
INTRODUCTION

TO

MACHINE

LEARNING
3RD EDITION

ETHEM ALPAYDIN

© The MIT Press, 2014

alpaydin@boun.edu.tr

http://www.cmpe.boun.edu.tr/~ethem/i2ml3e

Lecture Slides for

CHAPTER 18:

REINFORCEMENT LEARNING

Introduction
3

 Game-playing: Sequence of moves to win a game

 Robot in a maze: Sequence of actions to find a goal

 Agent has a state in an environment, takes an action

and sometimes receives reward and the state

changes

 Credit-assignment

 Learn a policy

Single State: K-armed Bandit
4

 aQaraQaQ tttt 11

 Among K levers, choose

 the one that pays best

 Q(a): value of action a

 Reward is ra

 Set Q(a) = ra

 Choose a* if

 Q(a*)=maxa Q(a)

 Rewards stochastic (keep an expected reward):

Elements of RL (Markov Decision

Processes)
5

 st : State of agent at time t

 at: Action taken at time t

 In st, action at is taken, clock ticks and reward rt+1 is
received and state changes to st+1

 Next state prob: P (st+1 | st , at)

 Reward prob: p (rt+1 | st , at)

 Initial state(s), goal state(s)

 Episode (trial) of actions from initial state to goal

 (Sutton and Barto, 1998; Kaelbling et al., 1996)

 Policy,

 Value of a policy,

 Finite-horizon:

 Infinite horizon:

Policy and Cumulative Reward
6

 tt sa : AS

 tsV

T

i
itTtttt rErrrEsV

1

21

rate discount the is 10

1

1

3

2

21

i
it

i
tttt rErrrEsV

7

 1111

111

11

1

1

1

1

1

1

1
1

1

tt
a

s
tttttt

tttt
a

t

t
s

tttt
a

t

tt
a

i
it

i
t

a

i
it

i

a

ttt

asQassPrEasQ

saasQsV

sVassPrEsV

sVrE

rrE

rE

ssVsV

t
t

t

t
t

t

t

t

,,,

,

,

,

**

**

**

*

*

max|

 in of Valuemax

|max

max

max

max

max

Bellman’s equation

 Environment, P (st+1 | st , at), p (rt+1 | st , at) known

 There is no need for exploration

 Can be solved using dynamic programming

 Solve for

 Optimal policy

Model-Based Learning
8

111

1

t
s

tttt
a

t sVassPrEsV
t

t

** ,|max

111

1

t
s

tttttt
a

t sVassPasrEs
tt

,|,|max arg

Value Iteration
9

Policy Iteration
10

Temporal Difference Learning
11

 Environment, P (st+1 | st , at), p (rt+1 | st , at), is not

known; model-free learning

 There is need for exploration to sample from

 P (st+1 | st , at) and p (rt+1 | st , at)

 Use the reward received in the next time step to

update the value of current state (action)

 The temporal difference between the value of the

current action and the value discounted from the

next state

Exploration Strategies
12

 A

1b
bsQ

asQ
saP

,exp

,exp
|

 ε-greedy: With pr ε,choose one action at random
uniformly; and choose the best action with pr 1-ε

 Probabilistic:

 Move smoothly from exploration/exploitation.

 Decrease ε

 Annealing

 A

1b
TbsQ

TasQ
saP

/,exp

/,exp
|

Deterministic Rewards and Actions
13

 1111
1

1

 tt
a

s
tttttt asQassPrEasQ

t
t

,max,|, **

 Deterministic: single possible reward and next state

 used as an update rule (backup)

 Starting at zero, Q values increase, never decrease

 111
1

 tt
a

ttt asQrasQ
t

,max,

 111
1

 tt
a

ttt asQrasQ
t

,ˆmax,ˆ

14

Consider the value of action marked by ‘*’:

If path A is seen first, Q(*)=0.9*max(0,81)=73

Then B is seen, Q(*)=0.9*max(100,81)=90

Or,

If path B is seen first, Q(*)=0.9*max(100,0)=90

Then A is seen, Q(*)=0.9*max(100,81)=90

Q values increase but never decrease

γ=0.9

 When next states and rewards are nondeterministic
(there is an opponent or randomness in the environment),
we keep averages (expected values) instead as
assignments

 Q-learning (Watkins and Dayan, 1992):

 Off-policy vs on-policy (Sarsa)

 Learning V (TD-learning: Sutton, 1988)

Nondeterministic Rewards and

Actions
15

 ttttt sVsVrsVsV 11

tttt
a

ttttt asQasQrasQasQ
t

,ˆ,ˆmax,ˆ,ˆ
111

1

backup

Q-learning
16

Sarsa
17

Eligibility Traces
18

 asaseasQasQ

asQasQr

ase

aass
ase

tttttt

tttttt

t

tt

t

,,,,,

,,

,
,

111

1

1

otherwise

 and if

Keep a record of previously visited states (actions)

Sarsa (λ)
19

 Tabular: Q (s , a) or V (s) stored in a table

 Regressor: Use a learner to estimate Q(s,a) or V(s)

Generalization
20

 zeros all with

yEligibilit

0θ1

111

111

2

111

eee

eθ

θ

θ

θ

tttt

tttttt

tt

ttttttt

ttttt
t

asQ

asQasQr

asQasQasQr

asQasQrE

t

t

,

,,

,,,

,,

Partially Observable States
21

 The agent does not know its state but receives an

observation p(ot+1|st,at) which can be used to infer

a belief about states

 Partially observable

 MDP

The Tiger Problem
22

 Two doors, behind one of which there is a tiger

 p: prob that tiger is behind the left door

 R(aL)=-100p+80(1-p), R(aR)=90p-100(1-p)

 We can sense with a reward of R(aS)=-1

 We have unreliable sensors

23

 If we sense oL, our belief in tiger’s position changes

1

130
100

70
90

110090

130
80

70
100

180100

13070

70

)|(

)(

)(.

)(

.

)'('

)|(),()|(),()|(

)(

)(.

)(

.

)'('

)|(),()|(),()|(

)(..

.

)(

)()|(
)|('

LS

LL

LRRRLLLRLR

LL

LRRLLLLLLL

L

LLL
LL

oaR

oP

p

oP

p

pp

ozPzarozPzaroaR

oP

p

oP

p

pp

ozPzarozPzaroaR

pp

p

oP

zPzoP
ozPp

24

)(

)(

)(

)(

max

)())|(),|(),|(max()())|(),|(),|(max(

)()|(max'

pp

pp

pp

pp

oPoaRoaRoaRoPoaRoaRoaR

oPoaRV

RRSRRRLLLSLRLL

j
j

jii

110090

12633

14643

180100

25

26

 Let us say the tiger can move from one room to the

other with prob 0.8

)'(

)'(

)'('

max'

)(..'

pp

pp

pp

V

ppp

110090

12633

180100

18020

27

 When planning for episodes of two, we can take aL,

aR, or sense and wait:

1

110090

180100

2

'max

)(

)(

max

V

pp

pp

V

