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a b s t r a c t

In multiple-instance (MI) classification, each input object or event is represented by a set of instances,
named a bag, and it is the bag that carries a label. MI learning is used in different applications where data
is formed in terms of such bags and where individual instances in a bag do not have a label. We review
MI classification from the point of view of label information carried in the instances in a bag, that is, their
sufficiency for classification. Our aim is to contrast MI with the standard approach of single-instance (SI)
classification to determine when casting a problem in the MI framework is preferable. We compare
instance-level classification, combination by noisy-or, and bag-level classification, using the support
vector machine as the base classifier. We define a set of synthetic MI tasks at different complexities to
benchmark different MI approaches. Our experiments on these and two real-world bioinformatics
applications on gene expression and text categorization indicate that depending on the situation, a
different decision mechanism, at the instance- or bag-level, may be appropriate. If the instances in a bag
provide complementary information, a bag-level MI approach is useful; but sometimes the bag
information carries no useful information at all and an instance-level SI classifier works equally well,
or better.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In pattern recognition, the object or event to be classified is
denoted by an instance x represented as a d-dimensional vector of
features. The training set is composed of N such instances and their
labels, X ¼ fxt ; rtgNt ¼ 1, where rt is the class label of xt. Here (without
loss of generality), we focus on two-class classification where
instances are negative, i.e., rt ¼ �1, or positive, rt ¼ þ1. The aim is
to learn a classifier f ðxtÞ using this training set of instances.

In the framework of multiple-instance (MI) learning [1,2], each
object or event is represented by a bag bt. A bag is an unordered set
of instances and different bags may contain different number of
instances:

bt ¼ fxt1; xt2;…; xtnt g

where nt is the number of instances in bag t. The training set is
now denoted as X ¼ fbt ; rtgNt ¼ 1 where rtAf�1; þ1g is the class
label of bag bt. Single-instance (SI) classification is a special case
where each bag contains only one instance: bt ¼ fxt1g. In the

multiple-instance case, the classifier works at the bag level and
takes a bag as its input, gðbtÞ, and generates a decision for the bag.

MI learning is applicable when the data is generated as a bag of
instances all somehow related (for example because all are due to the
same hidden cause or factor)—there is a label for the whole but not
for the individual instances. Since its original definition [3], MI
learning has been used in different applications where the only
common characteristic is that inputs are bags of instances, but
different MI learning methods assume different types of relationships
between instances, bags, and hence class labels [1,2].

For example in the original Musk drug activity prediction, a
molecule (bag) has the desired drug effect (positive label) if and
only if one or more of its conformations (instances) bind to the
target site; we do not know a priori which one, so we cannot label
the instances individually, and we have an overall label for the
whole molecule.

As opposed to this, a relatively recent application of MI is in image
classification where we want to label a scene, e.g., beach, sea, and
desert. The image (bag) is segmented into small patches (instances)
and for example we have a beach image (positive label for the beach
class), if we have a “sand segment” and a “sea segment” (Desert class
is defined as a “sand segment” and no “sea segment”). Here the
problem, though is still MI, is quite different from Musk; instances
are subparts and are not at the same level of abstraction as bags and
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therefore, labels at the level of bags, e.g., beach, are not applicable for
instances.

Because of these reasons, though we see numerous applica-
tions of MI in the literature and various learning methods having
been proposed, the MI approach does not always lead to improved
performance [1,2]. It seems that MI learning is sometimes being
used without a meticulous investigation of its assumptions and
concomitant restrictions.

We believe that because of such significant differences in the
underlying characteristics of the MI problems, it may be futile to look
for a single MI learning algorithm that can work successfully on all,
just because they can all be defined in terms of bags. We propose
that a more fruitful approach may be to categorize the different MI
problems in terms of their characteristics and then for each category,
define the requirements for an MI learning algorithm. Such a
categorization also better differentiates MI learning from SI learning.

To summarize, in this paper, we compare SI and MI learning to
be able to clarify what the MI framework brings over SI; our aim is
not to compare the already numerous MI algorithms or propose a
new MI algorithm, but rather to determine when casting a
problem in the MI framework is preferable to SI, and also define
the different MI categories.

More specifically, we make a distinction between MI problems
based on the amount of label information carried by the instances in
a bag, that is their self-sufficiency for classification, or inversely, the
amount of complementary information carried by the instances in a
bag, which we name intra-bag dependency. Towards this aim, we
create a sequence of synthetic classification problems of increasing
complexity, which corresponds to increasing the intra-bag depen-
dency, and we use these to assess and compare the discriminative
power of SI and MI learning.

This paper is organized as follows: In Section 2, we discuss the
spectrum of MI problems. In Section 3, we discuss the instance-
and bag-level classifiers we use in this study and in Section 4, we
define the synthetic tasks we use to assess SI and MI approaches;
we also use them as canonical tasks to quantify the power of
different MI learning algorithms. We give our experimental results
on two sets of real-world bioinformatics data for gene expression
and text categorization in Section 5. We discuss our findings and
conclude in Section 6.

2. The spectrum of multiple-instance problems

We categorize MI problems by the amount of information each
instance in a bag carries about the label:

(1) On one extreme lies the pure instance-level approach. Each
instance can be assigned a label and carries enough information
for classification so that its vectorial representation is sufficient for
it to be classified correctly. In this case, there is no need to take
into account the other instances in the bag and hence no need for
the MI approach. The instances in a bag are labelled with the bag
label and we can train an instance-level classifier f ðxtÞ. The
instances in a bag are assumed independent: the bag information,
namely, whether two instances are in the same bag or in different
bags, is assumed to be useless and can be disregarded.
For example, if each bag contains a number of face images of the
same person, e.g., from different poses or lighting conditions, and
if each image in a bag is detailed and informative enough for
recognition, then there is no need to define bags for people. In
such a case, the whole operation, including both training and
testing, can work at the instance level. We can just train and use
an instance-level classifier f ðxtÞ that takes a single image xt and
makes a decision. As the individual face images deteriorate, for
example due to bad lighting or occlusion, and become less

informative, making use of other instances for complementary
information, that is, the MI approach starts making sense.

(2) In the earliest work on MI learning [3], the assumption made
was that a positive bag contains at least one positive instance.
Here, it is assumed that instances carry labels, that is actually
they can be classified as instances, but it is not known which
one(s) carry the label, and because we lack label information at
the instance level, we use the MI approach.
Let us say we have face images of people in a meeting and that
we know one of the faces belongs to the person we want to
identify but we do not know which. Then we have a multiple-
instance problem where the faces in the meeting define a bag.
In the bag, there is one instance which is the “real” positive
instance; the other instances actually are uninformative but
we cannot get rid of them because we do not have label
information at the level of instances.
The approach in such a case is to train an instance-level
classifier, and combine its decisions on the instances in the
bag to get a bag-level decision:

gðbtÞ ¼ϕðf ðxt1Þ; f ðxt2Þ;…; f ðxtnt ÞÞ

The assumption that the positive decision of at least one instance
classifier is sufficient for the bag decision implies the noisy-or as
the combination function [4], but note that the best ϕðÞ depends
on the application; for example, noisy-or may lead to a high rate
of false positives and when positive bags contain a higher
percentage of positive instances, named the “witness” of the bag
[5], majority vote may be better.
This approach where the bag-level decision is formed by combin-
ing instance-level decisions is named the collective approach, and
various methods have been used for training the instance-level
classifiers and for their combination [6–8]. When we have bags
where some of the instances are positive and the rest have
indeterminate labels, we can also view this as a semi-supervised
learning problem and can handle it as such [9]. Fusing the
decisions for instances to arrive at a decision for the bag can also
be viewed as an ensemble method, where learners each with a
different instance as its input make a decision and a combiner
calculates the overall output [10], e.g., by majority voting.

(3) On the other extreme, an instance in a bag has no label
because an instance by itself carries only a portion of the
information necessary for classification. In such a case, a bag-
level classifier should be used.
As an example, let us say that from a single face image, we
take small patches, e.g., part of an eye and chin as instances,
and all these patches together make up the bag that represent
the face. In such a case, each patch by itself is not informative
enough and no label can be attached, and hence no instance-
level classifier f(x) can be trained. We need a bag-level
representation corresponding to the complete image and a
bag-level classifier that uses the collective information from all
the patches, xti.
There are two possibilities: In the bag-space approach [2], we
use a distance function dðxri ; xsj Þ for the distance between
instances i and j, respectively, from bags r and s, and we use
these to calculate the distance between bags r and s (typically
by taking average, minimum, or maximum between all possi-
ble pairs). Once we define such a distance between bags, we
can use k-nearest neighbor or any variant, or support vector
machines with a kernel defined through such a distance
function. Another possibility is to directly define a kernel over
bags measuring the similarity of two bags in terms of the
underlying data structure used to represent the bags; for
example, in [11], each bag is represented by a graph and graph
kernels are used with support vector machines.
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The other possibility is to use a single vectorial representation,
vt, formed for the bag using all the instances in the bag, for
example, through calculation of some statistics over the bag.
This is the metadata [1] or embedded-space [2] approach. Once
the bag is represented by such a vector, it is fed to the bag-
level classifier gðvtÞ.

Previously researchers have come up with taxonomies for MI
problems. Weidmann's hierarchy [12], which we use below, is
extended by Foulds and Frank [1]. Amores's taxonomy [2] is
similar except that the names are slightly different.

3. Classifiers

We use the support vector machine (SVM) with a linear kernel
as the base classifier and adapt it to various MI scenarios. We use
the same classification algorithm in all cases to make sure that any
difference is due to the representation and not due to the
classification algorithm:

(1) Instance-level classifier SIL-SVM: In this case, instance t takes
the label of its bag and an instance-level SVM classifier f ðxtÞ is
trained with these instances. The assessment during test is
also done at the instance level, again by assigning bag labels to
the test instances. This corresponds to discarding totally the
bag information during both training and testing. If such a
classifier works fine, we understand that the bag information
does not bring much, that is, it is not actually necessary to
define such a problem as a multiple-instance problem.

(2) Combined instance-level classifier NOR-SVM: Instances take the
labels of their bags and an instance-level SVM classifier is trained
as above, but during test, the decision is made at the bag level by
combining the instance-level SVM f ðxti Þ decisions in the bag using
noisy-or. This is the so-called standard MI classifier [13].

(3) Bag-level classifier MIL-SVM: For each bag t, a vectorial repre-
sentation vt is formed summarizing the information in the
instances in the bag, and a bag-level classifier gðvtÞ is trained.
During test, a similar representation is formed for the bag
query and is given as input to the classifier.
MIL-SVM is an SVM classifier that uses the bag-based similar-
ity representation classifier where we represent each bag by a
vector of dissimilarities to all the other N bags in the training
set [14,15]. As such, it is a combination of the bag-space and
embedded-space approaches discussed above:

vt ¼ ½dðb1; btÞ; dðb2; btÞ;…; dðbN ; btÞ�T ð1Þ

The dissimilarity between bags br and bs is defined as

dðbr ; bsÞ ¼ 1
nr

X

i

min
j

‖xri �xsj‖
2 ð2Þ

That is, for each instance i in bag r, we find the most similar
instance from bag s in terms of squared Euclidean distance,
and then we average this over all such i in bag r. This gives us a
distance, or a dissimilarity score, between bags r and s. The N-
dimensional representation for bag t, which we denote by vt

(Eq. (1)), is formed as a vector of such dissimilarities between
bag t and all the bags in the training set. This new vt is then as
the input to a support vector machine which now works at the
bag-level, gðvtÞ. We name this classifier MIL-SVM.

(4) Bag-level classifier MILES: This also uses a bag-level similarity
representation and a linear classifier with L1 regularization
[13]. All instances t in the training set are considered to be
prototypes and every bag, both at training and at test time, is

represented by its distances to all the training instances. Using
the definition in Eq. (2), every feature vector for a bag bs

consists of the distances dðt; bsÞ to all t. The subsequently used
L1-regularized linear classifier makes sure that one can deal
with the high dimensionality of this representation.

There are various MI algorithms proposed in the literature, acting
somewhere in the range between (2) and (3, 4) above; see [1,2] for
two very detailed reviews. We do not compare those different MI
algorithms here, because our aim is not to compare the different
MI approaches among themselves, but rather to compare MI with
SI, and determine when casting a problem in the MI framework is
preferable to SI.

4. Synthetic MI tasks

We use the synthetic example from [13] and convert it to a
setting where MI tasks of increasing complexity can be defined.
This is a two-dimensional problemwith five Gaussian components
centered at ð5;5Þ, ð5; �5Þ, ð�5;5Þ, ð�5; �5Þ, ð0;0Þ, all having unit
diagonal covariance matrices (see Fig. 1).

The increasing complexities of the tasks we define roughly
correspond to Weidmann's hierarchy [12]. These can be considered
as canonical problems of increasing complexity and a more complex
task implies a more complex dependency between instances in a bag,
which we call intra-bag dependency. The level that can be handled by
an MI algorithm is an indicator of the power of that MI algorithm.

We generate the data as follows: For each bag, we first sample
the bag size m from a uniform distribution between 1 and 8 and
then we generate m instances by randomly drawing from one of
the Gaussians mentioned above with equal prior probability. For
each task, we define the rule for a bag to be positive; so if the
generated instances satisfy the rule, the bag is labelled positive,
otherwise the bag is labelled negative. We generate the data so
that each data set contains equal number of positive and negative
bags. For each task, to test for the effect of training set size, we do
four different experiments where the number of bags used in
training is 10, 20, 50, and 100; testing is done on separate sets
containing 100 bags sampled in the same way. For each task
and for each bag size, we do 10 independent runs using a
different randomly generated sample of training and test sets.
The performance measure is the area under the ROC curve. In the
graphs, we plot averages of those 10 runs with one standard
deviation error.

The performance of bag-level classifiers, NOR-SVM, MIL-SVM,
and MILES, are measured on the bag data, whereas the perfor-
mance of the instance-level classifier SIL-SVM is measured on the
instance data created from the bag data by labeling the instances
with their bag labels. Strictly speaking, the bag-level and instance-
level data are different and hence it is not fair to compare the AUC
of SIL-SVM with the AUC of others. However note that our aim is
not to look at the absolute AUC value of SIL-SVM but its relative
position with respect to those of the bag-level classifiers: if the

Fig. 1. The synthetic MI tasks are generated by different combinations of these five
Gaussian components.
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AUC value of SIL-SVM is almost as high as the AUC values of the MI
variants, we can say that the bag-level approach does not bring
much, but where there is a large difference is where the MI
approach hits the mark.

Let us say we have a bag with four instances and let us say it is
a positive bag. So if a bag-level classifier classifies it as a positive
bag, we have one correct (bag-level) decision. The four instances in
the positive bag translate to four positively labelled instances in
the instance-level data. Let us say that our instance-level classifier
classifies two of them as positive and two as negative, so we have
two correct and two erroneous (instance-level) decisions. Hence
here, the bag-level approach makes sense.

4.1. Task 1

Task definition: The instances of a positive bag are drawn from any
of components 1, 2, or 5, and the instances of a negative bag are
drawn randomly from any of components 3, 4, or 5.

An example data set is shown in Fig. 2(a). This is a relatively
simple problem and all classifiers have quite high AUC values. The
instances in the positive bags are relatively easily distinguishable
from instances in the negative bags and in Fig. 2(b), we see that
the instance-level classifier SIL-SVM is already very accurate; from
an instance-level point of view, the two classes only overlap in
component 5 and this causes some error. NOR-SVM that does
noisy-or combination can correct for these by using the other
instances in the bag, but still makes some errors. The bag-level
classifiers, MIL-SVM and MILES, work the best because they make
better use of all the instances and do not rely on the instance-level
classifier. Note that when there are few bags (here, 10), there is not
enough data to train the bag-level classifiers and we see that the
MI approaches are not any better than SI. The fact that a bag-level
data is smaller than its instance-level version is an important point
and we will discuss it further.

Overall, this can be considered as an example where the
instance-level approach works well and the MI approaches add
some, but not too much.

4.2. Task 2

Task definition: A bag is positive if it contains at least one instance
from component 1.

An example data set is shown in Fig. 3(a). This is a more
complex task where bag-level information is needed. A negative
bag does not contain any instance from component 1 but a
positive bag can also contain instances from other components.
This corresponds to the standard MI level in Weidmann's hierarchy.

As we see in Fig. 3(b), the instance-level SIL-SVM does not do
well, because there are both positive and negative instances from
components 2 to 5; so the only way is to check if the bag contains
an instance from component 1. Noisy-or can check for this and
NOR-SVM does much better, but it does not do perfectly because
the underlying instance-level SVM classifier is not a very good one
(due to the mixed labeling of instances). The bag-level classifiers,
MIL-SVM and MILES, have no problem of classification.

4.3. Task 3

Task definition: A bag is positive if it contains at least one instance
from component 1 and one instance from component 4.

An example data set is shown in Fig. 4(a). This is a more
complex task corresponding to the presence-based level in Weid-
mann's hierarchy. An example is given in [1]: to be able to say that
we have the image of a beach, we need to have patches both from
sand and from sea; if we see only sand patches, it can be a desert
image; if we see only sea patches, it can be a seascape.

A negative bag cannot contain instances from both components
1 and 4, but can contain instances from either one; positive bags
can contain instances from all components.

As we see in Fig. 4(b), the instance-level SIL-SVM does not do
well, NOR-SVM does much better, but the best are the bag-level
MIL-SVM and MILES. Note that the accuracies of these bag-level
classes reach the maximum possible value of 1.0 with enough
(bag-level) data.

4.4. Task 4

Task definition: A bag is positive if it contains at least two
instances from component 1 and at least two instances from
component 4.

An example data set is shown in Fig. 5(a). This is an even more
complex task. A negative bag can contain instances from compo-
nents 1 and 4, and even two from one of the components and one
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from the other; positive bags contain instances from all compo-
nents. This corresponds to the threshold-based level in Weidmann's
hierarchy.

As we see in Fig. 5(b), the instance-level SIL-SVM does badly,
NOR-SVM does better because now there may be more instances
in positive bags. In terms of the bag-level classifiers, MIL-SVM and
MILES using bag similarities work better. Note that this is quite a
difficult task—we are not just checking for the presence, but the
occurrence of a number of times. We see that even bag-level MIL-
SVM or MILES cannot learn perfectly, even when they are trained
with 100 bags per class.

We believe that these four tasks can be interpreted as canonical
tasks at different levels of intra-bag dependency, measuring the
discriminative power of MI algorithms. Looking at the accuracies of
the methods we discussed, we can say that the instance-level SIL-
SVM can handle Task 1 but not the others. NOR-SVM can handle
Tasks 1 and 2, but not 3 or 4. MIL-SVM and MILES can handle up to

Task 3 but not Task 4. How MIL-SVM or MILES can be extended to
be able to handle Task 4 is an open future research topic.

5. Experiments on bioinformatics applications

5.1. Gene expression data

In our first batch of experiments on real-world data, we focus on
four databases for gene expression. This original study focused on
the identification of genomic features that influence the binding of
transcription factors responsible for gene expression. This is inter-
esting because it allows for the identification of the mechanisms
that are responsible for cell differentiation in tissues [16].

The multiple-instance framework is suitable here because there
are multiple transcription factors that need to bind in order for a
gene to express. Therefore, each gene is considered to be a bag that
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contains a collection of instances. The instances are the transcrip-
tion factor binding sites that are characterized by 100 genomic
features, that describe, among other things, the methylation status
of the binding sites, the histone modifications, the openness of the
chromatin. Four different cell types were investigated in which
gene expressions were measured, and these make up the four
different MIL data sets, which are named GM12878, K562,
H1-hESC, and G0 K1. Further details on the origin of the data,
the pre-processing steps, and the features can be found in [16].

We use five-fold cross-validation and our results on the four
data sets are shown in Fig. 6. This seems to be a problem similar to
Task 1 above; we see that there is not a significant difference
between SI and MI approaches. Neither noisy-or combination nor
bag-level SVM nor MILES work better—on one of the four data
sets, SIL-SVM is even the most accurate. We note hence that using
the MI framework here is not necessary for higher classification
accuracy; other instances in the bag do not add extra information.

Note however that MIL formulation may have its other benefits.
For example, the MIL formulation allows the use of the MILES
classifier which provides the possibility of inspecting the informa-
tiveness of each instance, that is, the transcription factor. When
knowledge extraction and the interpretability of the solution are

also important, the MIL approach with MILES is still interesting
and useful, though it may not be better in terms of classification
accuracy.

5.2. Text categorization data

Our second batch of real-world data sets concerns biomedical
text categorization [17,18]. The goal is to annotate article–protein
pairs with codes from the Gene Ontology (GO). An article–protein
pair should be annotated with a GO code if the article contains text
that links the protein to the GO code.

Each article is described by a bag of paragraphs, and each
paragraph is described by a 200-dimensional feature vector with
word counts, as well as statistics about the co-occurrences of the
protein and the GO code in that paragraph. The assumption is that
an article should be annotated with a GO code if and only if there
exists a paragraph in it that supports this annotation, which gives
rise to a multiple-instance problem.

There are three types of GO codes, which refer to cellular
components, biological processes, or molecular functions. There
are therefore three distinct MIL problems to consider. Each
problem has a predefined training set with equal class priors
(359, 385 and 620 bags per class), and a highly imbalanced test set
(64, 58 and 137 positive bags vs. 2K, 4K and 10K negative bags).1

We use five-fold cross-validation and report AUC both on the
cross-validation data and the results on a separate held-out test
set; see Fig. 7. This is a data set where the predefined training and
test sets differ considerably in terms of prior probabilities, and that
is why it is instructive to look at accuracies on both cross-
validation and test results. We see in Fig. 7(a) that on the cross-
validation data, NOR-SVM and MIL-SVM are more accurate than
SIL-SVM (these are large data sets and we could not run MILES on
them). There does not seem to be a significant difference between
NOR-SVM and MIL-SVM here.

On the test data, as we see in Fig. 7(b), again NOR-SVM and
MIL-SVM are more accurate than SIL-SVM, but here, NOR-SVM
seems better than MIL-SVM. We believe that this is an indication
that MIL-SVM trained on the training set does not generalize as

−10 −8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

10

0 20 40 60 80 100 120
0.4

0.5

0.6

0.7

0.8

0.9

1

No of bags

A
U

C

SIL−SVM
NOR−SVM
MIL−SVM
MILES

Fig. 5. Task 4: (a) Example data and (b) performances.

GM12878 K562 H1−hESC G0 K1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C

SIL−SVM
NOR−SVM
MIL−SVM
MILES

Fig. 6. Comparison on four different gene expression data sets.

1 These data sets are available for download in MATLAB format from http://
www.miproblems.org.
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well to the test set because it has fewer training data. Component
data set for example has 620 positive bags and 620 negative bags,
but 14,070 positive instances and 7,697 negative instances. The
instance-level classifier used by NOR-SVM is trained with an order
of magnitude more data and makes more robust decisions than
the trained bag-level classifier MIL-SVM. Note that we see such a
behavior also in Fig. 5(b); with 10 bags, NOR-SVM is more accurate
than MIL-SVM (and MILES).

6. Discussion and conclusions

The multiple-instance framework is used in a variety of
applications but without stringently checking its underlying
assumptions. As has previously been noted (see [6,19] for exam-
ple), the original MI assumption that “every positive bag contains
at least one positive instance” is rather restrictive and there exist
numerous scenarios where this assumption is not tenable. Our aim
is to contrast multiple-instance learning with the single-instance
case, to see when casting the problem in the MI framework is
useful, and when it is not necessary.

In their comparison of various MIL classifiers, Ray and Craven
[17] also studied the performance of standard instance-level
classifiers on MIL problems. They cite results from PAC learning
theory [20] for showing when instance-level algorithms can cope
with certain type of MIL problems successfully. They raise the
question of how good instance-level classifiers would generally
perform on such data sets, concluding that they do rather well,
even being the best on several of the problems considered. Though
they state that the success of the instance-level classifiers may be
due to the difference in nature between the instances in positive
and negative bags, they do not provide any further investigation
into this issue.

In this paper, we devise a synthetic setting where MI problems
of different complexities can be defined and we define four tasks
to compare instance-level and bag-level classifiers. We believe
that these tasks, which are simple to define and easy to visualize,
can be considered as canonical MI problems at different levels of
intra-bag dependency, corresponding to Weidmann's hierarchy,
and they can be used to measure the level of the discriminative
power of MI algorithms. Once such MI categories are defined, it
may be a more fruitful approach to propose new MI algorithms for
each category, rather than trying to come up with a MI algorithm
that can handle all the different MI categories.

We see that the noisy-or combination of instance-level deci-
sions can handle MI problems that a pure instance-level classifier
cannot learn, and also that a bag-level classifier using a bag-level
representation can handle one more level than the noisy-or
combiner. There is also a task that cannot be learned by the bag-
level classifier using a bag-level representation, which indicates
that there is a need for more powerful multiple-instance learners.

Still, as has already been noticed empirically in the literature
(see [8] for example) and as we also see on our two bioinformatics
applications, a pure instance-level classifier, or an instance-level
classifier combined with noisy-or, may sometimes be as accurate
or even more accurate than bag-level classifiers. Based on our
experimental results we believe that this may be due to a number
of reasons:

� Most MI problems actually are not that difficult. In terms of the
synthetic tasks we define, we believe that most are at the level
of Task 1 or 2. So in most MI problems, a relatively easy
approach, using a simple combination, e.g., using noisy-or, of
instance-level classifier works quite well. We see this for
example in the two bioinformatics applications we use.

� In a data set, there are many more instances than bags. So
when the data set is small, there may not be enough data to
train a bag-level classifier but an instance-level classifier may
learn better. Hence even though the underlying problem is
really an MI one (maybe at the level of Task 3 or higher), an
instance-level classifier (by itself or combined through noisy-
or) may work better, because it can be trained with more data.

� The MI assumption that “every positive bag contains at least
one positive instance” does not always hold. In a positive bag,
there may be many positive instances, or the nonpositive
instances in the positive bags may be quite different from the
negative instances in the negative bags. In such a case, the
instance-level classifier, either by itself or combined through
noisy-or, actually turns out to be quite accurate.

If these conditions hold, there is no need to cast the problem in the
MI framework or look for a bag-level representation or classifica-
tion. We believe that the MI approach is necessary when instances
provide only partial information and when no label can be
attached to any instance, that is, when one cannot say anything
about the positivity or negativity of individual instances. Only in
such a case, and only when we have enough bag-level data, one
should use a bag-level representation and a bag-level classifier.
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