Estimate p(x | C;) and use Bayes’ rule

Kernel estimator

N.h = h
o 1 & [(x=X
=p(x|C,)B(C,)= K f
0(00-AixIc )b 3
k-NN estimator
. k4 p(xIc,)P(C;) _k
p(chi): P(Ci |X):

N,V (x) px) Kk



Condensed Nearest Neighbor

Time /space complexity of k-NN is O (N)

Find a subset Z of X that is small and is accurate in
classifying X (Hart, 1968)

E(ZIX)=E(X|2)+4Z




Condensed Nearest Neighbor
B

7 Incremental algorithm: Add instance if needed

Z —
Repeat
For all @ € X (in random order)
Find @’ € Z s.t. [|[& — 2'|| = mingjc z || — x|

If class(x)#class(ax’) add « to Z
until Z2 does not change




Distance-based Classification

Find a distance function D(x",x*) such that

if x"and x*belong to the same class, distance is small
and if they belong to different classes, distance is
large

Assume a parametric model and learn its
parameters using datq, e.qg.,

Dix. x'M) = (x — x")"M(x - x")



Learning a Distance Function

The three-way relationship between distances,
dimensionality reduction, and feature extraction.

M=L'L is dxd and L is kxd

D(x,x'M) = (x—xH"M(x-x")=(x-x")"LTL(x — x")
= (Lix=x"))"(L(x-x") = (Lx - Lx") " (Lx — Lx"))
= (z-zO)l(z-2") = ||z - Z"|°

Similarity-based representation using similarity
scores

Large-margin nearest neighbor (chapter 13)
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Euclidean distance (circle) is not suitable,
Mahalanobis distance using an M (ellipse) is suitable.
After the data is projected along L, Euclidean distance can be used.



Qutlier Detection

Find outlier /novelty points

Not a two-class problem because outliers are very
few, of many types, and seldom labeled

Instead, one-class classification problem: Find
instances that have low probability

In nonparametric case: Find instances far away from
other instances



Local Qutlier Factor

Zo 4
di(X)

LOF(x) = 2sen (x) dk($) [N (x)]

(a) (b)




Nonparametric Regression

Aka smoothing models

Regressogram

6(x) = S blx,x)r

ivzlb(x, x' )

where

b(x Xt)_ 1 if x' isinthe samebinwith x
' 0 otherwise
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Regressogram smoother: h=6

= X
X
I
x
| | | | | |
3 4 ) 6 7 8
h=3
= X
x
S
X
| | | | | |
3 4 5 6 7 8

h="1




22

Regressogram linear smoother: h=6
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Running Mean/Kernel Smoother

Running mean smoother
N X—X t
Ztlw( h jl’
G(x)= :
N X—X
t=1 h

where

W(u):{l iflu] <1

0 otherwise

Running line smoother

Kernel smoother
. t
ZN K(X X ]rt
B t=1 h
_ I
ZN K(X X j
t=1 h
where K( ) is Gaussian

Additive models (Hastie
and Tibshirani, 1990)
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Running mean smoother: h=6
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Running line smooth: h=6
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Kernel smooth: h=1
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How to Choose k or h ¢

2z 3
7 When k or h is small, single instances matter; bias is

small, variance is large (undersmoothing): High
complexity

= As k or h increases, we average over more instances
and variance decreases but bias increases
(oversmoothing): Low complexity

1 Cross-validationis used to finetune k or h.
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Kemel estimator for two classes: h =1




