Lecture Slides for
INTRODUCTION TO
MACHINE LEARNING
3RD EDITION

ETHEM ALPAYDIN
© The MIT Press, 2014

alpaydin@boun.edu.tr
http://www.cmpe.boun.edu.tr/~ethem/i2ml3e
CHAPTER 15:

HIDDEN MARKOV MODELS
Introduction

- Modeling dependencies in input; no longer iid
- Sequences:
 - Temporal: In speech; phonemes in a word (dictionary), words in a sentence (syntax, semantics of the language).
 In handwriting, pen movements
 - Spatial: In a DNA sequence; base pairs
Discrete Markov Process

- N states: S_1, S_2, \ldots, S_N State at “time” t, $q_t = S_i$
- First-order Markov
 \[P(q_{t+1} = S_j \mid q_t = S_i, q_{t-1} = S_k, \ldots) = P(q_{t+1} = S_j \mid q_t = S_i) \]

- Transition probabilities
 \[a_{ij} \equiv P(q_{t+1} = S_j \mid q_t = S_i) \quad a_{ij} \geq 0 \text{ and } \sum_{j=1}^{N} a_{ij} = 1 \]

- Initial probabilities
 \[\pi_i \equiv P(q_1 = S_i) \quad \sum_{i=1}^{N} \pi_i = 1 \]
Stochastic Automaton

\[
\begin{align*}
\pi_1 & \xrightarrow{a_{11}} 1 \\
1 & \xrightarrow{a_{12}} 2 \\
2 & \xrightarrow{a_{21}} 1 \\
1 & \xrightarrow{a_{13}} 3 \\
3 & \xrightarrow{} 2 \\
2 & \xrightarrow{} 1 \\
1 & \xrightarrow{} 3 \\
3 & \xrightarrow{} 2 \\
2 & \xrightarrow{} 1 \\
1 & \xrightarrow{} 3 \\
3 & \xrightarrow{\pi_3} \\
2 & \xrightarrow{\pi_2} \\
1 & \xrightarrow{\pi_1} \\
\end{align*}
\]
Example: Balls and Urns

- Three urns each full of balls of one color

 \(S_1: \text{red}, S_2: \text{blue}, S_3: \text{green} \)

\[
\Pi = [0.5, 0.2, 0.3]^T, \quad A = \begin{bmatrix}
0.4 & 0.3 & 0.3 \\
0.2 & 0.6 & 0.2 \\
0.1 & 0.1 & 0.8 \\
\end{bmatrix}
\]

\(O = \{S_1, S_1, S_3, S_3\} \)

\[
P(O | A, \Pi) = P(S_1) \cdot P(S_1 | S_1) \cdot P(S_3 | S_1) \cdot P(S_3 | S_3)
\]

\[
= \pi_1 \cdot a_{11} \cdot a_{13} \cdot a_{33}
\]

\[
= 0.5 \cdot 0.4 \cdot 0.3 \cdot 0.8 = 0.048
\]
Given K example sequences of length T

\[
\hat{\pi}_i = \frac{\# \{ \text{sequences starting with } S_i \}}{\# \{ \text{sequences} \}} = \frac{\sum_k 1(q^k_1 = S_i)}{K}
\]

\[
\hat{a}_{ij} = \frac{\# \{ \text{transitions from } S_i \text{ to } S_j \}}{\# \{ \text{transitions from } S_i \}}
= \frac{\sum_k \sum_{t=1}^{T-1} 1(q^k_t = S_i \text{ and } q^k_{t+1} = S_j)}{\sum_k \sum_{t=1}^{T-1} 1(q^k_t = S_i)}
\]
Hidden Markov Models

- States are not observable
- Discrete observations \(\{v_1, v_2, \ldots, v_M\} \) are recorded; a probabilistic function of the state
- Emission probabilities
 \[b_j(m) \equiv P(O_t = v_m \mid q_t = S_j) \]
- Example: In each urn, there are balls of different colors, but with different probabilities.
- For each observation sequence, there are multiple state sequences
HMM Unfolded in Time
Elements of an HMM

- N: Number of states
- M: Number of observation symbols
- $A = [a_{ij}]: N$ by N state transition probability matrix
- $B = b_j(m): N$ by M observation probability matrix
- $\Pi = [\pi_i]: N$ by 1 initial state probability vector

$\lambda = (A, B, \Pi)$, parameter set of HMM
Three Basic Problems of HMMs

1. **Evaluation**: Given λ and O, calculate $P(O | \lambda)$
2. **State sequence**: Given λ and O, find Q^* such that
 $$P(Q^* | O, \lambda) = \max_Q P(Q | O, \lambda)$$
3. **Learning**: Given $X=\{O^k\}_k$, find λ^* such that
 $$P(X | \lambda^*) = \max_{\lambda} P(X | \lambda)$$

(Rabiner, 1989)
Evaluation

- **Forward variable:**

\[
\alpha_t(i) \equiv P(O_1 \cdots O_t, q_t = S_i \mid \lambda)
\]

Initialization:

\[
\alpha_1(i) = \pi_i b_i(O_1)
\]

Recursion:

\[
\alpha_{t+1}(j) = \left[\sum_{i=1}^{N} \alpha_t(i) a_{ij} \right] b_j(O_{t+1})
\]

\[
P(O \mid \lambda) = \sum_{i=1}^{N} \alpha_T(i)
\]
Backward variable:

$$\beta_t(i) \equiv P(O_{t+1} \cdots O_T | q_t = S_i, \lambda)$$

Initialization:

$$\beta_T(i) = 1$$

Recursion:

$$\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(O_{t+1}) \beta_{t+1}(j)$$
Finding the State Sequence

\[\gamma_t(i) = P(q_t = S_i | O, \lambda) = \frac{\alpha_t(i) \beta_t(i)}{\sum_{j=1}^{N} \alpha_t(j) \beta_t(j)} \]

Choose the state that has the highest probability, for each time step:

\[q_t^* = \arg \max_i \gamma_t(i) \]

No!
Viterbi’s Algorithm

$$\delta_t(i) \equiv \max_{q_1 q_2 \cdots q_{t-1}} p(q_1 q_2 \cdots q_{t-1}, q_t = S_i, O_1 \cdots O_t \mid \lambda)$$

- **Initialization:**
 $$\delta_1(i) = \pi_i b_i(O_1), \psi_1(i) = 0$$

- **Recursion:**
 $$\delta_t(j) = \max_i \delta_{t-1}(i) a_{ij} b_j(O_t), \psi_t(j) = \arg\max_i \delta_{t-1}(i) a_{ij}$$

- **Termination:**
 $$\rho^* = \max_i \delta_T(i), q_T^* = \arg\max_i \delta_T(i)$$

- **Path backtracking:**
 $$q_t^* = \psi_{t+1}(q_{t+1}^*), t = T-1, T-2, \ldots, 1$$
Learning

\[
\xi_t(i, j) = \begin{cases}
1 & \text{if } q_t = S_i \\
0 & \text{otherwise}
\end{cases}
\]

Baum-Welch algorithm (EM):

\[
z_i^t = \begin{cases}
1 & \text{if } q_t = S_i \\
0 & \text{otherwise}
\end{cases}
\]

\[
z_{ij}^t = \begin{cases}
1 & \text{if } q_t = S_i \text{ and } q_{t+1} = S_j \\
0 & \text{otherwise}
\end{cases}
\]
Baum-Welch (EM)

E-step: $E[z_i^t] = \gamma_t(i)$ \hspace{3mm} $E[z_{ij}^t] = \xi_t(i,j)$

M-step:

$$\hat{\pi}_i = \frac{\sum_{k=1}^{K} \gamma_1^k(i)}{K}$$
$$\hat{a}_{ij} = \frac{\sum_{k=1}^{K} \sum_{t=1}^{T_k-1} \xi_t^k(i,j)}{\sum_{k=1}^{K} \sum_{t=1}^{T_k-1} \gamma_t^k(i)}$$

$$\hat{b}_j(m) = \frac{\sum_{k=1}^{K} \sum_{t=1}^{T_k-1} \gamma_t^k(j)1(O_t^k = v_m)}{\sum_{k=1}^{K} \sum_{t=1}^{T_k-1} \gamma_t^k(i)}$$
Continuous Observations

- **Discrete:**
 \[
P(O_t \mid q_t = S_j, \lambda) = \prod_{m=1}^{M} b_j(m) \quad r_m^t = \begin{cases} 1 & \text{if } O_t = v_m \\ 0 & \text{otherwise} \end{cases}
\]

- **Gaussian mixture (Discretize using } k\text{-means)}:**
 \[
P(O_t \mid q_t = S_j, \lambda) = \sum_{l=1}^{L} P(G_{jl}) p(O_t \mid q_t = S_j, G_l, \lambda) \sim \mathcal{N}(\mu_l, \Sigma_l)
\]

- **Continuous:**
 \[
P(O_t \mid q_t = S_j, \lambda) \sim \mathcal{N}(\mu_j, \sigma_j^2)
\]

Use EM to learn parameters, e.g.,

\[
\hat{\mu}_j = \frac{\sum_t \gamma_t(j) O_t}{\sum_t \gamma_t(j)}
\]
HMM with Input

- Input-dependent observations:
 \[P(O_t | q_t = S_j, x^t, \lambda) \sim \mathcal{N}(g_j(x^t | \theta_j), \sigma_j^2) \]

- Input-dependent transitions (Meila and Jordan, 1996; Bengio and Frasconi, 1996):
 \[P(q_{t+1} = S_j | q_t = S_i, x^t) \]

- Time-delay input:
 \[x^t = f(O_{t-\tau}, \ldots, O_{t-1}) \]
HMM as a Graphical Model

\[\pi = P(q^1) \]

\[q^1 \]

\[q^{t-1} \]

\[O^1 \]

\[O^{t-1} \]

\[O^t \]

\[A = P(q^t \mid q^{t-1}) \]

\[B = P(O^t \mid q^t) \]
(a) Input-output HMM

(b) Factorial HMM

(c) Coupled HMM

(d) Switching HMM
Model Selection in HMM

- **Left-to-right HMMs:**

\[
A = \begin{bmatrix}
 a_{11} & a_{12} & a_{13} & 0 \\
 0 & a_{22} & a_{23} & a_{24} \\
 0 & 0 & a_{33} & a_{34} \\
 0 & 0 & 0 & a_{44}
\end{bmatrix}
\]

- In classification, for each C_i, estimate $P(O \mid \lambda_i)$ by a separate HMM and use Bayes’ rule

\[
P(\lambda_i \mid O) = \frac{P(O \mid \lambda_i)P(\lambda_i)}{\sum_j P(O \mid \lambda_j)P(\lambda_j)}
\]