
INTRODUCTION  

TO  

MACHINE  

LEARNING 
3RD EDITION 

ETHEM ALPAYDIN 

© The MIT Press, 2014 
 

alpaydin@boun.edu.tr 

http://www.cmpe.boun.edu.tr/~ethem/i2ml3e 

Lecture Slides for 



CHAPTER 18:  

REINFORCEMENT LEARNING 



Introduction 
3 

 Game-playing: Sequence of moves to win a game 

 Robot in a maze: Sequence of actions to find a goal 

 Agent has a state in an environment, takes an action 

and sometimes receives reward and the state 

changes 

 Credit-assignment 

 Learn a policy 



Single State: K-armed Bandit 
4 

        aQaraQaQ tttt   11 

 Among K levers, choose  

   the one that pays best 

 Q(a): value of action a 

 Reward is ra 

 Set Q(a) = ra 

 Choose a* if  

  Q(a*)=maxa Q(a) 

  

 Rewards stochastic (keep an expected reward): 



Elements of RL (Markov Decision 

Processes) 
5 

 st : State of agent at time t 

 at: Action taken at time t 

 In st, action at is taken, clock ticks and reward rt+1 is 
received and state changes to st+1 

 Next state prob: P (st+1 | st , at ) 

 Reward prob: p (rt+1 | st , at ) 

 Initial state(s), goal state(s) 

 Episode (trial) of actions from initial state to goal 

 (Sutton and Barto, 1998; Kaelbling et al., 1996) 



 Policy, 

 Value of a policy, 

 Finite-horizon: 

 

 

 Infinite horizon:   

Policy and Cumulative Reward 
6 

 tt sa        : AS

 tsV

    







 





T

i
itTtttt rErrrEsV

1

21 

   

rate  discount  the is   10

1

1

3

2

21











 















i
it

i
tttt rErrrEsV 



7 

   

  

       

   

       1111

111

11

1

1

1

1

1

1

1
1

1

















































































tt
a

s
tttttt

tttt
a

t

t
s

tttt
a

t

tt
a

i
it

i
t

a

i
it

i

a

ttt

asQassPrEasQ

saasQsV

sVassPrEsV

sVrE

rrE

rE

ssVsV

t
t

t

t
t

t

t

t

,,,

,

,

,

**

**

**

*

*

max|

 in  of     Valuemax

|max

max

max

max

max















Bellman’s equation 



 Environment, P (st+1 | st , at ), p (rt+1 | st , at ) known 

 There is no need for exploration 

 Can be solved using dynamic programming 

 Solve for 

 

 

 Optimal policy 

Model-Based Learning 
8 

       













  



111

1

t
s

tttt
a

t sVassPrEsV
t

t

** ,|max 

       













  



111

1

t
s

tttttt
a

t sVassPasrEs
tt

*,|,|max arg* 



Value Iteration 
9 



Policy Iteration 
10 



Temporal Difference Learning 
11 

 Environment, P (st+1 | st , at ), p (rt+1 | st , at ), is not 

known; model-free learning 

 There is need for exploration to sample from  

 P (st+1 | st , at ) and p (rt+1 | st , at ) 

 Use the reward received in the next time step to 

update the value of current state (action) 

 The temporal difference between the value of the 

current action and the value discounted from the 

next state  



Exploration Strategies 
12 

 
 

  

 A

1b
bsQ

asQ
saP

,exp

,exp
|

 ε-greedy: With pr ε,choose one action at random 
uniformly; and choose the best action with pr 1-ε 

 Probabilistic: 

 

 

 Move smoothly from exploration/exploitation.  

 Decrease ε 

 Annealing  
  

   

 A

1b
TbsQ

TasQ
saP

/,exp

/,exp
|



Deterministic Rewards and Actions 
13 

       1111
1

1






 tt
a

s
tttttt asQassPrEasQ

t
t

,max,|, **  

 

 Deterministic: single possible reward and next state 

 

 

 used as an update rule (backup) 

 

 

 Starting at zero, Q values increase, never decrease 

   111
1




 tt
a

ttt asQrasQ
t

,max, 

   111
1




 tt
a

ttt asQrasQ
t

,ˆmax,ˆ 



14 

Consider the value of action marked by ‘*’: 

If path A is seen first, Q(*)=0.9*max(0,81)=73 

Then B is seen, Q(*)=0.9*max(100,81)=90 

Or, 

If path B is seen first, Q(*)=0.9*max(100,0)=90 

Then A is seen, Q(*)=0.9*max(100,81)=90 

Q values increase but never decrease 

γ=0.9 



 When next states and rewards are nondeterministic 
(there is an opponent or randomness in the environment), 
we keep averages (expected values) instead as 
assignments 

 Q-learning (Watkins and Dayan, 1992): 

 

 

 Off-policy vs on-policy (Sarsa) 

 Learning V (TD-learning: Sutton, 1988) 

Nondeterministic Rewards and 

Actions 
15 

        ttttt sVsVrsVsV   11 

       






  


tttt
a

ttttt asQasQrasQasQ
t

,ˆ,ˆmax,ˆ,ˆ
111

1



backup 



Q-learning 
16 



Sarsa 
17 



Eligibility Traces 
18 

 
 

   

      asaseasQasQ

asQasQr

ase

aass
ase

tttttt

tttttt

t

tt

t

,,,,,

,,

,
,







 













111

1

1

otherwise

  and  if

Keep a record of previously visited states (actions) 



Sarsa (λ) 
19 



 Tabular: Q (s , a) or V (s) stored in a table 

 Regressor: Use a learner to estimate Q(s,a) or V(s) 

 

 

Generalization 
20 

      
      

   

  zeros all   with

yEligibilit

0θ1

111

111

2

111

eee

eθ

θ

θ

θ

tttt

tttttt

tt

ttttttt

ttttt
t

asQ

asQasQr

asQasQasQr

asQasQrE

t

t

,

,,

,,,

,,































Partially Observable States 
21 

 The agent does not know its state but receives an 

observation  p(ot+1|st,at) which can be used to infer 

a belief about states 

 Partially observable  

 MDP 

 



The Tiger Problem 
22 

 Two doors, behind one of which there is a tiger 

 p: prob that tiger is behind the left door 

 

 

 R(aL)=-100p+80(1-p), R(aR)=90p-100(1-p) 

 We can sense with a reward of R(aS)=-1 

 We have unreliable sensors 

 



23 

 If we sense oL, our belief in tiger’s position changes 

1

130
100

70
90

110090

130
80

70
100

180100

13070

70




















)|(

)(

)(.

)(

.

)'('

)|(),()|(),()|(

)(

)(.

)(

.

)'('

)|(),()|(),()|(

)(..

.

)(

)()|(
)|('

LS

LL

LRRRLLLRLR

LL

LRRLLLLLLL

L

LLL
LL

oaR

oP

p

oP

p

pp

ozPzarozPzaroaR

oP

p

oP

p

pp

ozPzarozPzaroaR

pp

p

oP

zPzoP
ozPp



24 

 



































)(

)(

)(

)(

max

)())|(),|(),|(max()())|(),|(),|(max(

)()|(max'

pp

pp

pp

pp

oPoaRoaRoaRoPoaRoaRoaR

oPoaRV

RRSRRRLLLSLRLL

j
j

jii

110090

12633

14643

180100



25 



26 

 Let us say the tiger can move from one room to the 

other with prob 0.8 



























)'(

)'(

)'('

max'

)(..'

pp

pp

pp

V

ppp

110090

12633

180100

18020



27 

 When planning for episodes of two, we can take aL, 

aR, or sense and wait: 

























1

110090

180100

2

'max

)(

)(

max

V

pp

pp

V


