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CHAPTER 16:  

BAYESIAN ESTIMATION 



Rationale 
3 

 Parameters q not constant, but random variables 

with a prior, p(q) 

 

 Bayes’ Rule: 
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Generative Model 
4 



Bayesian Approach 
5 

1. Prior p(q) allows us to concentrate on region where 

q is likely to lie, ignoring regions where it’s unlikely 

2. Instead of a single estimate with a single q, we 

generate several estimates using several q and 

average, weighted by how their probabilities 

Even if prior p(q) is uninformative, (2) still helps. 

MAP estimator does not make use of (2): 



Bayesian Approach 

 

 

  In certain cases, it is easy to integrate 

 Conjugate prior: Posterior has the same density as prior 

 Sampling (Markov Chain Monte Carlo): Sample from 
the posterior and average 

 Approximation: Approximate the posterior with a 
model easier to integrate 

 Laplace approximation: Use a Gaussian 

 Variational approximation: Split the multivariate density 
into a set of simpler densities using independencies  
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Estimating the Parameters of a 

Distribution: Discrete case 

 xt
i=1 if in instance t is in state i, probability of state i is qi  

 Dirichlet prior, ai are hyperparameters 

 

 Sample likelihood 

  

 

 

 Posterior 

 

 

 Dirichlet is a conjugate prior 

 With K=2, Dirichlet reduced to Beta 
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Estimating the Parameters of a 
Distribution: Continuous case 

 p(xt)~N(m,s2) 

 Gaussian prior for m, p(m)~ N(m0, s0
2) 

 Posterior is also Gaussian p(m|X)~ N(mN, sN
2) 

where 
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Gaussian: Prior on Variance 
9 

 Let’s define a prior (gamma) on precision l=1/s2 



Joint Prior and Making a Prediction 
10 



Multivariate Gaussian 
11 



 r=wTx+ e, p(e)~N(0,1/b), and p(rt|xt,w, b)~N(wTxt, 1/b) 

 Log likelihood 

 

 

  

 ML solution 

• Gaussian conjugate prior: p(w)~N(0,1/a) 

• Posterior: p(w|X)~N(mN,SN where 
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Estimating the Parameters of a 
Function: Regression 

   







t

tTt

t

tt

rNN

rpL

xw

wxwXr

2
2

b
b

bb

loglog

),,|(log),,|(

rXXXw
TT

ML
1 )(

1



)( XXIΣ

rXΣμ

T
N

T
NN

ba

b

Aka ridge regression/parameter shrinkage/ 

L2 regularization/weight decay 
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Prior on Noise Variance 
14 

Markov Chain Monte Carlo (MCMC) sampling 
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 For new x’, the estimate r’ is calculated as 

 

 

 

 

 Linear kernel 

 For any other f(x), we can write K(x’,x)=f(x’)Tf(x) 
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Basis/Kernel Functions 
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Kernel Functions 
17 



What’s in a Prior? 
18 

 Defining a prior is subjective 

 Uninformative prior if no prior preference 

 How high to go? 

 

 

 Empirical Bayes: Use one good a* 



Bayesian Model Comparison 
19 

 Marginal likelihood of a model: 

 

 Posterior probability of model given data: 

 

 Bayes’ factor: 

 

 Approximations: 

 BIC: 

 AIC: 



Mixture Model 
20 
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Models in increasing complexity.  

A complex model can fit more 

datasets but is spread thin,  

a simple model can fit few datasets 

but has higher marginal 

likelihood where it does  

(MacKay 2003) 



Nonparametric Bayes 
22 

 Model complexity can increase with more data (in 

practice up to N, potentially to infinity) 

 Similar to k-NN and Parzen windows we saw 

before where training set is the parameters 
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Gaussian Processes 

 Nonparametric model for supervised learning 

 Assume Gaussian prior p(w)~N(0,1/a) 

 y=Xw, where E[y]=0 and Cov(y)=K with Kij= (xi)Txi 

 K is the covariance function, here linear 

 With basis function f(x), Kij= (f(xi))Tf(xi) 

  r~NN(0,CN) where CN= (1/b)I+K 

 With new x’ added as xN+1,  rN+1~NN+1(0,CN+1) 

 

 

 

 where k = [K(x’,xt)t]
T and c=K(x’,x’)+1/b. 

 p(r’|x’,X,r)~N(kTCN-1r,c-k
TCN-1k) 
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Dirichlet Processes 
25 

 Nonparametric Bayesian approach for clustering 

 Chinese restaurant process 

 Customers arrive and either join one of the existing 

tables or start a new one, based on the table  

 occupancies: 

 

 



Nonparametric Gaussian Mixture 
26 

 Tables are Gaussian components and decisions 

based both on prior and also on input x: 



Latent Dirichlet Allocation 
27 

 Bayesian feature extraction 



Beta Processes 
28 

 Nonparametric Bayesian approach for feature 
extraction 

 Matrix factorization: 

 

 

 

 Nonparametric version: Allow j to increase with more 
data probabilistically  

 Indian buffet process: Customer can take one of the 
existing dishes with prob mj or add a new dish to the 
buffet 


