Lecture Slides for

INTRODUCTION TO

Machine Learning

ETHEM ALPAYDIN
© The MIT Press, 2004

alpaydin@boun.edu.tr
http://www.cmpe.boun.edu.tr/~ethem/i2ml
CHAPTER 14:
Assessing and Comparing Classification Algorithms
Introduction

- Questions:
 - Assessment of the expected error of a learning algorithm: Is the error rate of 1-NN less than 2%?
 - Comparing the expected errors of two algorithms: Is k-NN more accurate than MLP?

- Training/validation/test sets
- Resampling methods: K-fold cross-validation
Algorithm Preference

- Criteria (Application-dependent):
 - Misclassification error, or risk (loss functions)
 - Training time/space complexity
 - Testing time/space complexity
 - Interpretability
 - Easy programmability
- Cost-sensitive learning
Resampling and K-Fold Cross-Validation

- The need for multiple training/validation sets \(\{X_i, V_i\}_i \): Training/validation sets of fold \(i \)
- \(K \)-fold cross-validation: Divide \(X \) into \(k \), \(X_i, i=1,\ldots,K \)
 \[
 \begin{align*}
 V_1 &= X_1 & T_1 &= X_2 \cup X_3 \cup \cdots \cup X_K \\
 V_2 &= X_2 & T_2 &= X_1 \cup X_3 \cup \cdots \cup X_K \\
 &\vdots & &\vdots \\
 V_K &= X_K & T_K &= X_1 \cup X_2 \cup \cdots \cup X_{K-1}
 \end{align*}
 \]
- \(T_i \) share \(K-2 \) parts
5x2 Cross-Validation

- 5 times 2 fold cross-validation (Dietterich, 1998)

<table>
<thead>
<tr>
<th>Fold</th>
<th>Training Set T_k</th>
<th>Validation Set V_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$X_1^{(1)}$</td>
<td>$X_1^{(2)}$</td>
</tr>
<tr>
<td>2</td>
<td>$X_1^{(2)}$</td>
<td>$X_1^{(1)}$</td>
</tr>
<tr>
<td>3</td>
<td>$X_2^{(1)}$</td>
<td>$X_2^{(2)}$</td>
</tr>
<tr>
<td>4</td>
<td>$X_2^{(2)}$</td>
<td>$X_2^{(1)}$</td>
</tr>
<tr>
<td>5</td>
<td>$X_3^{(1)}$</td>
<td>$X_3^{(2)}$</td>
</tr>
<tr>
<td>6</td>
<td>$X_3^{(2)}$</td>
<td>$X_3^{(1)}$</td>
</tr>
<tr>
<td>7</td>
<td>$X_4^{(1)}$</td>
<td>$X_4^{(2)}$</td>
</tr>
<tr>
<td>8</td>
<td>$X_4^{(2)}$</td>
<td>$X_4^{(1)}$</td>
</tr>
<tr>
<td>9</td>
<td>$X_5^{(1)}$</td>
<td>$X_5^{(2)}$</td>
</tr>
<tr>
<td>10</td>
<td>$X_5^{(2)}$</td>
<td>$X_5^{(1)}$</td>
</tr>
</tbody>
</table>
Bootstrapping

- Draw instances from a dataset with replacement
- Prob that we do not pick an instance after N draws

\[
\left(1 - \frac{1}{N}\right)^N \approx e^{-1} = 0.368
\]

that is, only 36.8% is new!
Measuring Error

<table>
<thead>
<tr>
<th>True Class</th>
<th>Predicted class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>TP: True Positive</td>
</tr>
<tr>
<td></td>
<td>FP: False Positive</td>
</tr>
</tbody>
</table>

- **Error rate** = \# of errors / \# of instances = \(\frac{(FN+FP)}{N} \)
- **Recall** = \# of found positives / \# of positives = \(\frac{TP}{TP+FN} \) = **sensitivity** = hit rate
- **Precision** = \# of found positives / \# of found = \(\frac{TP}{TP+FP} \)
- **Specificity** = \(\frac{TN}{TN+FP} \)
- **False alarm rate** = \(\frac{FP}{FP+TN} \) = 1 - Specificity
ROC Curve

- Hit rate: \(\frac{|TP|}{|TP|+|FN|} \)
- False alarm rate: \(\frac{|FP|}{|FP|+|TN|} \)
- Sensitivity (Hit rate)
- Specificity = 1 - False alarm rate
Interval Estimation

- $X = \{ x^t \}_t$ where $x^t \sim \mathcal{N}(\mu, \sigma^2)$
- $m \sim \mathcal{N}(\mu, \sigma^2/N)$

\[
\sqrt{N} \frac{(m-\mu)}{\sigma} \sim Z
\]

\[
P\left\{-1.96 < \sqrt{N} \frac{(m-\mu)}{\sigma} < 1.96\right\} = 0.95
\]

\[
P\left\{m - 1.96 \frac{\sigma}{\sqrt{N}} < \mu < m + 1.96 \frac{\sigma}{\sqrt{N}}\right\} = 0.95
\]

\[
P\left\{m - z_{\alpha/2} \frac{\sigma}{\sqrt{N}} < \mu < m + z_{\alpha/2} \frac{\sigma}{\sqrt{N}}\right\} = 1 - \alpha
\]

$100(1- \alpha)$ percent confidence interval
When σ^2 is not known:

$$S^2 = \sum_{t} (x^t - m)^2 / (N - 1) \quad \frac{\sqrt{N}(m - \mu)}{S} \sim t_{N-1}$$

$$P\left\{ m - t_{\alpha/2,N-1} \frac{S}{\sqrt{N}} < \mu < m + t_{\alpha/2,N-1} \frac{S}{\sqrt{N}} \right\} = 1 - \alpha$$
Hypothesis Testing

- Reject a null hypothesis if not supported by the sample with enough confidence
- $\mathbf{X} = \{ x^t \}_t$ where $x^t \sim \mathcal{N}(\mu, \sigma^2)$

$$H_0: \mu = \mu_0 \text{ vs. } H_1: \mu \neq \mu_0$$

Accept H_0 with level of significance α if μ_0 is in the 100(1 - α) confidence interval

$$\frac{\sqrt{N}(m - \mu_0)}{\sigma} \in (-z_{\alpha/2}, z_{\alpha/2})$$

Two-sided test
<table>
<thead>
<tr>
<th>Truth</th>
<th>Accept</th>
<th>Reject</th>
</tr>
</thead>
<tbody>
<tr>
<td>True</td>
<td>Correct</td>
<td>Type I error</td>
</tr>
<tr>
<td>False</td>
<td>Type II error</td>
<td>Correct (Power)</td>
</tr>
</tbody>
</table>

- **One-sided test:** \(H_0: \mu \leq \mu_0 \) vs. \(H_1: \mu > \mu_0 \)
 Accept if
 \[
 \frac{\sqrt{N}(m - \mu_0)}{\sigma} \in (-\infty, Z_\alpha)
 \]

- **Variance unknown:** Use \(t \), instead of \(z \)
 Accept \(H_0: \mu = \mu_0 \) if
 \[
 \frac{\sqrt{N}(m - \mu_0)}{S} \in \left(-t_{\alpha/2,N-1}, t_{\alpha/2,N-1}\right)
 \]
Assessing Error:

\(H_0: p \leq p_0 \) vs. \(H_1: p > p_0 \)

- Single training/validation set: Binomial Test

 If error prob is \(p_0 \), prob that there are \(e \) errors or less in \(N \) validation trials is

 \[
 P\{X \leq e\} = \sum_{j=1}^{e} \binom{N}{j} p_0^j (1 - p_0)^{N-j}
 \]

 Accept if this prob is less than \(1 - \alpha \)
Normal Approximation to the Binomial

- Number of errors X is approx \mathcal{N} with mean Np_0 and var $Np_0(1-p_0)$

$$\frac{X - Np_0}{\sqrt{Np_0(1-p_0)}} \sim Z$$

Accept if this prob for $X = e$ is less than $z_{1-\alpha}$
Paired t Test

- Multiple training/validation sets
- \(x_i^t = 1 \) if instance \(t \) misclassified on fold \(i \)
- Error rate of fold \(i \):
 \[
 p_i = \frac{1}{N} \sum_{t=1}^{N} x_i^t
 \]
- With \(m \) and \(s^2 \) average and var of \(p_i \)
 we accept \(p_0 \) or less error if
 \[
 \frac{\sqrt{K(m - p_0)}}{s} \sim t_{K-1}
 \]
 is less than \(t_{\alpha,K-1} \)
Comparing Classifiers:

\[H_0: \mu_0 = \mu_1 \text{ vs. } H_1: \mu_0 \neq \mu_1 \]

- Single training/validation set: McNemar’s Test

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(e_{00}):</td>
<td>Number of examples misclassified by both</td>
<td>(e_{01}): Number of examples misclassified by 1 but not 2</td>
</tr>
<tr>
<td>(e_{10}):</td>
<td>Number of examples misclassified by 2 but not 1</td>
<td>(e_{11}): Number of examples correctly classified by both</td>
</tr>
</tbody>
</table>

- Under \(H_0\), we expect

\[
\frac{\left|e_{01} - e_{10}\right| - 1}{e_{01} + e_{10}}^2 \sim \chi^2_1
\]

Accept if \(< \chi^2_{\alpha,1}\)
K-Fold CV Paired t Test

- Use K-fold cv to get K training/validation folds
- p_i^1, p_i^2: Errors of classifiers 1 and 2 on fold i
- $p_i = p_i^1 - p_i^2$: Paired difference on fold i
- The null hypothesis is whether p_i has mean 0

\[
H_0 : \mu = 0 \text{ vs. } H_0 : \mu \neq 0
\]

\[
m = \frac{\sum_{i=1}^{K} p_i}{K}, \quad s^2 = \frac{\sum_{i=1}^{K} (p_i - m)^2}{K - 1}
\]

\[
\frac{\sqrt{K(m - 0)}}{s} = \frac{\sqrt{K} \cdot m}{s} \sim t_{K-1} \text{ Accept if } \in (-t_{\alpha/2,K-1}, t_{\alpha/2,K-1})
\]
5×2 cv Paired t Test

- Use 5×2 cv to get 2 folds of 5 tra/val replications (Dietterich, 1998)
- $p_i^{(j)}$: difference btw errors of 1 and 2 on fold $j=1, 2$ of replication $i=1,...,5$
 \[\bar{p}_i = \left(p_i^{(1)} + p_i^{(2)} \right) / 2 \]
 \[s_i^2 = (p_i^{(1)} - \bar{p}_i)^2 + (p_i^{(2)} - \bar{p}_i)^2 \]
 \[\frac{p_i^{(1)}}{\sqrt{\sum_{i=1}^{5} s_i^2 / 5}} \sim t_5\]

Two-sided test: Accept $H_0: \mu_0 = \mu_1$ if in $(-t_{\alpha/2,5}, t_{\alpha/2,5})$
One-sided test: Accept $H_0: \mu_0 \leq \mu_1$ if $< t_{\alpha,5}$
5×2 cv Paired F Test

$$\frac{\sum_{i=1}^{5} \sum_{j=1}^{2} (p_{ij})^2}{2 \sum_{i=1}^{5} s_i^2} \sim F_{10,5}$$

Two-sided test: Accept H_0: $\mu_0 = \mu_1$ if $< F_{\alpha,10,5}$
Comparing $L > 2$ Algorithms: Analysis of Variance (Anova)

$H_0 : \mu_1 = \mu_2 = \cdots = \mu_L$

- Errors of L algorithms on K folds

 $X_{ij} \sim \mathcal{N}(\mu_j, \sigma^2), j = 1, \ldots, L, i = 1, \ldots, K$

- We construct two estimators to σ^2.

 One is valid if H_0 is true, the other is always valid.

 We reject H_0 if the two estimators disagree.
If H_0 is true:

\[m_j = \sum_{i=1}^{K} \frac{X_{ij}}{K} \sim \mathcal{N}(\mu, \sigma^2 / K) \]

\[m = \frac{\sum_{j=1}^{L} m_j}{L} \quad S^2 = \frac{\sum_{j} (m_j - m)^2}{L - 1} \]

Thus an estimator of σ^2 is $K \cdot S^2$, namely,

\[\hat{\sigma}^2 = K \sum_{j=1}^{L} \frac{(m_j - m)^2}{L - 1} \]

\[\sum_{j} \frac{(m_j - m)^2}{\sigma^2 / K} \sim \chi^2_{L-1} \quad SSb = K \sum_{j} (m_j - m)^2 \]

So when H_0 is true, we have

\[\frac{SSb}{\sigma^2} \sim \chi^2_{L-1} \]
Regardless of H_0 our second estimator to σ^2 is the average of group variances S_j^2:

$$S_j^2 = \frac{\sum_{i=1}^{K} (X_{ij} - m_j)^2}{K - 1} \quad \hat{\sigma}^2 = \sum_{j=1}^{L} \frac{S_j^2}{L} = \sum_{j} \sum_{i} \frac{(X_{ij} - m_j)^2}{L(K - 1)}$$

$$SSw \equiv \sum_{j} \sum_{i} (X_{ij} - m_j)^2$$

$$\left(K - 1 \right) \frac{S_j^2}{\sigma^2} \sim \chi^2_{K-1} \quad \frac{SSw}{\sigma^2} \sim \chi^2_{L(K-1)}$$

$$\left(\frac{SSb / \sigma^2}{L - 1} \right) / \left(\frac{SSw / \sigma^2}{L(K - 1)} \right) = \frac{SSb / (L - 1)}{SSw / (L(K - 1))} \sim F_{L-1,L(K-1)}$$

$H_0 : \mu_1 = \mu_2 = \cdots = \mu_L$ if $< F_{\alpha,L-1,L(K-1)}$
Other Tests

- Range test (Newman-Keuls): 1 4 5 2 3
- Nonparametric tests (Sign test, Kruskal-Wallis)
- Contrasts: Check if 1 and 2 differ from 3, 4, and 5
- Multiple comparisons require Bonferroni correction
 If there are m tests, to have an overall significance of α, each test should have a significance of α/m.
- Regression: CLT states that the sum of iid variables from any distribution is approximately normal and the preceding methods can be used.
- Other loss functions?