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CHAPTER 8: 

NONPARAMETRIC 

METHODS 



Nonparametric Estimation 
3 

 Parametric (single global model), semiparametric 
(small number of local models) 

 Nonparametric: Similar inputs have similar outputs 

 Functions (pdf, discriminant, regression) change 
smoothly 

 Keep the training data;“let the data speak for 
itself” 

 Given x, find a small number of closest training 
instances and interpolate from these 

 Aka lazy/memory-based/case-based/instance-
based learning 



Density Estimation 
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 Given the training set X={xt}t drawn iid from p(x) 

 Divide data into bins of size h 

 Histogram: 

 

 Naive estimator: 
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Kernel Estimator 
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 Kernel function, e.g., Gaussian kernel: 

 

 

 

 Kernel estimator (Parzen windows) 
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k-Nearest Neighbor Estimator 
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 Instead of fixing bin width h and counting the 

number of instances, fix the instances (neighbors) k 

and check bin width 

 

 

 dk(x), distance to kth closest instance to x 
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 Kernel density estimator 

 

 

 

 Multivariate Gaussian kernel 

 

 spheric 

 

 ellipsoid 

Multivariate Data 
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 Estimate p(x|Ci) and use Bayes’ rule 

 Kernel estimator 

 

 

 

 

 k-NN estimator 

Nonparametric Classification 
12 
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Condensed Nearest Neighbor 
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 Time/space complexity of k-NN is O (N) 

 Find a subset Z of X that is small and is accurate in 

classifying X (Hart, 1968) 

 



Condensed Nearest Neighbor 
14 

 Incremental algorithm: Add instance if needed 



Distance-based Classification 
15 

 Find a distance function D(xr,xs) such that  

 if xrand xsbelong to the same class, distance is small 

and if they belong to different classes, distance is 

large  

 Assume a parametric model and learn its 

parameters using data, e.g., 



Learning a Distance Function 
16 

 The three-way relationship between distances, 
dimensionality reduction, and feature extraction. 

 M=LTL is dxd and L is kxd  

 

 

 

 Similarity-based representation using similarity 
scores 

 Large-margin nearest neighbor (chapter 13) 
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Euclidean distance (circle) is not suitable,  

Mahalanobis distance using an M (ellipse) is suitable. 

After the data is projected along L, Euclidean distance can be used. 

 



Outlier Detection 
18 

 Find outlier/novelty points 

 Not a two-class problem because outliers are very 

few, of many types, and seldom labeled 

 Instead, one-class classification problem: Find 

instances that have low probability 

 In nonparametric case: Find instances far away from 

other instances 



Local Outlier Factor 
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Nonparametric Regression 
20 
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 Aka smoothing models 

 Regressogram 
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Running Mean/Kernel Smoother 

 Running mean smoother 

 

 

 

 

 

 

 

 Running line smoother 

 Kernel smoother 

 

 

 

 

where K( ) is Gaussian 

 Additive models (Hastie 
and Tibshirani, 1990)  
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How to Choose k or h ? 
27 

 When k or h is small, single instances matter; bias is 

small, variance is large (undersmoothing): High 

complexity 

 As k or h increases, we average over more instances 

and variance decreases but bias increases 

(oversmoothing): Low complexity 

 Cross-validation is used to finetune k or h. 
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