Lecture Slides for

INTRODUCTION
TO

MACHINE
LEARNING

3RD EDITION

- INTRODUCTION 10

ETHEM ALPAYDIN
© The MIT Press, 2014

alpaydin@boun.edu.tr
http: / /www.cmpe.boun.edu.tr /~ethem /i2ml3e



CHAPTER 7:

CLUSTERING



Semiparametric Density Estimation
N

o Parametric: Assume a single model for p (x | C)
(Chapters 4 and 5)

1 Semiparametric: p (x| C)) is a mixture of densities
Multiple possible explanations /prototypes:
Different handwriting styles, accents in speech

0 Nonparametric: No model; data speaks for itself

(Chapter 8)



Mixture Densities
B

ZleG

where G. the componen’rs/g roups/clus’rers,
P ( G;) mixture proportions (priors),
p(x | G) component densities

Gaussian mixture where p(x|G)~ N (M., D)
parameters CD - {P ( G,- )I I"i ’ Zi }ki=1

unlabeled sample X={x'}, (unsupervised learning)



Classes vs. Clusters

X ={x'r} X={x'}
Classes C; i=1,...K Clusters G;i=1,...,k

P)=2XICRIC)  pl)=3pixIG (6

where p(x|C) ~ N(M: ,> ;)

O ={P(C), M, X} where p(x|G;) ~ N (4, 2)
t Tyt ® = {P ( Gi )I M, Zi}kiz
pc)- 2~ 2 ’
N 2"
Z r.t<xt—m.th—m.)T Labels r’,-?

t
D



k-Means Clustering

Find k (prototypes/codebook
vectors/codewords) which best represent data

Reference vectors, m, | =1,...,k

Use nearest (most similar) reference:

ij

Reconstruction error E( _1\)() > Db

o[t el )
0 otherwise

-m}|
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k-means Clustering

Initialize m;,i = 1,....k, for example, to k£ random !
Repeat
For all &t e X

o 1 if |2t — m;|| = min; ||&' — m;|
1

0 otherwise

N

For all m;.i=1....,

™m; *~—Z E}fmf/z b

Until m,; converge




k—means: Initial
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Expectation-Maximization (EM)

Log likelihood with a mixture model

L(CD|X)=|Ong(Xt |CD)

k
=2 log) plx' |G, JP(G))
Assume hidden variablesiz, which when known, make
optimization much simpler

Complete likelihood, L (P |X,Z), in terms of x and z
Incomplete likelihood, L(P | X), in terms of x



E- and M-steps

lterate the two steps
E-step: Estimate z given X and current @

M-step: Find new @’ given z, X, and old O.

E-step: Q(@ @' )=E|L (D] X, 2)| X, ']
M-step: @ =argm§xQ(CD|(D’)

An increase in Q increases incomplete likelihood

L@ X)2 L(@' | X)



EM in Gaussian Mixtures

z'. = 1 if x' belongsto G;, O otherwise (labelsr’. of
supervised learning); assume p(x | G,)~N(u,> )

E-step: t , p(xt |G, D' )p(G)
E|lz;| X, D' |= ! ’
Al 6,0kl
=P(G,. |Xt,CD/)E h;
M-step: S h

g I+1

t ot
- - ;X
- N i Z ht Use estimated labels in

t place of unknown labels

t{ t I+1 Y\, ¢ I+1Y
Sl+1_ Zthi (X _mi XX _mi )
;=

2.h
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Mixtures of Latent Variable Models
T
Regularize clusters

1. Assume shared /diagonal covariance matrices

>. Use PCA/FA to decrease dimensionality: Mixtures
of PCA/FA

p(xt |Gi):N(mir\/i\[iT "“l’i)

Can use EM to learn V. (Ghahramani and Hinton,
1997; Tipping and Bishop, 1999)



After Clustering

S
-1 Dimensionality reduction methods find correlations
between features and group features

o1 Clustering methods find similarities between
instances and group instances

71 Allows knowledge extraction through
number of clusters,
prior probabilities,
cluster parameters, i.e., center, range of features.

Example: CRM, customer segmentation



Clustering as Preprocessing
ST
1 Estimated group labels h. (soft) or b; (hard) may be
seen as the dimensions of a new k dimensional

space, where we can then learn our discriminant or
regressor.

1 Local representation (only one b. is 1, all others are
O; only few h; are nonzero) vs

Distributed representation (After PCA; all z; are
nonzero)



Mixture of Mixtures
2

o In classification, the input comes from a mixture of
classes (supervised).

0 If each class is also a mixture, e.g., of Gaussians,
(unsupervised), we have a mixture of mixtures:

X|C Zp(leu)P( U)
=§p(XIC,-)P(C



Spectral Clustering

Cluster using predefined pairwise similarities B,
instead of using Euclidean or Mahalanobis distance

Can be used even if instances not vectorially
represented

Steps:

Use Laplacian Eigenmaps (chapter 6) to map to a
new z space using B,

Use k-means in this new z space for clustering



Hierarchical Clustering
o4
1 Cluster based on similarities /distances

1 Distance measure between instances x" and x*
Minkowski (L)) (Euclidean for p = 2)

4, (¢ %)= (e —x:F ]

City-block distance

dcb (Xr ’ XS ): ijl

r s
Xj _Xj




Agglomerative Clustering

Start with N groups each with one instance and merge
two closest groups at each iteration

Distance between two groups G; and G

Single-link: d(Gi’Gj):Xregl’Lpegj d(Xr,Xs)

complete-finic d(Gi'Gj): r rgasxg d(Xr’XS)
X €g;, X" eg;

Average-link, centroid

d(G,.,Gj): ave d(xr,xs)

x"eG; ,x*€qG;



Example: Single-Link Clustering

>
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Dendrogram



Choosing k

24
-1 Defined by the application, e.g., image quantization
o Plot data (after PCA) and check for clusters

7 Incremental (leader-cluster) algorithm: Add one at a
time until “elbow” (reconstruction error/log
likelihood /intergroup distances)

= Manually check for meaning



