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CHAPTER 18:  

REINFORCEMENT LEARNING 



Introduction 
3 

 Game-playing: Sequence of moves to win a game 

 Robot in a maze: Sequence of actions to find a goal 

 Agent has a state in an environment, takes an action 

and sometimes receives reward and the state 

changes 

 Credit-assignment 

 Learn a policy 



Single State: K-armed Bandit 
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        aQaraQaQ tttt   11 

 Among K levers, choose  

   the one that pays best 

 Q(a): value of action a 

 Reward is ra 

 Set Q(a) = ra 

 Choose a* if  

  Q(a*)=maxa Q(a) 

  

 Rewards stochastic (keep an expected reward): 



Elements of RL (Markov Decision 

Processes) 
5 

 st : State of agent at time t 

 at: Action taken at time t 

 In st, action at is taken, clock ticks and reward rt+1 is 
received and state changes to st+1 

 Next state prob: P (st+1 | st , at ) 

 Reward prob: p (rt+1 | st , at ) 

 Initial state(s), goal state(s) 

 Episode (trial) of actions from initial state to goal 

 (Sutton and Barto, 1998; Kaelbling et al., 1996) 



 Policy, 

 Value of a policy, 

 Finite-horizon: 

 

 

 Infinite horizon:   

Policy and Cumulative Reward 
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Bellman’s equation 



 Environment, P (st+1 | st , at ), p (rt+1 | st , at ) known 

 There is no need for exploration 

 Can be solved using dynamic programming 

 Solve for 

 

 

 Optimal policy 

Model-Based Learning 
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Value Iteration 
9 



Policy Iteration 
10 



Temporal Difference Learning 
11 

 Environment, P (st+1 | st , at ), p (rt+1 | st , at ), is not 

known; model-free learning 

 There is need for exploration to sample from  

 P (st+1 | st , at ) and p (rt+1 | st , at ) 

 Use the reward received in the next time step to 

update the value of current state (action) 

 The temporal difference between the value of the 

current action and the value discounted from the 

next state  



Exploration Strategies 
12 
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 ε-greedy: With pr ε,choose one action at random 
uniformly; and choose the best action with pr 1-ε 

 Probabilistic: 

 

 

 Move smoothly from exploration/exploitation.  

 Decrease ε 

 Annealing  
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Deterministic Rewards and Actions 
13 
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 Deterministic: single possible reward and next state 

 

 

 used as an update rule (backup) 

 

 

 Starting at zero, Q values increase, never decrease 
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Consider the value of action marked by ‘*’: 

If path A is seen first, Q(*)=0.9*max(0,81)=73 

Then B is seen, Q(*)=0.9*max(100,81)=90 

Or, 

If path B is seen first, Q(*)=0.9*max(100,0)=90 

Then A is seen, Q(*)=0.9*max(100,81)=90 

Q values increase but never decrease 

γ=0.9 



 When next states and rewards are nondeterministic 
(there is an opponent or randomness in the environment), 
we keep averages (expected values) instead as 
assignments 

 Q-learning (Watkins and Dayan, 1992): 

 

 

 Off-policy vs on-policy (Sarsa) 

 Learning V (TD-learning: Sutton, 1988) 

Nondeterministic Rewards and 

Actions 
15 
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backup 



Q-learning 
16 



Sarsa 
17 



Eligibility Traces 
18 
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Keep a record of previously visited states (actions) 



Sarsa (λ) 
19 



 Tabular: Q (s , a) or V (s) stored in a table 

 Regressor: Use a learner to estimate Q(s,a) or V(s) 

 

 

Generalization 
20 
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Partially Observable States 
21 

 The agent does not know its state but receives an 

observation  p(ot+1|st,at) which can be used to infer 

a belief about states 

 Partially observable  

 MDP 

 



The Tiger Problem 
22 

 Two doors, behind one of which there is a tiger 

 p: prob that tiger is behind the left door 

 

 

 R(aL)=-100p+80(1-p), R(aR)=90p-100(1-p) 

 We can sense with a reward of R(aS)=-1 

 We have unreliable sensors 
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 If we sense oL, our belief in tiger’s position changes 
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 Let us say the tiger can move from one room to the 

other with prob 0.8 
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 When planning for episodes of two, we can take aL, 

aR, or sense and wait: 
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