

Lecture Slides for

INTRODUCTION TO

Machine Learning 2nd Edition

© The MIT Press, 2010

alpaydin@boun.edu.tr http://www.cmpe.boun.edu.tr/~ethem/i2ml2e

CHAPTER 19:

Design and Analysis of Machine Learning Experiments

Introduction

- Questions:
 - Assessment of the expected error of a learning algorithm: Is the error rate of 1-NN less than 2%?
 - Comparing the expected errors of two algorithms: Is k-NN more accurate than MLP?
- Training/validation/test sets
- Resampling methods: K-fold cross-validation

Algorithm Preference

- Criteria (Application-dependent):
 - Misclassification error, or risk (loss functions)
 - Training time/space complexity
 - Testing time/space complexity
 - Interpretability
 - Easy programmability
- Cost-sensitive learning

Factors and Response

Strategies of Experimentation

Response surface design for approximating and maximizing the response function in terms of the controllable factors

Guidelines for ML experiments

- A. Aim of the study
- B. Selection of the response variable
- C. Choice of factors and levels
- D. Choice of experimental design
- E. Performing the experiment
- F. Statistical Analysis of the Data
- G. Conclusions and Recommendations

Resampling and K-Fold Cross-Validation

- The need for multiple training/validation sets $\{X_i, V_i\}_i$: Training/validation sets of fold i
- K-fold cross-validation: Divide X into k, X,, i=1,...,K

$$\mathcal{Y}_{1} = \mathcal{X}_{1} \quad \mathcal{T}_{1} = \mathcal{X}_{2} \cup \mathcal{X}_{3} \cup \cdots \cup \mathcal{X}_{K}
\mathcal{Y}_{2} = \mathcal{X}_{2} \quad \mathcal{T}_{2} = \mathcal{X}_{1} \cup \mathcal{X}_{3} \cup \cdots \cup \mathcal{X}_{K}
\vdots
\mathcal{Y}_{K} = \mathcal{X}_{K} \quad \mathcal{T}_{K} = \mathcal{X}_{1} \cup \mathcal{X}_{2} \cup \cdots \cup \mathcal{X}_{K-1}$$

T_i share K-2 parts

5×2 Cross-Validation

5 times 2 fold cross-validation (Dietterich, 1998)

$$\mathcal{T}_1 = \mathcal{X}_1^{(1)}$$
 $\mathcal{V}_1 = \mathcal{X}_1^{(2)}$ $\mathcal{T}_2 = \mathcal{X}_1^{(2)}$ $\mathcal{V}_2 = \mathcal{X}_1^{(1)}$ $\mathcal{T}_3 = \mathcal{X}_2^{(1)}$ $\mathcal{V}_3 = \mathcal{X}_2^{(2)}$ $\mathcal{T}_4 = \mathcal{X}_2^{(2)}$ $\mathcal{V}_4 = \mathcal{X}_2^{(1)}$ \vdots $\mathcal{T}_9 = \mathcal{X}_5^{(1)}$ $\mathcal{V}_9 = \mathcal{X}_5^{(2)}$ $\mathcal{T}_{10} = \mathcal{X}_5^{(2)}$ $\mathcal{V}_{10} = \mathcal{X}_5^{(1)}$

Bootstrapping

- Draw instances from a dataset with replacement
- Prob that we do not pick an instance after N draws

$$\left(1 - \frac{1}{N}\right)^N \approx e^{-1} = 0.368$$

that is, only 36.8% is new!

Measuring Error

	Predicted class		
True Class	Yes	No	
Yes	TP: True Positive	FN: False Negative	
No	FP: False Positive	TN: True Negative	

- Error rate = # of errors / # of instances = (FN+FP) / N
- Recall = # of found positives / # of positives
 - = TP / (TP+FN) = sensitivity = hit rate
- Precision = # of found positives / # of found
 - = TP / (TP+FP)
- Specificity = TN / (TN+FP)
- False alarm rate = FP / (FP+TN) = 1 Specificity

ROC Curve

Precision and Recall

Precision:
$$\frac{a}{a + b}$$

Recall:
$$\frac{a}{a + c}$$

(a) Precision and recall

(b) Precision
$$= 1$$

(c) Recall
$$= 1$$

Interval Estimation

- $X = \{x^t\}_t$ where $x^t \sim N(\mu, \sigma^2)$
- $m \sim N (\mu, \sigma^2/N)$

$$\sqrt{N} \frac{(m-\mu)}{\sigma} \sim Z$$

$$P\left\{-1.96 < \sqrt{N} \frac{(m-\mu)}{\sigma} < 1.96\right\} = 0.95$$

$$P\left\{m-1.96\frac{\sigma}{\sqrt{N}} < \mu < m+1.96\frac{\sigma}{\sqrt{N}}\right\} = 0.95$$

$$P\left\{m - z_{\alpha/2} \frac{\sigma}{\sqrt{N}} < \mu < m + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right\} = 1 - \alpha$$

100(1- α) percent confidence interval

$$P\left\{\sqrt{N}\frac{(m-\mu)}{\sigma}<1.64\right\}=0.95$$

$$P\left\{m-1.64\frac{\sigma}{\sqrt{N}} < \mu\right\} = 0.95$$

$$P\left\{m-z_{\alpha}\frac{\sigma}{\sqrt{N}}<\mu\right\}=1-\alpha$$

When σ^2 is not known:

$$S^{2} = \sum_{t} (x^{t} - m)^{2} / (N - 1) \frac{\sqrt{N(m - \mu)}}{S} \sim t_{N-1}$$

$$P\left\{m - t_{\alpha/2, N-1} \frac{S}{\sqrt{N}} < \mu < m + t_{\alpha/2, N-1} \frac{S}{\sqrt{N}}\right\} = 1 - \alpha$$

Hypothesis Testing

- Reject a null hypothesis if not supported by the sample with enough confidence
- $X = \{x^t\}_t$ where $x^t \sim N (\mu, \sigma^2)$ $H_0: \mu = \mu_0 \text{ vs. } H_1: \mu \neq \mu_0$

Accept H_0 with level of significance α if μ_0 is in the $100(1-\alpha)$ confidence interval

$$\frac{\sqrt{N}(m-\mu_0)}{\sigma} \in \left(-z_{\alpha/2}, z_{\alpha/2}\right)$$

Two-sided test

	Decision		
Truth	Accept	Reject	
True	Correct	Type I error	
False	Type II error	Correct (Power)	

• One-sided test: H_0 : $\mu \le \mu_0$ vs. H_1 : $\mu > \mu_0$ Accept if $\frac{\sqrt{N(m-\mu_0)}}{\sigma} \in (-\infty, z_\alpha)$

Variance unknown: Use t, instead of z

Accept
$$H_0$$
: $\mu = \mu_0$ if
$$\frac{\sqrt{N}(m-\mu_0)}{S} \in \left(-t_{\alpha/2,N-1},t_{\alpha/2,N-1}\right)$$

Assessing Error: H_0 : $p \le p_0$ vs. H_1 : $p > p_0$

Single training/validation set: Binomial Test
 If error prob is p₀, prob that there are e errors or less in N validation trials is

$$P\{X \le e\} = \sum_{j=1}^{e} {N \choose j} p_0^{j} (1 - p_0^{j})^{N-j}$$

Accept if this prob is less than 1- α

Normal Approximation to the Binomial

• Number of errors X is approx N with mean Np_0 and var $Np_0(1-p_0)$

$$\frac{X - Np_0}{\sqrt{Np_0(1 - p_0)}} \sim Z$$

Accept if this prob for X = e is less than $z_{1-\alpha}$

t Test

- Multiple training/validation sets
- $x_i^t = 1$ if instance t misclassified on fold i
- Error rate of fold *i*: $p_i = \frac{\sum_{t=1}^{N} x_i^t}{N}$
- With m and s^2 average and var of p_i , we accept p_0 or less error if

$$\frac{\sqrt{K}(m-p_0)}{S} \sim t_{K-1}$$

is less than $t_{\alpha,K-1}$

Comparing Classifiers:

$$H_0$$
: $\mu_0 = \mu_1 \text{ vs. } H_1$: $\mu_0 \neq \mu_1$

Single training/validation set: McNemar's Test

e_{00} : Number of examples	e_{01} : Number of examples
misclassified by both	misclassified by 1 but not 2
e_{10} : Number of examples	e_{11} : Number of examples
misclassified by 2 but not 1	correctly classified by both

• Under H_0 , we expect $e_{01} = e_{10} = (e_{01} + e_{10})/2$

$$\frac{\left(\left|e_{01}-e_{10}\right|-1\right)^{2}}{e_{01}+e_{10}} \sim \chi_{1}^{2}$$

Accept if $< X^2_{\alpha,1}$

K-Fold CV Paired t Test

- Use K-fold cv to get K training/validation folds
- p_i^1 , p_i^2 : Errors of classifiers 1 and 2 on fold i
- $p_i = p_i^1 p_i^2$: Paired difference on fold i
- The null hypothesis is whether p_i has mean 0

$$\begin{split} & H_0: \mu = 0 \quad \text{vs.} \quad H_0: \mu \neq 0 \\ & m = \frac{\sum_{i=1}^K p_i}{K} \quad s^2 = \frac{\sum_{i=1}^K (p_i - m)^2}{K - 1} \\ & \frac{\sqrt{K}(m - 0)}{s} = \frac{\sqrt{K} \cdot m}{s} \sim t_{K - 1} \text{ Accept if in} \left(-t_{\alpha/2, K - 1}, t_{\alpha/2, K - 1} \right) \end{split}$$

5×2 cv Paired t Test

- Use 5×2 cv to get 2 folds of 5 tra/val replications (Dietterich, 1998)
- $p_i^{(j)}$: difference btw errors of 1 and 2 on fold j=1, 2 of replication i=1,...,5

$$\overline{p}_{i} = (p_{i}^{(1)} + p_{i}^{(2)})/2 \qquad s_{i}^{2} = (p_{i}^{(1)} - \overline{p}_{i})^{2} + (p_{i}^{(2)} - \overline{p}_{i})^{2}$$

$$\frac{p_{1}^{(1)}}{\sqrt{\sum_{i=1}^{5} s_{i}^{2}/5}} \sim t_{5}$$

Two-sided test: Accept H_0 : $\mu_0 = \mu_1$ if in $(-t_{\alpha/2.5}, t_{\alpha/2.5})$

One-sided test: Accept H_0 : $\mu_0 \le \mu_1$ if $< t_{\alpha,5}$

5×2 cv Paired F Test

$$\frac{\sum_{i=1}^{5} \sum_{j=1}^{2} (p_i^{(j)})^2}{2\sum_{i=1}^{5} s_i^2} \sim F_{10,5}$$

Two-sided test: Accept H_0 : $\mu_0 = \mu_1$ if $< F_{\alpha,10,5}$

Comparing L>2 Algorithms: Analysis of Variance (Anova)

$$H_0: \mu_1 = \mu_2 = \dots = \mu_L$$

• Errors of *L* algorithms on *K* folds $X_{ij} \sim \mathcal{N}(\mu_i, \sigma^2), j = 1, ..., L, i = 1, ..., K$

• We construct two estimators to σ^2 . One is valid if H_0 is true, the other is always valid. We reject H_0 if the two estimators disagree. If H_0 is true:

$$m_{j} = \sum_{i=1}^{K} \frac{X_{ij}}{K} \sim \mathcal{N}(\mu, \sigma^{2}/K)$$

$$m = \frac{\sum_{j=1}^{L} m_j}{L}$$
 $S^2 = \frac{\sum_{j} (m_j - m)^2}{L - 1}$

Thus an estimator of σ^2 is $K \cdot S^2$, namely,

$$\hat{\sigma}^2 = K \sum_{j=1}^{L} \frac{\left(m_j - m\right)^2}{L - 1}$$

$$\sum_{j} \frac{(m_{j} - m)^{2}}{\sigma^{2} / K} \sim \mathcal{X}_{L-1}^{2} \quad SSb \equiv K \sum_{j} (m_{j} - m)^{2}$$

So when H_0 is true, we have

$$\frac{SSb}{\sigma^2} \sim \chi_{L-1}^2$$

Regardlessof H_0 our secondestimator to σ^2 is the average of group variances S_i^2 :

$$S_{j}^{2} = \frac{\sum_{i=1}^{K} (X_{ij} - m_{j})^{2}}{K - 1} \quad \hat{\sigma}^{2} = \sum_{j=1}^{L} \frac{S_{j}^{2}}{L} = \sum_{j} \sum_{i} \frac{(X_{ij} - m_{j})^{2}}{L(K - 1)}$$

$$SSW = \sum_{j} \sum_{i} (X_{ij} - m_{j})^{2}$$

$$(K - 1) \frac{S_{j}^{2}}{\sigma^{2}} \sim X_{K - 1}^{2} \quad \frac{SSW}{\sigma^{2}} \sim X_{L(K - 1)}^{2}$$

$$\left(\frac{SSD / \sigma^{2}}{L - 1}\right) / \left(\frac{SSW / \sigma^{2}}{L(K - 1)}\right) = \frac{SSD / (L - 1)}{SSW / (L(K - 1))} \sim F_{L - 1, L(K - 1)}$$

$$H_{0}: \mu_{1} = \mu_{2} = \dots = \mu_{L} \text{ if } < F_{\alpha, L - 1, L(K - 1)}$$

ANOVA table

Source of	Sum of	Degrees of	Mean	
variation	squares	freedom	square	F_0
Between	$SS_b \equiv$			
groups	$K\sum_{j}(m_{j}-m)^{2}$	L-1	$MS_b = \frac{SS_b}{L-1}$	$\frac{MS_b}{MS_w}$
Within	$SS_w \equiv$			
groups	$\sum_{j} \sum_{i} (X_{ij} - m_j)^2$	L(K-1)	$MS_{\mathbf{w}} = \frac{SS_{\mathbf{w}}}{L(K-1)}$	
Total	$SS_T \equiv$			
	$\sum_{j} \sum_{i} (X_{ij} - m)^2$	$L \cdot K - 1$		

If ANOVA rejects, we do pairwise posthoc tests

$$H_0: \mu_i = \mu_j \text{ vs } H_1: \mu_i \neq \mu_j$$

$$t = \frac{m_i - m_j}{\sqrt{2}\sigma_{w}} \sim t_{L(K-1)}$$

Comparison over Multiple Datasets

- Comparing two algorithms:
 - Sign test: Count how many times A beats B over N datasets, and check if this could have been by chance if A and B did have the same error rate
- Comparing multiple algorithms
 - Kruskal-Wallis test: Calculate the average rank of all algorithms on N datasets, and check if these could have been by chance if they all had equal error
 - If KW rejects, we do pairwise posthoc tests to find which ones have significant rank difference