Lecture Slides for

INTRODUCTION TO

Machine Learning

ETHEM ALPAYDIN
© The MIT Press, 2004

alpaydin@boun.edu.tr
http://www.cmpe.boun.edu.tr/~ethem/i2ml
CHAPTER 9:

Decision Trees
Tree Uses Nodes, and Leaves
Divide and Conquer

- Internal decision nodes
 - Univariate: Uses a single attribute, x_i
 - Numeric x_i: Binary split: $x_i > w_m$
 - Discrete x_i: n-way split for n possible values
 - Multivariate: Uses all attributes, x

- Leaves
 - Classification: Class labels, or proportions
 - Regression: Numeric; r average, or local fit

- Learning is greedy; find the best split recursively (Breiman et al, 1984; Quinlan, 1986, 1993)
Classification Trees
(ID3, CART, C4.5)

- For node m, N_m instances reach m, N^i_m belong to C_i
 \[\hat{P}(C_i \mid x, m) \equiv p^i_m = \frac{N^i_m}{N_m} \]

- Node m is pure if p^i_m is 0 or 1
- Measure of impurity is entropy
 \[I_m = -\sum_{i=1}^{K} p^i_m \log_2 p^i_m \]
Best Split

- If node m is pure, generate a leaf and stop, otherwise split and continue recursively.
- Impurity after split: N_{mj} of N_m take branch j. N_{mj}^i belong to C_i

$$\hat{P}(C_i \mid x, m, j) \equiv p_{mj}^i = \frac{N_{mj}^i}{N_{mj}}$$

$$I'_m = -\sum_{j=1}^{n} \frac{N_{mj}}{N_m} \sum_{i=1}^{K} p_{mj}^i \log_2 p_{mj}^i$$

- Find the variable and split that min impurity (among all variables -- and split positions for numeric variables)
GenerateTree(\mathcal{X})
 If NodeEntropy(\mathcal{X}) < θ_I /* eq. 9.3
 Create leaf labelled by majority class in \mathcal{X}
 Return
 $i \leftarrow$ SplitAttribute(\mathcal{X})
 For each branch of x_i
 Find \mathcal{X}_i falling in branch
 GenerateTree(\mathcal{X}_i)

SplitAttribute(\mathcal{X})
 MinEnt \leftarrow MAX
 For all attributes $i = 1, \ldots, d$
 If x_i is discrete with n values
 Split \mathcal{X} into $\mathcal{X}_1, \ldots, \mathcal{X}_n$ by x_i
 $e \leftarrow$ SplitEntropy($\mathcal{X}_1, \ldots, \mathcal{X}_n$) /* eq. 9.8 */
 If $e < \text{MinEnt}$ MinEnt $\leftarrow e$; bestf $\leftarrow i$
 Else /* x_i is numeric */
 For all possible splits
 Split \mathcal{X} into $\mathcal{X}_1, \mathcal{X}_2$ on x_i
 $e \leftarrow$ SplitEntropy($\mathcal{X}_1, \mathcal{X}_2$)
 If $e < \text{MinEnt}$ MinEnt $\leftarrow e$; bestf $\leftarrow i$
 Return bestf
Regression Trees

- **Error at node** m:

$$b_m(x) = \begin{cases}
1 & \text{if } x \in X_m : x \text{ reaches node } m \\
0 & \text{otherwise}
\end{cases}$$

$$E_m = \frac{1}{N_m} \sum_t (r^t - g_m)^2 b_m(x^t) \quad g_m = \frac{\sum_t b_m(x^t)r^t}{\sum_t b_m(x^t)}$$

- **After splitting**:

$$b_{mj}(x) = \begin{cases}
1 & \text{if } x \in X_{mj} : x \text{ reaches node } m \text{ and branch } j \\
0 & \text{otherwise}
\end{cases}$$

$$E'_m = \frac{1}{N_m} \sum_j \sum_t (r^t - g_{mj})^2 b_{mj}(x^t) \quad g_{mj} = \frac{\sum_t b_{mj}(x^t)r^t}{\sum_t b_{mj}(x^t)}$$
Model Selection in Trees:
Pruning Trees

- Remove subtrees for better generalization (decrease variance)
 - Prepruning: Early stopping
 - Postpruning: Grow the whole tree then prune subtrees which overfit on the pruning set

- Prepruning is faster, postpruning is more accurate (requires a separate pruning set)
Rule Extraction from Trees

C4.5 Rules
(Quinlan, 1993)

```
x_1 > 38.5
  Yes
  x_2 > 2.5
    Yes
    0.8
  No
    0.6

x_4
  'A'
  'B'
  'C'
  0.4
  0.3
  0.2

x_1: Age
x_2: Years in job
x_3: Gender
x_4: Job type
```

R1: IF (age > 38.5) AND (years-in-job > 2.5) THEN \(y = 0.8 \)
R2: IF (age > 38.5) AND (years-in-job \leq 2.5) THEN \(y = 0.6 \)
R3: IF (age \leq 38.5) AND (job-type='A') THEN \(y = 0.4 \)
R4: IF (age \leq 38.5) AND (job-type='B') THEN \(y = 0.3 \)
R5: IF (age \leq 38.5) AND (job-type='C') THEN \(y = 0.2 \)
Learning Rules

- Rule induction is similar to tree induction but
 - tree induction is breadth-first,
 - rule induction is depth-first; one rule at a time
- Rule set contains rules; rules are conjunctions of terms
- Rule covers an example if all terms of the rule evaluate to true for the example
- **Sequential covering**: Generate rules one at a time until all positive examples are covered
- IREP (Fürnkranz and Widmer, 1994), Ripper (Cohen, 1995)
Ripper(Pos, Neg, k)
 RuleSet ← LearnRuleSet(Pos, Neg)
 For k times
 RuleSet ← OptimizeRuleSet(RuleSet, Pos, Neg)
LearnRuleSet(Pos, Neg)
 RuleSet ← ∅
 DL ← DescLen(RuleSet, Pos, Neg)
 Repeat
 Rule ← LearnRule(Pos, Neg)
 Add Rule to RuleSet
 DL' ← DescLen(RuleSet, Pos, Neg)
 If DL’ > DL + 64
 PruneRuleSet(RuleSet, Pos, Neg)
 Return RuleSet
 If DL’ < DL DL ← DL’
 Delete instances covered from Pos and Neg
 Until Pos = ∅
 Return RuleSet
\begin{algorithm}
\caption{PruneRuleSet(\texttt{RuleSet}, \texttt{Pos}, \texttt{Neg})}
\begin{algorithmic}
\State For each Rule $\in \texttt{RuleSet}$ in reverse order
\State \hspace{1em} \texttt{DL} \leftarrow DescLen(\texttt{RuleSet}, \texttt{Pos}, \texttt{Neg})
\State \hspace{1em} \texttt{DL'} \leftarrow DescLen(\texttt{RuleSet-Rule}, \texttt{Pos}, \texttt{Neg})
\State \hspace{1em} \textbf{IF} $\texttt{DL'}<\texttt{DL}$ Delete Rule from RuleSet
\State \hspace{1em} Return RuleSet
\end{algorithmic}
\end{algorithm}

\begin{algorithm}
\caption{OptimizeRuleSet(\texttt{RuleSet}, \texttt{Pos}, \texttt{Neg})}
\begin{algorithmic}
\State For each Rule $\in \texttt{RuleSet}$
\State \hspace{1em} \texttt{DL0} \leftarrow DescLen(\texttt{RuleSet}, \texttt{Pos}, \texttt{Neg})
\State \hspace{1em} \texttt{DL1} \leftarrow DescLen(\texttt{RuleSet-Rule+} \textbf{ReplaceRule}(\texttt{RuleSet}, \texttt{Pos}, \texttt{Neg}), \texttt{Pos}, \texttt{Neg})
\State \hspace{1em} \texttt{DL2} \leftarrow DescLen(\texttt{RuleSet-Rule+} \textbf{ReviseRule}(\texttt{RuleSet}, \texttt{Rule}, \texttt{Pos}, \texttt{Neg}), \texttt{Pos}, \texttt{Neg})
\State \hspace{1em} \textbf{If} $\texttt{DL1}=\min(\texttt{DL0}, \texttt{DL1}, \texttt{DL2})$
\State \hspace{2em} Delete Rule from RuleSet and
\State \hspace{3em} add \textbf{ReplaceRule}(\texttt{RuleSet}, \texttt{Pos}, \texttt{Neg})
\State \hspace{1em} \textbf{Else If} $\texttt{DL2}=\min(\texttt{DL0}, \texttt{DL1}, \texttt{DL2})$
\State \hspace{2em} Delete Rule from RuleSet and
\State \hspace{3em} add \textbf{ReviseRule}(\texttt{RuleSet}, \texttt{Rule}, \texttt{Pos}, \texttt{Neg})
\State Return RuleSet
\end{algorithmic}
\end{algorithm}
Multivariate Trees

\[w_{11}x_1 + w_{12}x_2 + w_{10} = 0 \]

Yes

No

\(C_2 \)

\(C_1 \)