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CHAPTER 2:  

SUPERVISED LEARNING 



Learning a Class from Examples 
3 

 Class C of a “family car” 

 Prediction: Is car x a family car? 

 Knowledge extraction: What do people expect from a 

family car? 

 Output:  

  Positive (+) and negative (–) examples 

 Input representation:  

  x1: price, x2 : engine power 
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Class C 
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   2121   power  engine   AND  price eepp 



Hypothesis class H 
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Error of h on H 



S, G, and the Version Space 
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most specific hypothesis, S 

most general hypothesis, G 

h H, between S and G is 

consistent and make up the  

version space 

(Mitchell, 1997) 



Margin 
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 Choose h with largest margin 



VC Dimension 
9 

 N points can be labeled in 2N ways as +/– 

 H shatters N if there  

 exists h  H consistent  

 for any of these:  

 VC(H ) = N 

 

 

An axis-aligned rectangle shatters 4 points only ! 



Probably Approximately Correct (PAC) 

Learning 
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 How many training examples N should we have, such that with probability 

at least 1 ‒ δ, h has error at most ε ? 

 (Blumer et al., 1989) 

 

 Each strip is at most ε/4 

 Pr that we miss a strip 1‒ ε/4 

 Pr that N instances miss a strip (1 ‒ ε/4)N 

 Pr that N instances miss 4 strips 4(1 ‒ ε/4)N 

 4(1 ‒ ε/4)N ≤ δ and (1 ‒ x)≤exp( ‒ x) 

 4exp(‒ εN/4) ≤ δ  and N ≥ (4/ε)log(4/δ) 



Noise and Model Complexity 
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Use the simpler one because 

 Simpler to use  

 (lower computational  

 complexity) 

 Easier to train (lower  

 space complexity) 

 Easier to explain  

 (more interpretable) 

 Generalizes better (lower  

 variance - Occam’s razor) 



Multiple Classes, Ci i=1,...,K 
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Train hypotheses  

hi(x), i =1,...,K: 



Regression 
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Model Selection & Generalization 
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 Learning is an ill-posed problem; data is not 

sufficient to find a unique solution 

 The need for inductive bias, assumptions about H 
 Generalization: How well a model performs on new 

data 

 Overfitting: H more complex than C or f  

 Underfitting: H less complex than C or f 



Triple Trade-Off 
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 There is a trade-off between three factors 

(Dietterich, 2003): 

1. Complexity of H, c (H), 

2. Training set size, N,  

3. Generalization error, E, on new data 

 As NE 

 As c (H)first Eand then E 



Cross-Validation 
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 To estimate generalization error, we need data 

unseen during training. We split the data as 

 Training set (50%) 

 Validation set (25%) 

 Test (publication) set (25%) 

 Resampling when there is few data 



Dimensions of a Supervised Learner 

1. Model:  

   

2. Loss function: 

   

3. Optimization procedure: 
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