

Lecture Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION

ETHEM ALPAYDIN © The MIT Press, 2014

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml3e

SUPERVISED LEARNING

CHAPTER 2:

Learning a Class from Examples

Class C of a "family car"

Prediction: Is car x a family car?

Knowledge extraction: What do people expect from a family car?

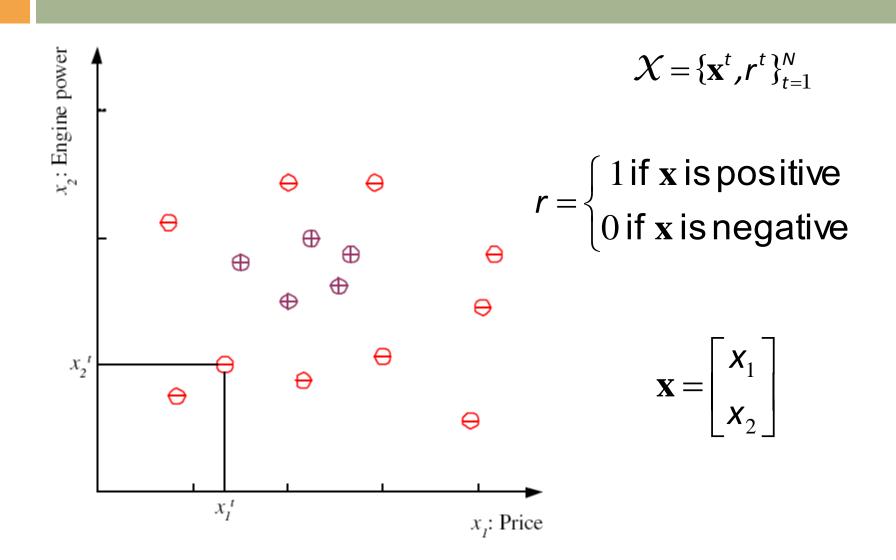
Output:

Positive (+) and negative (-) examples

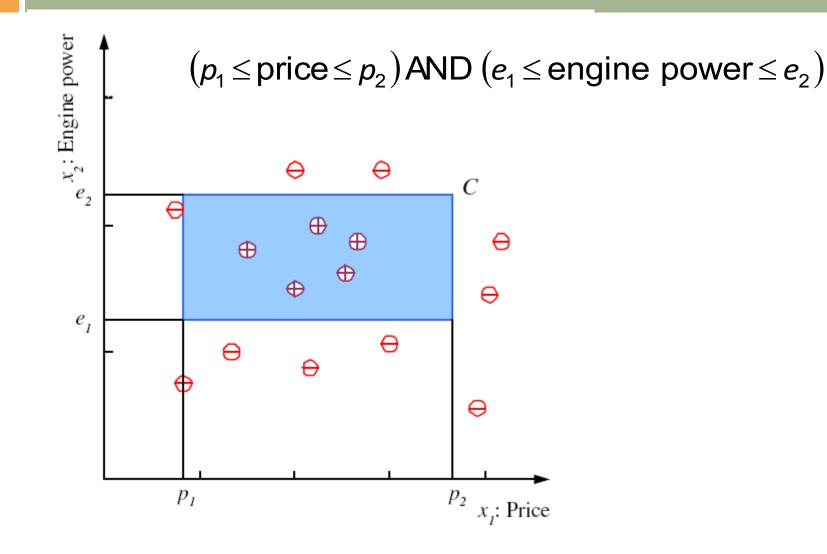
Input representation:

 x_1 : price, x_2 : engine power

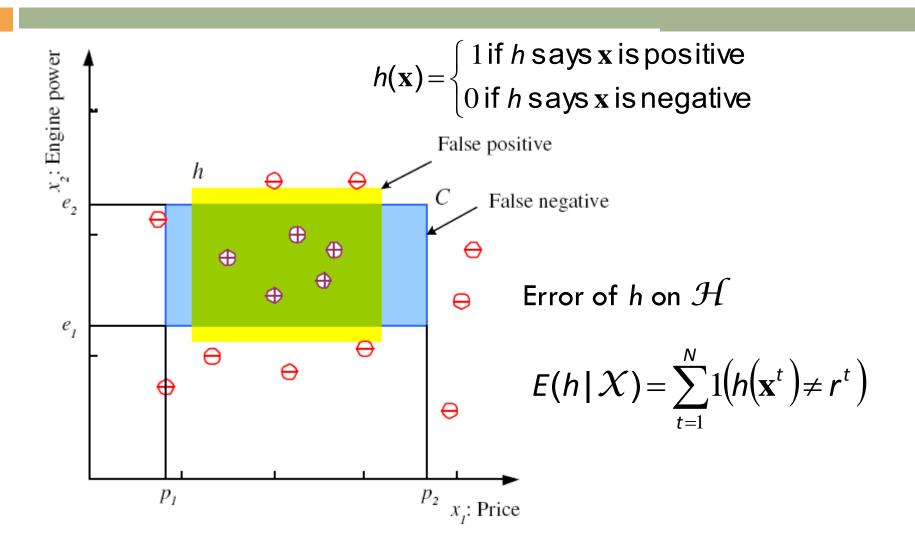
Training set ${\mathcal X}$



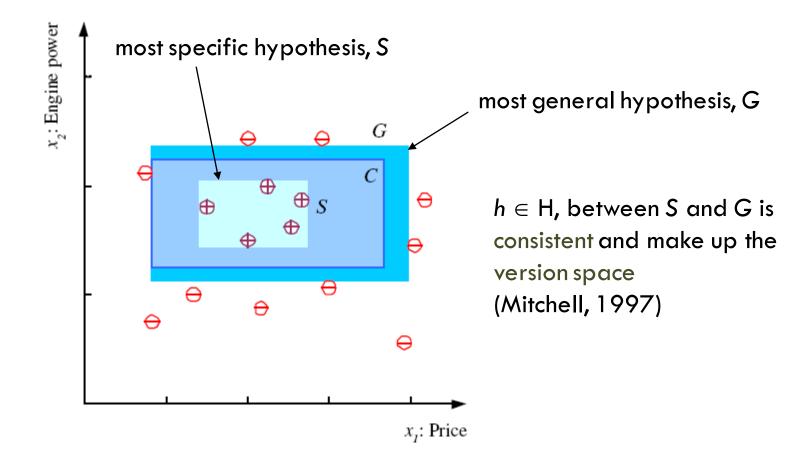
Class C



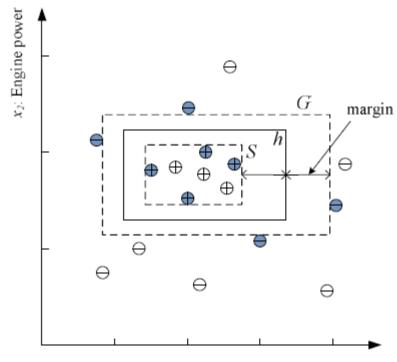
Hypothesis class ${\mathcal H}$



S, G, and the Version Space



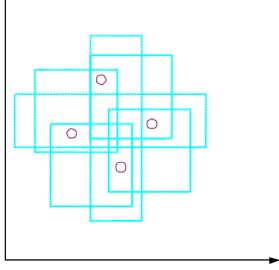
□ Choose *h* with largest margin



VC Dimension

9

N points can be labeled in 2^N ways as +/ H shatters N if there
exists h ∈ H consistent
for any of these:
VC(H) = N

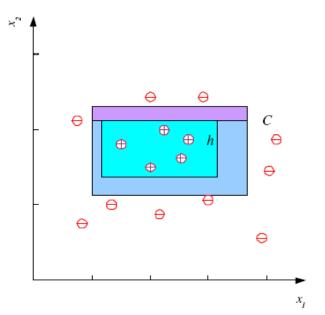


An axis-aligned rectangle shatters 4 points only !

 x_{I}

Probably Approximately Correct (PAC) Learning

- How many training examples N should we have, such that with probability at least 1δ , h has error at most ε ?
 - (Blumer et al., 1989)
- $\Box \quad \text{Each strip is at most } \epsilon/4$
- Pr that we miss a strip $1 \epsilon/4$
- □ Pr that N instances miss a strip $(1 \varepsilon/4)^N$
- Pr that N instances miss 4 strips $4(1 \varepsilon/4)^N$
- $\Box \quad 4(1-\epsilon/4)^N \le \delta \text{ and } (1-x) \le \exp(-x)$
- □ $4\exp(-\epsilon N/4) \le \delta$ and $N \ge (4/\epsilon)\log(4/\delta)$



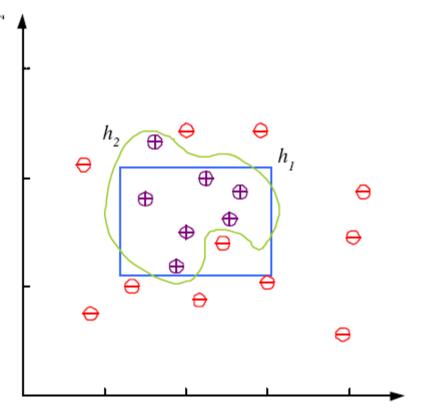
Noise and Model Complexity

Use the simpler one because

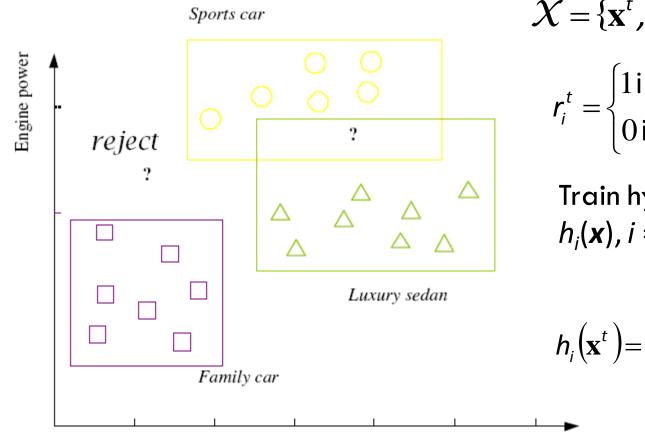
Simpler to use

(lower computational complexity)

- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance Occam's razor)



Multiple Classes, C_i i=1,...,K



Price

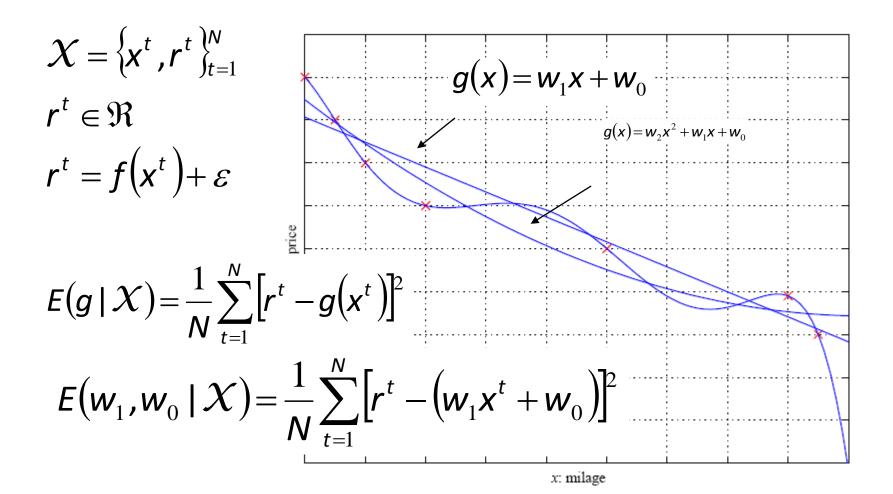
 $\mathcal{X} = \{\mathbf{x}^t, \mathbf{r}^t\}_{t=1}^N$

 $r_i^t = \begin{cases} 1 \text{ if } \mathbf{x}^t \in C_i \\ 0 \text{ if } \mathbf{x}^t \in C_j, j \neq i \end{cases}$

Train hypotheses $h_i(\mathbf{x}), i = 1, ..., K$:

 $h_{i}(\mathbf{x}^{t}) = \begin{cases} 1 \text{ if } \mathbf{x}^{t} \in C_{i} \\ 0 \text{ if } \mathbf{x}^{t} \in C_{j}, j \neq i \end{cases}$

Regression



Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- \square The need for inductive bias, assumptions about ${\mathcal H}$
- Generalization: How well a model performs on new data
- Overfitting: *H* more complex than C or *f*Underfitting: *H* less complex than C or *f*

Triple Trade-Off

- There is a trade-off between three factors (Dietterich, 2003):
 - 1. Complexity of \mathcal{H} , c (\mathcal{H}),
 - 2. Training set size, N,
 - 3. Generalization error, E, on new data
- □ As $N^{\uparrow}, E^{\downarrow}$
- □ As c (\mathcal{H})↑, first $E \downarrow$ and then E^{\uparrow}

Cross-Validation

- To estimate generalization error, we need data unseen during training. We split the data as
 - Training set (50%)
 - Validation set (25%)
 - Test (publication) set (25%)
- Resampling when there is few data

Dimensions of a Supervised Learner

- 1. Model: $g(\mathbf{x} | \theta)$
- 2. Loss function: $E(\theta \mid X) = \sum_{t} L(r^{t}, g(\mathbf{x}^{t} \mid \theta))$
- 3. Optimization procedure:

$$\theta^* = \arg\min_{\theta} nE(\theta \mid X)$$