

Lecture Slides for INTRODUCTION TO MACHINE LEARNING 3RD EDITION

ETHEM ALPAYDIN © The MIT Press, 2014

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml3e

CHAPTER 17: COMBINING MULTIPLE LEARNERS

Rationale

- No Free Lunch Theorem: There is no algorithm that is always the most accurate
- Generate a group of base-learners which when combined has higher accuracy
- Different learners use different
 - Algorithms
 - Hyperparameters
 - Representations / Modalities / Views
 - Training sets
 - Subproblems
- Diversity vs accuracy

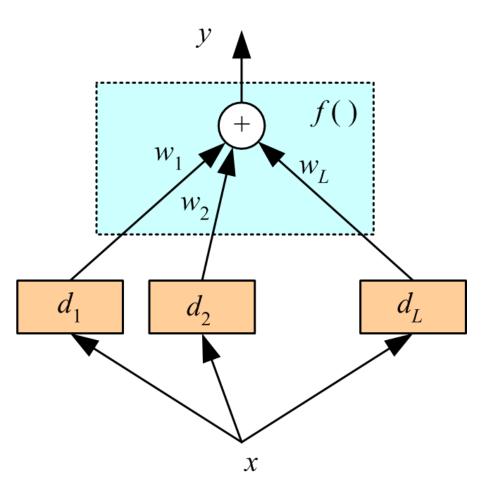
Voting

□ Linear combination

$$y = \sum_{j=1}^{L} w_j d_j$$
$$w_j \ge 0 \text{ and } \sum_{j=1}^{L} w_j = 1$$

Classification

$$\boldsymbol{y}_i = \sum_{j=1}^{L} \boldsymbol{w}_j \boldsymbol{d}_{ji}$$



Bayesian perspective:

$$P(C_i | x) = \sum_{\text{all models} \mathcal{M}_j} P(C_i | x, \mathcal{M}_j) P(\mathcal{M}_j)$$

□ If
$$d_j$$
 are iid

$$E[y] = E\left[\sum_j \frac{1}{L}d_j\right] = \frac{1}{L}L \cdot E[d_j] = E[d_j]$$

$$Var(y) = Var\left(\sum_j \frac{1}{L}d_j\right) = \frac{1}{L^2}Var\left(\sum_j d_j\right) = \frac{1}{L^2}L \cdot Var(d_j) = \frac{1}{L}Var(d_j)$$

Bias does not change, variance decreases by L

□ If dependent, error increase with positive correlation

$$\operatorname{Var}(y) = \frac{1}{L^2} \operatorname{Var}\left(\sum_j d_j\right) = \frac{1}{L^2} \left[\sum_j \operatorname{Var}(d_j) + 2\sum_j \sum_{i < j} \operatorname{Cov}(d_i, d_j)\right]$$

Fixed Combination Rules

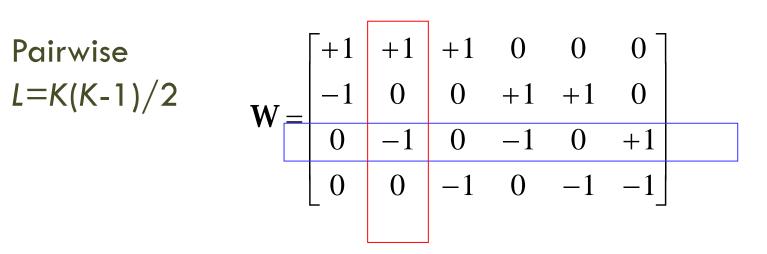
Rule	Fusion function $f(\cdot)$						
Sum	$y_i = \frac{1}{L} \sum_{j=1}^{L} d_{ji}$						
Weighted sum	$y_i = \sum_j w_j d_{ji}, w_j \ge 0, \sum_j w_j = 1$						
Median	$y_i = \text{median}_j d_{ji}$						
Minimum	$y_i = \min_j d_{ji}$						
Maximum	$y_i = \max_j d_{ji}$		C_1	C_2	C_3		
Product	$y_i = \prod_j d_{ji}$	d_1	0.2	0.5	0.3		
	5.5	d_2	0.0	0.6	0.4		
		d_3	0.4	0.4	0.2		
		Sum	0.2	0.5	0.3		
		Median	0.2	0.5	0.4		
		Minimum	0.0	0.4	0.2		
		Maximum	0.4	0.6	0.4		
		Product	0.0	0.12	0.032		

Error-Correcting Output Codes

□ K classes; L problems (Dietterich and Bakiri, 1995) Code matrix W codes classes in terms of learners

 $\square \text{ One per class} \\ L = K \\ W = \begin{vmatrix} +1 & -1 & -1 & -1 \\ -1 & +1 & -1 & -1 \\ -1 & -1 & +1 & -1 \\ -1 & -1 & +1 & -1 \\ -1 & -1 & -1 & +1 \end{vmatrix}$

Pairwise



□ Full code $L=2^{(K-1)}-1$

- With reasonable L, find W such that the Hamming distance btw rows and columns are maximized.
- Voting scheme

$$\boldsymbol{y}_i = \sum_{j=1}^{L} \boldsymbol{w}_j \boldsymbol{d}_{ji}$$

Subproblems may be more difficult than one-per-K

Bagging

- Use bootstrapping to generate L training sets and train one base-learner with each (Breiman, 1996)
- Use voting (Average or median with regression)
- Unstable algorithms profit from bagging

AdaBoost

Generate a sequence of baselearners each focusing on previous one's errors (Freund and Schapire, 1996)

Training: For all $\{x^t, r^t\}_{t=1}^N \in \mathcal{X}$, initialize $p_1^t = 1/N$ For all base-learners $j = 1, \ldots, L$ Randomly draw \mathcal{X}_j from \mathcal{X} with probabilities p_j^t Train d_j using \mathcal{X}_j For each (x^t, r^t) , calculate $y_j^t \leftarrow d_j(x^t)$ Calculate error rate: $\epsilon_j \leftarrow \sum_t p_j^t \cdot 1(y_j^t \neq r^t)$ If $\epsilon_j > 1/2$, then $L \leftarrow j - 1$; stop $\beta_j \leftarrow \epsilon_j / (1 - \epsilon_j)$ For each (x^t, r^t) , decrease probabilities if correct: If $y_j^t = \underline{r^t \ p_{j+1}^t} \leftarrow \beta_j p_j^t$ Else $p_{j+1}^t \leftarrow p_j^t$ Normalize probabilities: $Z_j \leftarrow \sum_t p_{j+1}^t; \quad p_{j+1}^t \leftarrow p_{j+1}^t / Z_j$ Testing: Given x, calculate $d_i(x), j = 1, \ldots, L$ Calculate class outputs, $i = 1, \ldots, K$: $y_i = \sum_{j=1}^{L} \left(\log \frac{1}{\beta_j} \right) d_{ji}(x)$

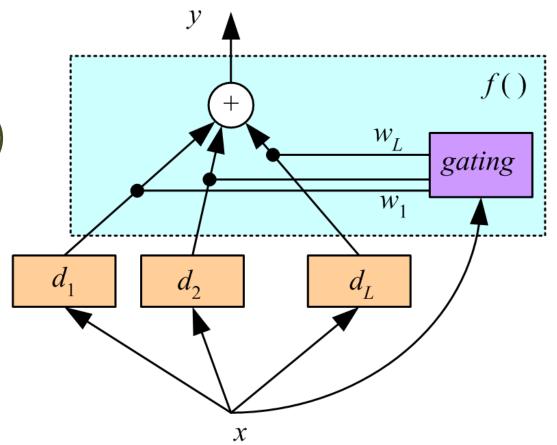
Mixture of Experts

11

Voting where weights are input-dependent (gating)

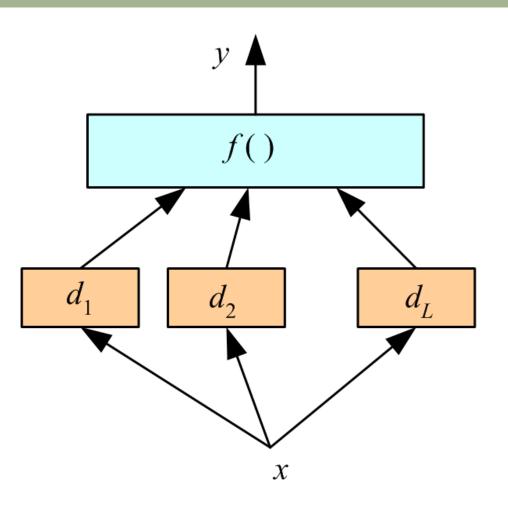
 $y = \sum_{j=1}^{L} w_j d_j$

(Jacobs et al., 1991) Experts or gating can be nonlinear



Stacking

Combiner f () is
 another learner
 (Wolpert, 1992)



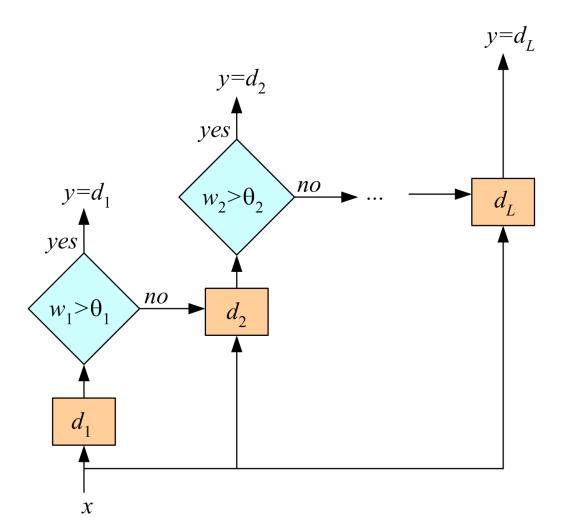
Fine-Tuning an Ensemble

- 13
- Given an ensemble of dependent classifiers, do not use it as is, try to get independence
- Subset selection: Forward (growing)/Backward (pruning) approaches to improve accuracy/diversity/independence
- 2. Train metaclassifiers: From the output of correlated classifiers, extract new combinations that are uncorrelated. Using PCA, we get "eigenlearners."
- Similar to feature selection vs feature extraction

Cascading

Use d_i only if preceding ones are not confident

Cascade learners in order of complexity



Combining Multiple Sources/Views

- Early integration: Concat all features and train a single learner
- Late integration: With each feature set, train one learner, then either use a fixed rule or stacking to combine decisions
- Intermediate integration: With each feature set, calculate a kernel, then use a single SVM with multiple kernels
- Combining features vs decisions vs kernels