CHAPTER 2:
Supervised Learning
Learning a Class from Examples

- Class C of a “family car”
 - Prediction: Is car x a family car?
 - Knowledge extraction: What do people expect from a family car?

- Output:
 - Positive (+) and negative (–) examples

- Input representation:
 - x_1: price, x_2: engine power
Training set \mathbf{X}

$$\mathbf{X} = \{\mathbf{x}^t, r^t\}_{t=1}^{N}$$

$$r = \begin{cases} 1 & \text{if } \mathbf{x} \text{ is positive} \\ 0 & \text{if } \mathbf{x} \text{ is negative} \end{cases}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$
Class C

$\left(p_1 \leq \text{price} \leq p_2 \right) \text{ AND } \left(e_1 \leq \text{engine power} \leq e_2 \right)$
Hypothesis class \mathcal{H}

$h(x) = \begin{cases} 1 & \text{if } h \text{ classifies } x \text{ as positive} \\ 0 & \text{if } h \text{ classifies } x \text{ as negative} \end{cases}$

Error of h on \mathcal{H}

$$E(h \mid X) = \sum_{t=1}^{N} 1(h(x^t) \neq r^t)$$
$S, G, \text{ and the Version Space}$

The most specific hypothesis, S, and the most general hypothesis, G, between S and G is consistent and make up the version space ($h \in \mathcal{H}$, between S and G is consistent) (Mitchell, 1997).
VC Dimension

- N points can be labeled in 2^N ways as +/-.
- \mathcal{H} shatters N if there exists $h \in \mathcal{H}$ consistent for any of these:
 $\text{VC}(\mathcal{H}) = N$

An axis-aligned rectangle shatters 4 points only!
Probably Approximately Correct (PAC) Learning

- How many training examples N should we have, such that with probability at least $1 - \delta$, h has error at most ε? (Blumer et al., 1989)

- Each strip is at most $\varepsilon/4$
- Pr that we miss a strip $1 - \varepsilon/4$
- Pr that N instances miss a strip $(1 - \varepsilon/4)^N$
- Pr that N instances miss 4 strips $4(1 - \varepsilon/4)^N$
- $4(1 - \varepsilon/4)^N \leq \delta$ and $(1 - x) \leq \exp(-x)$
- $4\exp(-\varepsilon N/4) \leq \delta$ and $N \geq (4/\varepsilon)\log(4/\delta)$
Use the simpler one because

- Simpler to use (lower computational complexity)
- Easier to train (lower space complexity)
- Easier to explain (more interpretable)
- Generalizes better (lower variance - Occam’s razor)
Multiple Classes, $C_i \ i=1,...,K$

$\mathcal{X} = \{x^t, r^t\}_{t=1}^N$

$r^t_i = \begin{cases} 1 & \text{if } x^t \in C_i \\ 0 & \text{if } x^t \in C_j, j \neq i \end{cases}$

Train hypotheses $h_i(x), i = 1,...,K$:

$h_i(x^t) = \begin{cases} 1 & \text{if } x^t \in C_i \\ 0 & \text{if } x^t \in C_j, j \neq i \end{cases}$
Regression

\[\mathcal{X} = \{x^t, r^t\}_{t=1}^N \]

\[r^t \in \mathbb{R} \]

\[r^t = f(x^t) + \varepsilon \]

\[g(x) = w_1 x + w_0 \]

\[g(x) = w_2 x^2 + w_1 x + w_0 \]

\[E(g \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} [r^t - g(x^t)]^2 \]

\[E(w_1, w_0 \mid \mathcal{X}) = \frac{1}{N} \sum_{t=1}^{N} [r^t - (w_1 x^t + w_0)]^2 \]
Model Selection & Generalization

- Learning is an ill-posed problem; data is not sufficient to find a unique solution
- The need for inductive bias, assumptions about \mathcal{H}
- Generalization: How well a model performs on new data
- Overfitting: \mathcal{H} more complex than C or f
- Underfitting: \mathcal{H} less complex than C or f
Triple Trade-Off

There is a trade-off between three factors (Dietterich, 2003):
1. Complexity of \mathcal{H}, $c(\mathcal{H})$,
2. Training set size, N,
3. Generalization error, E, on new data
 - As $N \uparrow$, $E \downarrow$
 - As $c(\mathcal{H}) \uparrow$, first $E \downarrow$ and then $E \uparrow$
Cross-Validation

- To estimate generalization error, we need data unseen during training. We split the data as
 - Training set (50%)
 - Validation set (25%)
 - Test (publication) set (25%)
- Resampling when there is few data
Dimensions of a Supervised Learner

1. Model: \(g(x \mid \theta) \)

2. Loss function: \(E(\theta \mid \mathcal{X}) = \sum_t L(r_t, g(x^t \mid \theta)) \)

3. Optimization procedure:
 \[\theta^* = \arg \min_{\theta} E(\theta \mid \mathcal{X}) \]