

Lecture Slides for
INTRODUCTION
TO
MACHINE
LEARNING

3RD EDITION

© The MIT Press, 2014

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml3e

CHAPTER 7:

CLUSTERING

Semiparametric Density Estimation

- □ Parametric: Assume a single model for $p(x \mid C_i)$ (Chapters 4 and 5)
- □ Semiparametric: $p(\mathbf{x} \mid C_i)$ is a mixture of densities Multiple possible explanations/prototypes: Different handwriting styles, accents in speech
- Nonparametric: No model; data speaks for itself (Chapter 8)

Mixture Densities

```
p(\mathbf{x}) = \sum_{i=1}^{n} p(\mathbf{x} \mid G_{i}) P(G_{i})
where G_i the components/groups/clusters,
        P(G_i) mixture proportions (priors),
        p(x \mid G_i) component densities
Gaussian mixture where p(\mathbf{x} \mid G_i) \sim N(\boldsymbol{\mu}_i, \boldsymbol{\Sigma}_i)
   parameters \Phi = \{P (G_i), \mu_i, \sum_i \}_{i=1}^k
   unlabeled sample X = \{x^t\}_t (unsupervised learning)
```

Classes vs. Clusters

- \square Supervised: $X = \{x^t, r^t\}_t$
- \Box Classes C_i i=1,...,K

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x} \mid C_i) P(C_i)$$

where $p(\mathbf{x} \mid C_i) \sim N(\boldsymbol{\mu}_i, \sum_i)$

$$\hat{P}(C_i) = \frac{\sum_t r_i^t}{N} \quad \mathbf{m}_i = \frac{\sum_t r_i^t \mathbf{x}^t}{\sum_t r_i^t}$$

$$\mathbf{S}_{i} = \frac{\sum_{t} r_{i}^{t} \left(\mathbf{x}^{t} - \mathbf{m}_{i}\right) \left(\mathbf{x}^{t} - \mathbf{m}_{i}\right)^{T}}{\sum_{t} r_{i}^{t}}$$

- \square Unsupervised : $X = \{x^t\}_t$
- \Box Clusters $G_i i=1,...,k$

$$p(\mathbf{x}) = \sum_{i=1}^{k} p(\mathbf{x} \mid G_i) P(G_i)$$

where $p(x | G_i) \sim N(\mu_i, \sum_i)$

$$\Box \Phi = \{ P (G_i), \boldsymbol{\mu}_i, \sum_i \}_{i=1}^k$$

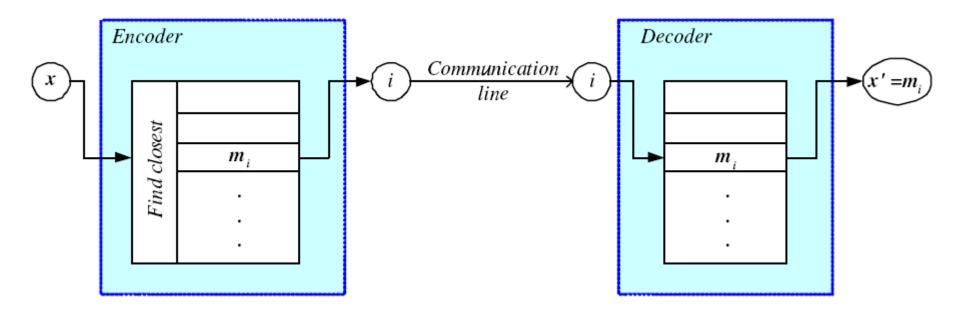
Labels \mathbf{r}^{t} ; ?

k-Means Clustering

- □ Find *k* reference vectors (prototypes/codebook vectors/codewords) which best represent data
- \square Reference vectors, \mathbf{m}_i , i = 1,...,k
- □ Use nearest (most similar) reference:

$$\|\mathbf{x}^t - \mathbf{m}_i\| = \min_{j} \|\mathbf{x}^t - \mathbf{m}_j\|$$

Encoding/Decoding



k-means Clustering

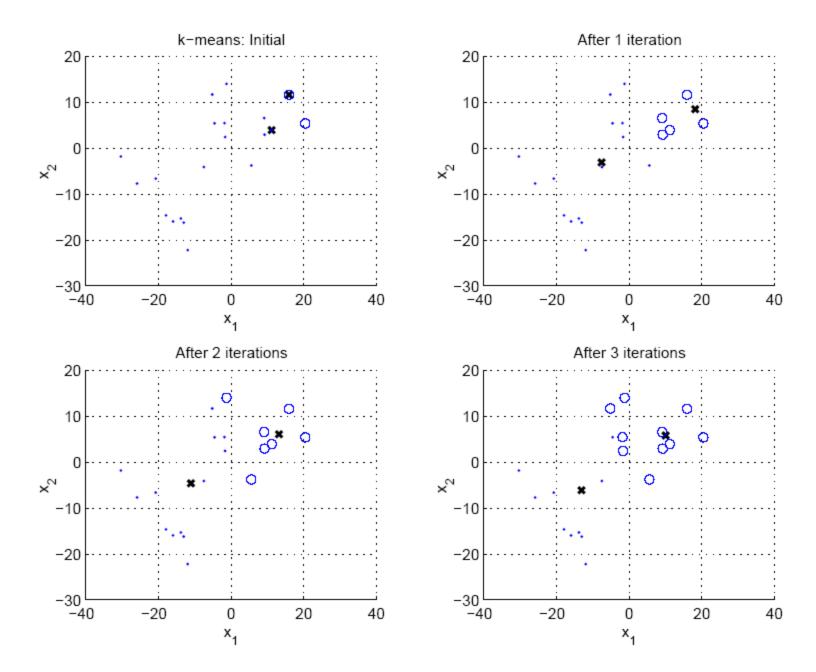
Initialize $m_i, i = 1, ..., k$, for example, to k random \boldsymbol{x}^t Repeat

For all
$$m{x}^t \in \mathcal{X}$$

$$b_i^t \leftarrow \begin{cases} 1 & \text{if } \| m{x}^t - m{m}_i \| = \min_j \| m{x}^t - m{m}_j \| \\ 0 & \text{otherwise} \end{cases}$$

For all
$$m{m}_i, i=1,\ldots,k$$
 $m{m}_i \leftarrow \sum_t b_i^t m{x}^t / \sum_t b_i^t$

Until m_i converge



Expectation-Maximization (EM)

Log likelihood with a mixture model

$$\mathcal{L}(\Phi \mid \mathcal{X}) = \log \prod_{t} p(\mathbf{x}^{t} \mid \Phi)$$

$$= \sum_{t} \log \sum_{i=1}^{k} \rho(\mathbf{x}^{t} \mid G_{i}) P(G_{i})$$

- Assume hidden variable s
 ¹z, which when known, make optimization much simpler
- \Box Complete likelihood, $L_c(\Phi \mid X,Z)$, in terms of x and z
- □ Incomplete likelihood, $L(\Phi \mid X)$, in terms of x

E- and M-steps

Iterate the two steps

- 1. E-step: Estimate z given X and current Φ
- 2. M-step: Find new Φ ' given z, X, and old Φ .

E-step:
$$\mathcal{Q}(\Phi | \Phi') = E[\mathcal{L}_c(\Phi | \mathcal{X}, \mathcal{Z}) | \mathcal{X}, \Phi']$$

M-step: $\Phi'^{+1} = \operatorname{argmax}_{\Phi} \mathcal{Q}(\Phi | \Phi')$

An increase in Q increases incomplete likelihood

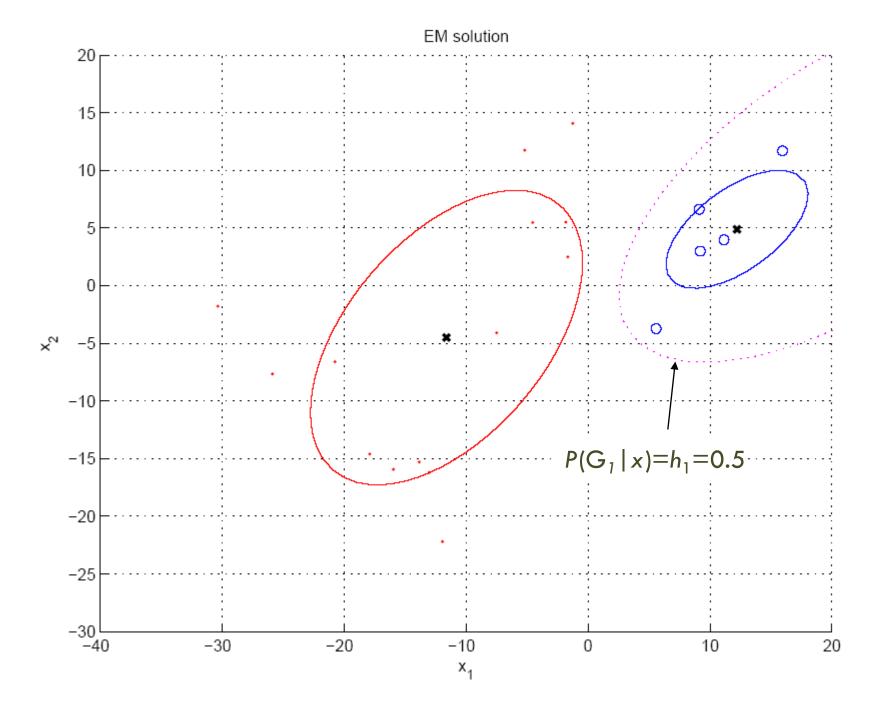
$$\mathcal{L}(\Phi'^{+1} \mid \mathcal{X}) \geq \mathcal{L}(\Phi' \mid \mathcal{X})$$

EM in Gaussian Mixtures

- $z_i^t = 1$ if x^t belongs to G_i , 0 otherwise (labels r_i^t of supervised learning); assume $p(x \mid G_i) \sim N(\mu_i, \sum_i)$
- E-step: $E[z_i^t | \mathcal{X}, \Phi^t] = \frac{p(\mathbf{x}^t | G_i, \Phi^t) P(G_i)}{\sum_j p(\mathbf{x}^t | G_j, \Phi^t) P(G_j)}$ $= P(G_i | \mathbf{x}^t, \Phi^t) \equiv h_i^t$
- $P(G_i) = \frac{\sum_t h_i^t}{N} \qquad \mathbf{m}_i^{t+1} = \frac{\sum_t h_i^t \mathbf{x}^t}{\sum_i h_i^t}$

$$\mathbf{S}_{i}^{t+1} = \frac{\sum_{t} h_{i}^{t} \left(\mathbf{x}^{t} - \mathbf{m}_{i}^{t+1}\right) \left(\mathbf{x}^{t} - \mathbf{m}_{i}^{t+1}\right)^{T}}{\sum_{t} h_{i}^{t}}$$

Use estimated labels in place of unknown labels



Mixtures of Latent Variable Models

Regularize clusters

- 1. Assume shared/diagonal covariance matrices
- Use PCA/FA to decrease dimensionality: Mixtures of PCA/FA

$$p(\mathbf{x}_t \mid G_i) = \mathcal{N}(\mathbf{m}_i, \mathbf{V}_i \mathbf{V}_i^T + \mathbf{\psi}_i)$$

Can use EM to learn V_i (Ghahramani and Hinton, 1997; Tipping and Bishop, 1999)

After Clustering

- Dimensionality reduction methods find correlations between features and group features
- Clustering methods find similarities between instances and group instances
- Allows knowledge extraction through

```
number of clusters,
```

prior probabilities,

cluster parameters, i.e., center, range of features.

Example: CRM, customer segmentation

Clustering as Preprocessing

- Estimated group labels h_i (soft) or b_i (hard) may be seen as the dimensions of a new k dimensional space, where we can then learn our discriminant or regressor.
- Local representation (only one b_i is 1, all others are 0; only few h_i are nonzero) vs

 Distributed representation (After PCA; all z_i are nonzero)

Mixture of Mixtures

- In classification, the input comes from a mixture of classes (supervised).
- If each class is also a mixture, e.g., of Gaussians, (unsupervised), we have a mixture of mixtures:

$$p(\mathbf{x} \mid C_i) = \sum_{j=1}^{k_i} p(\mathbf{x} \mid G_{ij}) P(G_{ij})$$

$$p(\mathbf{x}) = \sum_{i=1}^{K} p(\mathbf{x} \mid C_i) P(C_i)$$

Spectral Clustering

- Cluster using predefined pairwise similarities B_{rs} instead of using Euclidean or Mahalanobis distance
- Can be used even if instances not vectorially represented
- Steps:
 - Use Laplacian Eigenmaps (chapter 6) to map to a new ${\bf z}$ space using B_{rs}
 - II. Use k-means in this new z space for clustering

Hierarchical Clustering

- Cluster based on similarities/distances
- Distance measure between instances x^r and x^s Minkowski (L_p) (Euclidean for p=2)

$$d_m(\mathbf{x}^r,\mathbf{x}^s) = \left[\sum_{j=1}^d (x_j^r - x_j^s)^p\right]^{1/p}$$

City-block distance

$$d_{cb}(\mathbf{x}^r,\mathbf{x}^s) = \sum_{j=1}^d |\mathbf{x}_j^r - \mathbf{x}_j^s|$$

Agglomerative Clustering

- Start with N groups each with one instance and merge two closest groups at each iteration
- \square Distance between two groups G_i and G_i :
 - Single-link:

$$d(G_i,G_j) = \min_{\mathbf{x}^r \in G_i, \mathbf{x}^s \in G_j} d(\mathbf{x}^r, \mathbf{x}^s)$$

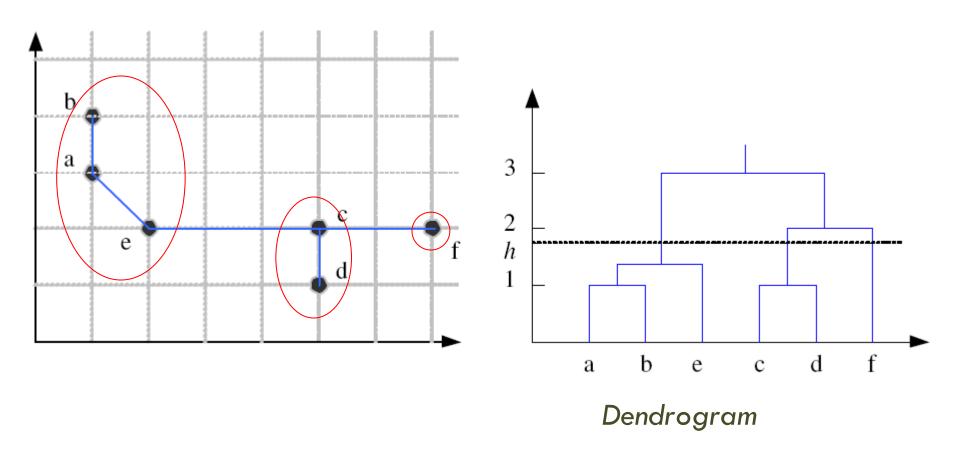
□ Complete-link:

$$d(G_i,G_j) = \max_{\mathbf{x}^r \in G_i, \mathbf{x}^s \in G_j} d(\mathbf{x}^r, \mathbf{x}^s)$$

Average-link, centroid

$$d(G_i, G_j) = \underset{\mathbf{x}^r \in G_i, \mathbf{x}^s \in G_j}{\text{ave}} d(\mathbf{x}^r, \mathbf{x}^s)$$

Example: Single-Link Clustering



Choosing k

- Defined by the application, e.g., image quantization
- Plot data (after PCA) and check for clusters
- Incremental (leader-cluster) algorithm: Add one at a time until "elbow" (reconstruction error/log likelihood/intergroup distances)
- Manually check for meaning