

Lecture Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION

ETHEM ALPAYDIN © The MIT Press, 2014

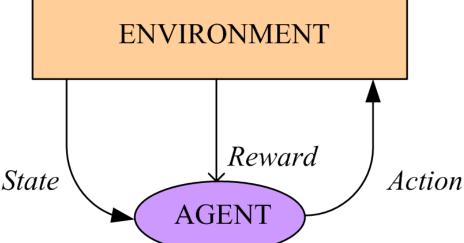
alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml3e

REINFORCEMENT LEARNING

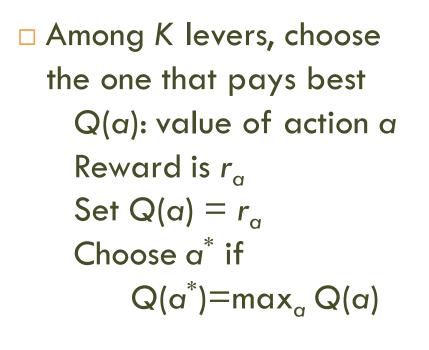
CHAPTER 18:

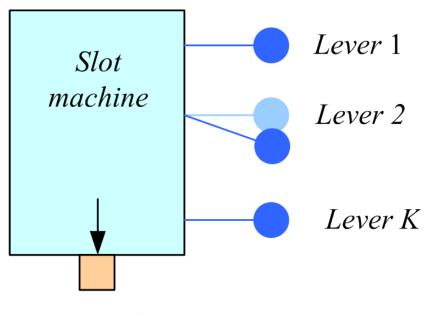
Introduction

- □ Game-playing: Sequence of moves to win a game
- Robot in a maze: Sequence of actions to find a goal
- Agent has a state in an environment, takes an action and sometimes receives reward and the state changes
- Credit-assignment
 Learn a policy



Single State: K-armed Bandit





reward

Rewards stochastic (keep an expected reward):

$$Q_{t+1}(a) \leftarrow Q_t(a) + \eta [r_{t+1}(a) - Q_t(a)]$$

Elements of RL (Markov Decision Processes)

- \Box s_t: State of agent at time t
- $\Box a_t$: Action taken at time t
- In s_t, action a_t is taken, clock ticks and reward r_{t+1} is received and state changes to s_{t+1}
- $\square \text{ Next state prob: } P(s_{t+1} \mid s_t, a_t)$
- $\square \text{ Reward prob: } p(r_{t+1} \mid s_t, a_t)$
- Initial state(s), goal state(s)
- Episode (trial) of actions from initial state to goal
- Gutton and Barto, 1998; Kaelbling et al., 1996)

Policy and Cumulative Reward

- $\square \text{ Policy, } \pi: S \to \mathcal{A} \quad a_t = \pi(s_t)$
- □ Value of a policy, $V^{\pi}(s_t)$
- Finite-horizon:

$$V^{\pi}(s_t) = E[r_{t+1} + r_{t+2} + \dots + r_{t+T}] = E\left[\sum_{i=1}^{T} r_{t+i}\right]$$

 $\Box \text{ Infinite horizon:} \\ V^{\pi}(s_t) = E[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots] = E\left[\sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i}\right]$

 $0 \le \gamma < 1$ is the discount rate

$$V^{*}(s_{t}) = \max_{\pi} V^{\pi}(s_{t}), \forall s_{t}$$

= $\max_{a_{t}} E\left[\sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i}\right]$
= $\max_{a_{t}} E\left[r_{t+1} + \gamma \sum_{i=1}^{\infty} \gamma^{i-1} r_{t+i+1}\right]$
= $\max_{a_{t}} E\left[r_{t+1} + \gamma V^{*}(s_{t+1})\right]$ Bellman's equation
 $V^{*}(s_{t}) = \max_{a_{t}} \left(E\left[r_{t+1}\right] + \gamma \sum_{s_{t+1}} P(s_{t+1} | s_{t}, a_{t})V^{*}(s_{t+1})\right)$
 $V^{*}(s_{t}) = \max_{a_{t}} Q^{*}(s_{t}, a_{t})$ Value of a_{t} in s_{t}
 $Q^{*}(s_{t}, a_{t}) = E\left[r_{t+1}\right] + \gamma \sum_{s_{t+1}} P(s_{t+1} | s_{t}, a_{t}) \max_{a_{t+1}} Q^{*}(s_{t+1}, a_{t+1})$

Model-Based Learning

- 8
- $\Box \text{ Environment, } P(s_{t+1} \mid s_t, a_t), p(r_{t+1} \mid s_t, a_t) \text{ known}$
- There is no need for exploration
- Can be solved using dynamic programming
- □ Solve for

$$V^{*}(s_{t}) = \max_{a_{t}} \left(E[r_{t+1}] + \gamma \sum_{s_{t+1}} P(s_{t+1} | s_{t}, a_{t}) V^{*}(s_{t+1}) \right)$$

Optimal policy

$$\pi^{*}(s_{t}) = \arg_{a_{t}} \left(E[r_{t+1} | s_{t}, a_{t}] + \gamma \sum_{s_{t+1}} P(s_{t+1} | s_{t}, a_{t}) V^{*}(s_{t+1}) \right)$$

Value Iteration

```
\begin{array}{l} \mbox{Initialize } V(s) \mbox{ to arbitrary values} \\ \mbox{Repeat} \\ \mbox{For all } s \in \mathcal{S} \\ \mbox{For all } a \in \mathcal{A} \\ Q(s,a) \leftarrow E[r|s,a] + \gamma \sum_{s' \in \mathcal{S}} P(s'|s,a) V(s') \\ V(s) \leftarrow \max_a Q(s,a) \end{array}
```

Policy Iteration

```
Initialize a policy \pi arbitrarily
Repeat
   \pi \leftarrow \pi'
    Compute the values using \pi by
       solving the linear equations
           V^{\pi}(s) = E[r|s, \pi(s)] + \gamma \sum_{s' \in S} P(s'|s, \pi(s)) V^{\pi}(s')
   Improve the policy at each state
       \pi'(s) \leftarrow \arg \max_a (E[r|s, a] + \gamma \sum_{s' \in \mathcal{S}} P(s'|s, a) V^{\pi}(s'))
Until \pi = \pi'
```

Temporal Difference Learning

- □ Environment, $P(s_{t+1} | s_t, a_t)$, $p(r_{t+1} | s_t, a_t)$, is not known; model-free learning
- There is need for exploration to sample from

 $P(s_{t+1} | s_t, a_t) \text{ and } p(r_{t+1} | s_t, a_t)$

- Use the reward received in the next time step to update the value of current state (action)
- The temporal difference between the value of the current action and the value discounted from the next state

Exploration Strategies

- 12
- E-greedy: With pr E,choose one action at random uniformly; and choose the best action with pr 1-E
 Probabilistic:

$$P(a \mid s) = \frac{\exp Q(s,a)}{\sum_{b=1}^{\mathcal{A}} \exp Q(s,b)}$$

- Move smoothly from exploration/exploitation.
- Decrease &

$$P(a \mid s) = \frac{\exp[Q(s,a)/T]}{\sum_{b=1}^{\mathcal{A}} \exp[Q(s,b)/T]}$$

Deterministic Rewards and Actions

$$Q^{*}(s_{t}, a_{t}) = E[r_{t+1}] + \gamma \sum_{s} P(s_{t+1} | s_{t}, a_{t}) \max_{a_{t+1}} Q^{*}(s_{t+1}, a_{t+1})$$

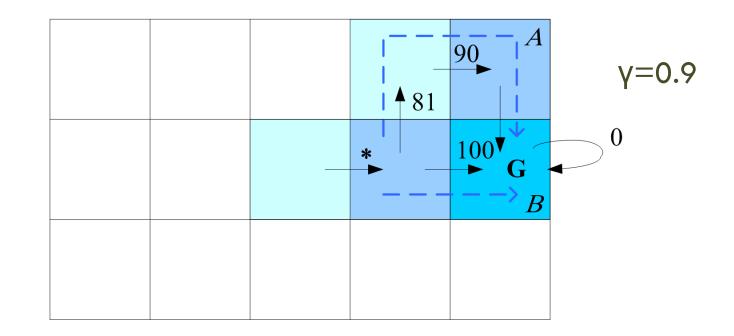
Deterministic: single possible reward and next state

$$Q(s_{t}, a_{t}) = r_{t+1} + \gamma \max_{a_{t+1}} xQ(s_{t+1}, a_{t+1})$$

 $S_{t\perp 1}$

used as an update rule (backup) $\hat{Q}(s_t, a_t) \leftarrow r_{t+1} + \gamma \max_{a_{t+1}} \hat{Q}(s_{t+1}, a_{t+1})$

Starting at zero, Q values increase, never decrease



Consider the value of action marked by '*': If path A is seen first, Q(*)=0.9*max(0,81)=73 Then B is seen, Q(*)=0.9*max(100,81)=90 Or, If path B is seen first, Q(*)=0.9*max(100,0)=90

Then A is seen, Q(*)=0.9*max(100,81)=90

Q values increase but never decrease

Nondeterministic Rewards and Actions

When next states and rewards are nondeterministic (there is an opponent or randomness in the environment), we keep averages (expected values) instead as assignments

□ Q-learning (Watkins and Dayan, 1992):

$$\hat{Q}(s_t, a_t) \leftarrow \hat{Q}(s_t, a_t) + \eta \left(r_{t+1} + \gamma \max_{a_{t+1}} \hat{Q}(s_{t+1}, a_{t+1}) - \hat{Q}(s_t, a_t) \right)$$

Off-policy vs on-policy (Sarsa)
 Learning V (TD-learning: Sutton, 1988)

$$V(s_t) \leftarrow V(s_t) + \eta (r_{t+1} + \gamma V(s_{t+1}) - V(s_t))$$

Q-learning

```
Initialize all Q(s, a) arbitrarily
For all episodes
   Initalize s
   Repeat
      Choose a using policy derived from Q, e.g., \epsilon-greedy
      Take action a, observe r and s'
      Update Q(s, a):
         Q(s,a) \leftarrow Q(s,a) + \eta(r+\gamma \max_{a'} Q(s',a') - Q(s,a))
      s \leftarrow s'
   Until s is terminal state
```

Sarsa

```
Initialize all Q(s, a) arbitrarily
For all episodes
   Initalize s
   Choose a using policy derived from Q, e.g., \epsilon-greedy
   Repeat
      Take action a, observe r and s'
      Choose a' using policy derived from Q, e.g., \epsilon-greedy
      Update Q(s, a):
         Q(s,a) \leftarrow Q(s,a) + \eta(r+\gamma Q(s',a') - Q(s,a))
      s \leftarrow s', a \leftarrow a'
   Until s is terminal state
```

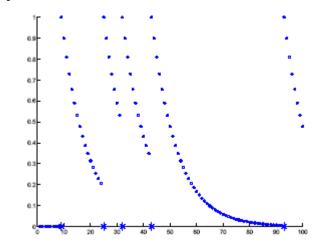
Eligibility Traces

18

Keep a record of previously visited states (actions)

$$e_t(s,a) = \begin{cases} 1 & \text{if } s = s_t \text{ and } a = a_t \\ \gamma \lambda e_{t-1}(s,a) & \text{otherwise} \end{cases}$$

$$\delta_{t} = r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_{t}, a_{t})$$
$$Q(s_{t}, a_{t}) \leftarrow Q(s_{t}, a_{t}) + \eta \delta_{t} e_{t}(s, a), \forall s, a$$



Sarsa (λ)

```
Initialize all Q(s, a) arbitrarily, e(s, a) \leftarrow 0, \forall s, a
For all episodes
   Initalize s
   Choose a using policy derived from Q, e.g., \epsilon-greedy
   Repeat
       Take action a, observe r and s'
       Choose a' using policy derived from Q, e.g., \epsilon-greedy
       \delta \leftarrow r + \gamma Q(s', a') - Q(s, a)
       e(s, a) \leftarrow 1
       For all s, a:
          Q(s,a) \leftarrow Q(s,a) + \eta \delta e(s,a)
          e(s, a) \leftarrow \gamma \lambda e(s, a)
       s \leftarrow s', a \leftarrow a'
   Until s is terminal state
```

Generalization

- \Box Tabular: Q (s , a) or V (s) stored in a table
- \square Regressor: Use a learner to estimate Q(s,a) or V(s)

$$E^{t}(\boldsymbol{\theta}) = [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_{t}, a_{t})]^{2}$$

$$\Delta \boldsymbol{\theta} = \eta [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_{t}, a_{t})] \nabla_{\boldsymbol{\theta}_{t}} Q(s_{t}, a_{t})$$

Eligibility

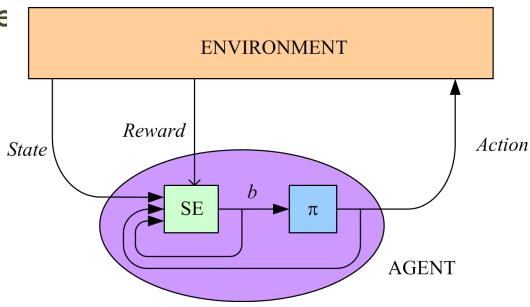
$$\Delta \boldsymbol{\theta} = \eta \delta_t \mathbf{e}_t$$

$$\delta_t = \mathbf{r}_{t+1} + \gamma \mathbf{Q}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) - \mathbf{Q}(\mathbf{s}_t, \mathbf{a}_t)$$

$$\mathbf{e}_t = \gamma \lambda \mathbf{e}_{t-1} + \nabla_{\theta_t} \mathbf{Q}(\mathbf{s}_t, \mathbf{a}_t) \text{ with } \mathbf{e}_0 \text{ all zeros}$$

Partially Observable States

- The agent does not know its state but receives an observation p(o_{t+1} | s_t, a_t) which can be used to infer a belief about states
- Partially observable
 MDP



The Tiger Problem

22

- Two doors, behind one of which there is a tiger
- □ p: prob that tiger is behind the left door

r(A,Z)	Tiger left	Tiger right
Open left	-100	+80
Open right	+90	-100

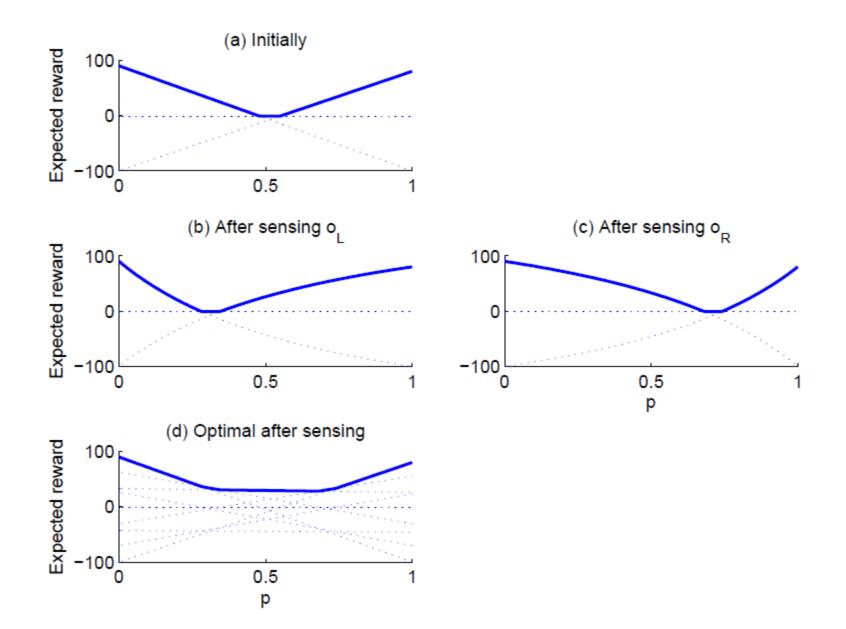
□ $R(a_L) = -100p + 80(1-p), R(a_R) = 90p - 100(1-p)$

□ We can sense with a reward of $R(a_S) = -1$

□ We have unreliable sensors $P(o_L|z_L) = 0.7$ $P(o_L|z_R) = 0.3$ $P(o_R|z_L) = 0.3$ $P(o_R|z_R) = 0.7$ \Box If we sense o_1 , our belief in tiger's position changes $p' = P(z_{L} | o_{L}) = \frac{P(o_{L} | z_{L})P(z_{L})}{P(o_{L})} = \frac{0.7p}{0.7p + 0.3(1-p)}$ $R(a_{1} | o_{1}) = r(a_{1}, z_{1})P(z_{1} | o_{1}) + r(a_{1}, z_{R})P(z_{R} | o_{1})$ = -100 p' + 80(1 - p') $= -100 \frac{0.7p}{P(o_{1})} + 80 \frac{0.3(1-p)}{P(o_{1})}$ $R(a_{R} | o_{I}) = r(a_{R}, z_{I})P(z_{I} | o_{I}) + r(a_{R}, z_{R})P(z_{R} | o_{I})$ =90p'-100(1-p') $=90\frac{0.7p}{P(o_{1})}-100\frac{0.3(1-p)}{P(o_{1})}$ $R(a_{s} | o_{t}) = -1$

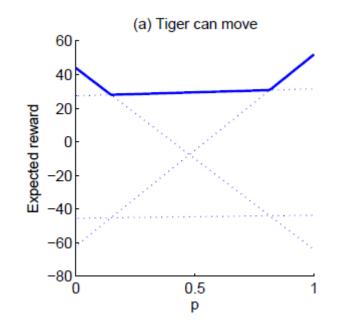
$$V' = \sum_{j} \left[\max_{i} R(a_{i} | o_{j}) P(o_{j}) \right]$$

= $\max(R(a_{L} | o_{L}), R(a_{R} | o_{L}), R(a_{S} | o_{L})) P(o_{L}) + \max(R(a_{L} | o_{R}), R(a_{R} | o_{R}), R(a_{S} | o_{R})) P(o_{R}) \right]$
= $\max \begin{pmatrix} -100p + 80(1-p) \\ -43p - 46(1-p) \\ 33p + 26(1-p) \\ 90p - 100(1-p) \end{pmatrix}$



□ Let us say the tiger can move from one room to the other with prob 0.8 p'=0.2p+0.8(1-p)

$$V' = \max \begin{pmatrix} -100p' + 80(1-p') \\ 33p + 26(1-p') \\ 90p - 100(1-p') \end{pmatrix}$$



□ When planning for episodes of two, we can take a_L , a_R , or sense and wait:

$$V_2 = \max \begin{pmatrix} -100p & +80(1-p) \\ 90p & -100(1-p) \\ maxV' & -1 \end{pmatrix}$$

