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CHAPTER 15:

HIDDEN MARKOV MODELS



Introduction
S

1 Modeling dependencies in input; no longer iid

1 Sequences:

o Temporal: In speech; phonemes in a word (dictionary), words
in a sentence (syntax, semantics of the language).

In handwriting, pen movements

o Spatial: In a DNA sequence; base pairs



Discrete Markov Process

s« F
o N states: S;, S,, ..., Sy State at “time” t, q, = S,
1 First-order Markov

P(g41=S; | 9=Si 91.1= k) = P(qi1=S; | 9,=S))

o Transition probabilities
_‘?Ii,' = P(a1=5; | 97~S)) ;= 0 and ;"

0 Initial probabilities
M = P(g;=35)) 2N =T



Stochastic Automaton




Example: Balls and Urns

Three urns each full of balls of one color

S,: red, S,: blue, S;: green

1=[0.5,0.2,0.3]

0= {51,51,53,53}

P(O|A,H)=P(Sl)-P(51|51)-P(S3 |51)'P(53 |53)

=7l "0y 0y3°Uyg

A =

0.4 0.3 0.3]
02 06 0.2

01 01 08

=0.5-0.4-0.3-0.8=0.048



Balls and Urns: Learning

Given K example sequences of length T

#{sequences starting with S,} Zkl(CIf =5,-)
#{sequences - K
#{transitiors from S, to Sj}
#1{transitions from S, |

_ 2 Zzl(qf =S,andg,,, = Sj)

Zk Z:ll(qf - 5:‘)
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Hidden Markov Models

I
1 States are not observable

- Discrete observations {v,,v,,...,v,,} are recorded; a
probabilistic function of the state

-1 Emission probabilities
b,'(m) = P(O=v,, | Qf:S,')
- Example: In each urn, there are balls of different
colors, but with different probabilities.

-1 For each observation sequence, there are multiple
state sequences



HMM Unfolded in Time




Elements of an HMM

~oJ
7 N: Number of states
1 M: Number of observation symbols
7 A = [a;]: N by N state transition probability matrix
7 B=b;(m): N by M observation probability matrix
o M =1[m]: N by 1 initial state probability vector

A = (A, B, I1), parameter set of HMM



Three Basic Problems of HMMs
JEE N S
1. Evaluation: Given A, and O, calculate P (O | A)
>, State sequence: Given A, and O, find Q" such that
P(Q'| O,A)=maxgP(Q | O,A)
3. Learning: Given X={O*},, find A” such that
P(X | A )=max, P (X | A)

(Rabiner, 1989)



Evaluation

Forward variable:

at(i)EP(C)l'"Ot'qt :Si |ﬂ’)
Initialization:

al(i):”ibi(al)

Recursion:

t+l |:Za Ij:| J t+l
N

P(O| 1) ZaT

i=

+1
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Backward variable:

/Bt(i) P(Ot+1'”OT |qt :Si'i)

Initialization:

:Br(i):]-

Recursion:

Zau Ji t+l ﬂt+1 )

t+1

WSS



Finding the State Sequence

7/t(i)E'D(qt:5i ’ )
AUAQ,
PIAT)VAT)

Choose the state that has the highest probability,

for each time step:
Ch*: arg max; V(i)



Viterbi’s Algorithm

S
Oy(i) = MAX g2 gt-1 P(a1927°94.1.9, =500, | A)

o Initialization:
O, (i) = mb(O,), W,(i) =0
1 Recursion:
_0(j) = max; O,(i)a;b(O,), W{j) = argmax; O,
1(')0’,','
o Termination:
p = max; i), g; = argmax; O, (i)
1 Path backtracking:
9 = Wenlqpy ) t=T-1,T-2, ..., 1



Learning

E(,j)=Plg. =S.,6..=S,10,1) A
é: [ — () U J( t+l) t+1( ) Oz+1
¢ / =

Z Z a,(k)a,b,(0,.,)B,..(I) +1

Baum-Welch algorithm(EM) :

¢ 1 ifg, =S, . 1 ifg,=S,andg,, =S,
" |0 otherwise 7 |0 otherwise



Baum-Welch (EM)

E—step:E[zf]:yt E[z ] AN
M—step:

k(-

D W Y= Y)

=~
I MK
H

K L > G)
b( )_Z 12:117/:( ( m)

J T.—1

D i Ds 7 0)




Continuous Observations

Discrete: t
M m 1 if O =v
— = . ‘= t K
P(Ot |a, _Sf'i) lm_:!bf(m) m {O otherwise

Gaussian mixture (Discretize using k-means):

P(Ot |qt :Sj’l):ip(gj/)p(ot |qt :Sj'gli;t)

" N(ﬂ/rz/)
Continuous: ,
P(Othtzsj,/l)'“j\f(yj,cj) .
Use EM to learn parameters, e.g., [ = 't (/)Ot
=



HMM with Input

Zo 4

7 Input-dependent observations:

P(Ot |qt :Sj’Xt’ﬂ“)~N(gj(Xt |gf)’o-f2)

o Input-dependent transitions (Meila and Jordan,
1996; Bengio and Frasconi, 1996):

P(qt+1 =S5, g, :Sirxt)

11 Time-delay input:
’ x' =f(0,_,...,0, ;)



HMM as a Graphical Model
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(¢) Coupled HMM

(d) Switching HMM



Model Selection in HMM

Left-to-right HMMs:

a, a, a; 0 “ ' . .
A - 0 d,, 0,3 0y 7T, a w2 a'o °
"0 0 a, a S

0 0 0 a,

In classification, for each C,, estimate P (O | A) by a

separate HMM and use Bayes’ rule




