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CHAPTER 16:  

BAYESIAN ESTIMATION 



Rationale 
3 

 Parameters q not constant, but random variables 

with a prior, p(q) 

 

 Bayes’ Rule: 
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Generative Model 
4 



Bayesian Approach 
5 

1. Prior p(q) allows us to concentrate on region where 

q is likely to lie, ignoring regions where it’s unlikely 

2. Instead of a single estimate with a single q, we 

generate several estimates using several q and 

average, weighted by how their probabilities 

Even if prior p(q) is uninformative, (2) still helps. 

MAP estimator does not make use of (2): 



Bayesian Approach 

 

 

  In certain cases, it is easy to integrate 

 Conjugate prior: Posterior has the same density as prior 

 Sampling (Markov Chain Monte Carlo): Sample from 
the posterior and average 

 Approximation: Approximate the posterior with a 
model easier to integrate 

 Laplace approximation: Use a Gaussian 

 Variational approximation: Split the multivariate density 
into a set of simpler densities using independencies  
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Estimating the Parameters of a 

Distribution: Discrete case 

 xt
i=1 if in instance t is in state i, probability of state i is qi  

 Dirichlet prior, ai are hyperparameters 

 

 Sample likelihood 

  

 

 

 Posterior 

 

 

 Dirichlet is a conjugate prior 

 With K=2, Dirichlet reduced to Beta 
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Estimating the Parameters of a 
Distribution: Continuous case 

 p(xt)~N(m,s2) 

 Gaussian prior for m, p(m)~ N(m0, s0
2) 

 Posterior is also Gaussian p(m|X)~ N(mN, sN
2) 

where 
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Gaussian: Prior on Variance 
9 

 Let’s define a prior (gamma) on precision l=1/s2 



Joint Prior and Making a Prediction 
10 



Multivariate Gaussian 
11 



 r=wTx+ e, p(e)~N(0,1/b), and p(rt|xt,w, b)~N(wTxt, 1/b) 

 Log likelihood 

 

 

  

 ML solution 

• Gaussian conjugate prior: p(w)~N(0,1/a) 

• Posterior: p(w|X)~N(mN,SN where 
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Estimating the Parameters of a 
Function: Regression 
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Prior on Noise Variance 
14 

Markov Chain Monte Carlo (MCMC) sampling 
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 For new x’, the estimate r’ is calculated as 

 

 

 

 

 Linear kernel 

 For any other f(x), we can write K(x’,x)=f(x’)Tf(x) 
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Basis/Kernel Functions 
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Kernel Functions 
17 



What’s in a Prior? 
18 

 Defining a prior is subjective 

 Uninformative prior if no prior preference 

 How high to go? 

 

 

 Empirical Bayes: Use one good a* 



Bayesian Model Comparison 
19 

 Marginal likelihood of a model: 

 

 Posterior probability of model given data: 

 

 Bayes’ factor: 

 

 Approximations: 

 BIC: 

 AIC: 



Mixture Model 
20 
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Models in increasing complexity.  

A complex model can fit more 

datasets but is spread thin,  

a simple model can fit few datasets 

but has higher marginal 

likelihood where it does  

(MacKay 2003) 



Nonparametric Bayes 
22 

 Model complexity can increase with more data (in 

practice up to N, potentially to infinity) 

 Similar to k-NN and Parzen windows we saw 

before where training set is the parameters 
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Gaussian Processes 

 Nonparametric model for supervised learning 

 Assume Gaussian prior p(w)~N(0,1/a) 

 y=Xw, where E[y]=0 and Cov(y)=K with Kij= (xi)Txi 

 K is the covariance function, here linear 

 With basis function f(x), Kij= (f(xi))Tf(xi) 

  r~NN(0,CN) where CN= (1/b)I+K 

 With new x’ added as xN+1,  rN+1~NN+1(0,CN+1) 

 

 

 

 where k = [K(x’,xt)t]
T and c=K(x’,x’)+1/b. 

 p(r’|x’,X,r)~N(kTCN-1r,c-k
TCN-1k) 
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Dirichlet Processes 
25 

 Nonparametric Bayesian approach for clustering 

 Chinese restaurant process 

 Customers arrive and either join one of the existing 

tables or start a new one, based on the table  

 occupancies: 

 

 



Nonparametric Gaussian Mixture 
26 

 Tables are Gaussian components and decisions 

based both on prior and also on input x: 



Latent Dirichlet Allocation 
27 

 Bayesian feature extraction 



Beta Processes 
28 

 Nonparametric Bayesian approach for feature 
extraction 

 Matrix factorization: 

 

 

 

 Nonparametric version: Allow j to increase with more 
data probabilistically  

 Indian buffet process: Customer can take one of the 
existing dishes with prob mj or add a new dish to the 
buffet 


