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CHAPTER 18:  

REINFORCEMENT LEARNING 



Introduction 
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 Game-playing: Sequence of moves to win a game 

 Robot in a maze: Sequence of actions to find a goal 

 Agent has a state in an environment, takes an action 

and sometimes receives reward and the state 

changes 

 Credit-assignment 

 Learn a policy 



Single State: K-armed Bandit 
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 Among K levers, choose  

   the one that pays best 

 Q(a): value of action a 

 Reward is ra 

 Set Q(a) = ra 

 Choose a* if  

  Q(a*)=maxa Q(a) 

  

 Rewards stochastic (keep an expected reward): 



Elements of RL (Markov Decision 

Processes) 
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 st : State of agent at time t 

 at: Action taken at time t 

 In st, action at is taken, clock ticks and reward rt+1 is 
received and state changes to st+1 

 Next state prob: P (st+1 | st , at ) 

 Reward prob: p (rt+1 | st , at ) 

 Initial state(s), goal state(s) 

 Episode (trial) of actions from initial state to goal 

 (Sutton and Barto, 1998; Kaelbling et al., 1996) 



 Policy, 

 Value of a policy, 

 Finite-horizon: 

 

 

 Infinite horizon:   

Policy and Cumulative Reward 
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Bellman’s equation 



 Environment, P (st+1 | st , at ), p (rt+1 | st , at ) known 

 There is no need for exploration 

 Can be solved using dynamic programming 

 Solve for 

 

 

 Optimal policy 

Model-Based Learning 
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Value Iteration 
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Policy Iteration 
10 



Temporal Difference Learning 
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 Environment, P (st+1 | st , at ), p (rt+1 | st , at ), is not 

known; model-free learning 

 There is need for exploration to sample from  

 P (st+1 | st , at ) and p (rt+1 | st , at ) 

 Use the reward received in the next time step to 

update the value of current state (action) 

 The temporal difference between the value of the 

current action and the value discounted from the 

next state  



Exploration Strategies 
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 ε-greedy: With pr ε,choose one action at random 
uniformly; and choose the best action with pr 1-ε 

 Probabilistic: 

 

 

 Move smoothly from exploration/exploitation.  

 Decrease ε 

 Annealing  
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Deterministic Rewards and Actions 
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 Deterministic: single possible reward and next state 

 

 

 used as an update rule (backup) 

 

 

 Starting at zero, Q values increase, never decrease 
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Consider the value of action marked by ‘*’: 

If path A is seen first, Q(*)=0.9*max(0,81)=73 

Then B is seen, Q(*)=0.9*max(100,81)=90 

Or, 

If path B is seen first, Q(*)=0.9*max(100,0)=90 

Then A is seen, Q(*)=0.9*max(100,81)=90 

Q values increase but never decrease 

γ=0.9 



 When next states and rewards are nondeterministic 
(there is an opponent or randomness in the environment), 
we keep averages (expected values) instead as 
assignments 

 Q-learning (Watkins and Dayan, 1992): 

 

 

 Off-policy vs on-policy (Sarsa) 

 Learning V (TD-learning: Sutton, 1988) 

Nondeterministic Rewards and 

Actions 
15 
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Q-learning 
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Sarsa 
17 



Eligibility Traces 
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Keep a record of previously visited states (actions) 



Sarsa (λ) 
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 Tabular: Q (s , a) or V (s) stored in a table 

 Regressor: Use a learner to estimate Q(s,a) or V(s) 

 

 

Generalization 
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Partially Observable States 
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 The agent does not know its state but receives an 

observation  p(ot+1|st,at) which can be used to infer 

a belief about states 

 Partially observable  

 MDP 

 



The Tiger Problem 
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 Two doors, behind one of which there is a tiger 

 p: prob that tiger is behind the left door 

 

 

 R(aL)=-100p+80(1-p), R(aR)=90p-100(1-p) 

 We can sense with a reward of R(aS)=-1 

 We have unreliable sensors 
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 If we sense oL, our belief in tiger’s position changes 
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 Let us say the tiger can move from one room to the 

other with prob 0.8 



























)'(

)'(

)'('

max'

)(..'

pp

pp

pp

V

ppp

110090

12633

180100

18020



27 

 When planning for episodes of two, we can take aL, 

aR, or sense and wait: 
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