Lecture Slides for

INTRODUCTION
TO

MACHINE
LEARNING

3RD EDITION

- INTRODUCTION 10

ETHEM ALPAYDIN
© The MIT Press, 2014

alpaydin@boun.edu.tr
http: / /www.cmpe.boun.edu.tr /~ethem /i2ml3e



CHAPTER 16:

GRAPHICAL MODELS



Graphical Models
B

1 Aka Bayesian networks, probabilistic networks

1 Nodes are hypotheses (random vars) and the
probabilities corresponds to our belief in the truth
of the hypothesis

1 Arcs are direct influences between hypotheses

11 The structure is represented as a directed acyclic
graph (DAG)

1 The parameters are the conditional probabilities in
the arcs (Pearl, 1988, 2000; Jensen, 1996;

Lauritzen, 1996)



Causes and Bayes’ Rule

Diagnostic inference:
Knowing that the grass is wet,

P(R)=0.4 what is the probability that rain is
\ the cause?
diagnostic
P(RIW)= P(W|R)P(R)
P(W)
P(W| R)=0.9 _ P(W |R)P(R)
Wet grass P(W|~R)=0.2 P(W | R)P(R)+ p(W |~ R)p(~ R)
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Conditional Independence
S

7 X and Y are independent if
P(X,Y)=P(X)P(Y)
7 X and Y are conditionally independent given Z if
P(X,Y|Z)=P(X|Z)P(Y| Z)
or
P(X|Y,Z)=P(X|Z)

-1 Three canonical cases: Head-to-tail, Tail-to-tail,
head-to-head



Case 1: Head-to-Head

o P(X,Y,Z)=P(X)P(Y | X)P(Z| Y)

CO—Oo—(D

(a) Model

_ PR|C)=08 P(W|R)=0.9
PO=04 bR -0y =01 P(W|~R)=02

@@

0 P(W|[C)=P(W|[R)P(R|C)+P(W|~R)P(~R|C)



Case 2: Tail-to-Tail

0 P(X,Y,Z)=P(X)P(Y | X)P(Z]| X)

P(Cy=05

PR|Cy=038
PSS | ~Cy=0.5 PR|~C)=0.1



Case 3: Head-to-Head

0 P(X,Y,Z)=P(X)P(Y)P(Z| X,Y)

P(S) =02 P(R) = 0.4

PR, S5)=0.95
PAW| R ,~$) =090

PW|~-R, 5 =090
Wet grass |\ p(W | ~R~8)=0.10



Causal vs Diagnostic Inference

P(5)=0.2 P(R)=0.4 Causal inference: If the

sprinkleris on, what is the
probability that the grass is wet?

P(W[S)=P(WI|R,S)PR|S)+
P(W[~R,S)P(~R|S)

ﬁ%: ﬁ’S)nggo = P(W|[R,S) P(R) +
P(W|~R,8)=0.90 P(W|~R,S)P(~R)
Wet grass ) P(W|~R~S)=0.10 = 0.950.4+0.9 0.6 = 0.92

Diagnosticinference: If the grass is wet, what is the probability

that the sprinkler is on? P(S| W)= 0.35 > 0.2 P(S)

P(S|R,W)= 0.21 Explaining away: Knowing that it has rained
decreases the probability that the sprinkler is on.



Causes

P(C)=0.5
Causal inference:
P(W|C)=P(W]|R,S)P(R,S|C) +
P(S| C)=0.1 P(R| C)=0.8 P(W|[~R,S)P(~R,S|C) +
P(S|~C)=0.5 P(R | ~C)=0.1 P(W|R,~S)P(R,~S|C)+

P(W[~R,~S)P(~R,~S|C)

and use the fact that
P(R,S|IC)=P(R|C) P(S|C)

Diagnostic: P(C|W ) = 2
R,5)=0.95

R,~85)=0.90

~R,5)=0.90

~R,~8)=0.10

Wet grass



Exploiting the Local Structure

P(C)=0.5
P(S| C)=0.1 P(R| C)=0.8 P(F|C) =2
P(S| ~C)=0.5 P(R | ~C)=0.1

P(W | R,5)=0.95
P(W | R~8)=0.90
P(W | ~R,5)=0.90

P(W | ~R,~S5)=0.1(
Wet grass

P(C,S,R,W,F)=P(C)P(S|C)P(R|C)P(W|S,R)P(F|R)

P(X,,...X,)= UP(X,. |parents (X))

P(F | R)=0.1
P(F | ~R)=0.7



Classification

P(C) Bayes’ rule inverts the arc:
C
diagnostic P(C | X)= p(ch)P(C)
p(x)
px|C)
P(Clx)

>



Naive Bayes’ Classifier

Given C, x; are independent:

p(x|C) = p(x; | C) p(x3 | C) ... p(x4|C)



Linear Regression

p(r'| X', r, X)= J‘p(r'l X',W)‘O(W | X, r)dw

(r| X, w)p(w) .
p(r)

oo [ ptr X w Totr! X', w)p(widw

= [ pir'1x, w)2



d-Separation

1 A path from node A to node B
is blocked if o

a)  The directions of edges on
the path meet head-to-tail

(case 1) or tail-to-tail (case
2) and the nodeis in C, or

b)  The directions of edges meet
head-to-head (case 3) and

neither that node nor any of
its descendants is in C.

o1 If all paths are blocked, A

and B are d-separated BCDF is blocked given C.
(conditionally independent) BEFG is blocked by F.
given C. BEFDis blocked unless F (or G) is

given.



Belief Propagation (Pearl, 1988)

Chain:

X)), AX)

P(X|E)= PE L)((gl;(x) = P(E+’i_(l|;)()P(X ) m(X) = ;P(X |U)z(U)

_ PEETIX)PEE” | X)P(X)

P(E)

a0 AUX) = ZP(Y | X)A(Y)




Trees

AMX)=P(Ey | X)= 2, (X)2,(X)
A U) =Y AX)P(X V)

,,,,,,,,

e

7(X)=P(X|E5)= Y PIX|U)z, (U) .

7, (X) = oy (X)7(X)



Polytrees NN

U .U ) U )
7 Y
i‘ﬂﬂ'ﬁ (Ul
w(X)=P(X|Ex)=D > D PX|U,U,, U)Hfr vy N
u, u U
1 2 k \\H— -/
z, (X)=a] | 4, (X)(X) T

S#j D

=B AX)D PIX|ULU,, -, U] [7,(U,)

400=] 4,00

How can we model P(X|U,,U,,...,U,) cheaply?



Junction Trees

o If X does not separate E™ and E-, we convert it into
a junction tree and then apply the polytree

o ° @ Tree of moralized,
clique nodes

algorithm



Undirected Graphs: Markov Random
Fields

In a Markov random field, dependencies are
symmetric, for example, pixels in an image

In an undirected graph, A and B are independent if
removing C makes them unconnected.

v (X,) shows how favorable is the
particular configuration X over the C

The joint is defined in terms of the clique potentials

p(X) = %ch (X.)wherenormalizerz=>"T [w.(X.)
C X C



Factor Graphs

-1 Define new factor nodes and write the joint in terms
of them

Ja Jo
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Learning a Graphical Model
B

7 Learning the conditional probabilities, either as

tables (for discrete case with small number of
parents), or as parametric functions

o Learning the structure of the graph: Doing a state-
space search over a score function that uses both
goodness of fit to data and some measure of
complexity



Influence Diagrams
e

decision node

choose
class

chance node utility node




