
INTRODUCTION  

TO  

MACHINE  

LEARNING 
3RD EDITION 

ETHEM ALPAYDIN 

© The MIT Press, 2014 
 

alpaydin@boun.edu.tr 

http://www.cmpe.boun.edu.tr/~ethem/i2ml3e 

Lecture Slides for 



CHAPTER 16:  

GRAPHICAL MODELS 



Graphical Models 
3 

 Aka Bayesian networks, probabilistic networks 

 Nodes are hypotheses (random vars) and the 
probabilities corresponds to our belief in the truth 
of the hypothesis 

 Arcs are direct influences between hypotheses 

 The structure is represented as a directed acyclic 
graph (DAG) 

 The parameters are the conditional probabilities in 
the arcs (Pearl, 1988, 2000; Jensen, 1996; 
Lauritzen, 1996) 
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Causes and Bayes’ Rule 

Diagnostic inference: 

Knowing that the grass is wet,  

what is the probability that rain is  

the cause? 

causal 

diagnostic 
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Conditional Independence 
5 

 X and Y are independent if  

    P(X,Y)=P(X)P(Y) 

 X and Y are conditionally independent given Z if  

    P(X,Y|Z)=P(X|Z)P(Y|Z) 

    or 

    P(X|Y,Z)=P(X|Z) 

 Three canonical cases: Head-to-tail, Tail-to-tail, 

head-to-head 

 



Case 1: Head-to-Head 
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 P(X,Y,Z)=P(X)P(Y|X)P(Z|Y) 

 

 

 

 

 

 

 

 P(W|C)=P(W|R)P(R|C)+P(W|~R)P(~R|C) 



Case 2: Tail-to-Tail  
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 P(X,Y,Z)=P(X)P(Y|X)P(Z|X) 



Case 3: Head-to-Head 
8 

 P(X,Y,Z)=P(X)P(Y)P(Z|X,Y) 
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Causal vs Diagnostic Inference 

Causal inference: If the  

sprinkler is on, what is the  

probability that the grass is wet? 

 

P(W|S) = P(W|R,S) P(R|S) +  

 P(W|~R,S) P(~R|S) 

 = P(W|R,S) P(R) +  

 P(W|~R,S) P(~R) 

 = 0.95 0.4 + 0.9 0.6 = 0.92  
 

Diagnostic inference: If the grass is wet, what is the probability 

that the sprinkler is on?  P(S|W) = 0.35 > 0.2 P(S) 

P(S|R,W) = 0.21 Explaining away: Knowing that it has rained 

 decreases the probability that the sprinkler is on.  
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Causes 

Causal inference: 

P(W|C) = P(W|R,S) P(R,S|C) + 

 P(W|~R,S) P(~R,S|C) +  

 P(W|R,~S) P(R,~S|C) +  

 P(W|~R,~S) P(~R,~S|C) 

 

and use the fact that 

  P(R,S|C) = P(R|C) P(S|C) 

 

 Diagnostic: P(C|W ) = ? 
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Exploiting the Local Structure 
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Classification 

diagnostic 

 

P (C|x ) 

Bayes’ rule inverts the arc: 
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Naive Bayes’ Classifier 

Given C, xj are independent: 

 
 p(x|C) = p(x1|C) p(x2|C) ... p(xd|C)  
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Linear Regression 
14 



d-Separation 
15 

 A path from node A to node B 
is blocked if 

a) The directions of edges on 
the path meet head-to-tail 
(case 1) or tail-to-tail (case 
2) and the node is in C, or 

b) The directions of edges meet 
head-to-head (case 3) and 
neither that node nor any of 
its descendants is in C. 

 If all paths are blocked, A 
and B are d-separated 
(conditionally independent) 
given C. 

BCDF is blocked given C.  

BEFG is blocked by F. 

BEFD is blocked unless F (or G) is 

given. 



Belief Propagation (Pearl, 1988) 
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 Chain: 
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Trees 
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Polytrees 
18 
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How can we model P(X|U1,U2,...,Uk) cheaply? 



Junction Trees 
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 If X does not separate E+ and E-, we convert it into 

a junction tree and then apply the polytree 

algorithm 

Tree of moralized, 

clique nodes 



Undirected Graphs: Markov Random 

Fields 
20 

 In a Markov random field, dependencies are 

symmetric, for example, pixels in an image 

 In an undirected graph, A and B are independent if 

removing C makes them unconnected. 

 Potential function yc(Xc) shows how favorable is the 

particular configuration X over the clique C  

 The joint is defined in terms of the clique potentials 
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Factor Graphs 
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 Define new factor nodes and write the joint in terms 

of them  
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Learning a Graphical Model 
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 Learning the conditional probabilities, either as 

tables (for discrete case with small number of 

parents), or as parametric functions 

 Learning the structure of the graph: Doing a state-

space search over a score function that uses both 

goodness of fit to data and some measure of 

complexity 

 



Influence Diagrams 
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chance node 

decision node 

utility node 


