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Multiclass Posterior Probability
Support Vector Machines
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Abstract—Tao et al. have recently proposed the posterior proba-
bility support vector machine (PPSVM) which uses soft labels de-
rived from estimated posterior probabilities to be more robust to
noise and outliers. Tao et al.’s model uses a window-based density
estimator to calculate the posterior probabilities and is a binary
classifier. We propose a neighbor-based density estimator and also
extend the model to the multiclass case. Our bias–variance analysis
shows that the decrease in error by PPSVM is due to a decrease in
bias. On 20 benchmark data sets, we observe that PPSVM obtains
accuracy results that are higher or comparable to those of canon-
ical SVM using significantly fewer support vectors.

Index Terms—Density estimation, kernel machines, multiclass
classification, support vector machines (SVMs).

I. INTRODUCTION

SUPPORT VECTOR MACHINE (SVM) is the optimal
margin linear discriminant trained from a sample of

independent and identically distributed instances

(1)

where is the -dimensional input and ; its label
in a two-class problem is if is a positive ( ) ex-
ample, and if is a negative example. The basic idea
behind SVM is to solve the following model:

(2)

s.t. (3)

which is a -soft margin algorithm where and are the weight
coefficients and bias term of the separating hyperplane, is a
predefined positive real number and are slack variables [1].
The first term of the objective function given in (2) ensures the
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regularization by minimizing the norm of the weight coeffi-
cients. The second term tries to minimize the classification er-
rors by using slack variables: A nonzero slack variable means
that the classifier introduced some error on the corresponding
instance. The constraint given in (3) is the separation inequality
which tries to put each instance on the correct side of the sepa-
rating hyperplane.

Once and are optimized, during test, the discriminant is
used to estimate the labels

(4)

and we choose the positive class if , and choose the
negative class if . This model is generalized to learn
nonlinear discriminants by using kernel functions, which corre-
spond to defining nonlinear basis functions to map to a new
space and learning a linear discriminant there.

Tao et al. [2] in their proposed posterior probability SVM
(PPSVM) modify the canonical SVM discussed previously to
utilize class probabilities instead of using hard labels.
These “soft labels” are calculated from estimated posterior
probabilities as

(5)

and Tao et al. rewrite (3) as

(6)

Note that (3) can also be rewritten as (6) with hard in place
of soft . In other words, are equal to when the posterior
probability estimates of (5) are 0 or 1.

The advantage of using soft labels derived from posterior
probabilites instead of hard class labels in (6) is twofold.
Because the posterior probability at a point is the combined
effect of a number of neighboring instances, first, it gives a
chance to correct the error introduced by wrongly labeled/noisy
points due to correctly labeled neighbors; this can be seen as
a smoothing of labels and, therefore, of the induced boundary.
Second, an instance which is surrounded by a number of in-
stances of the same class becomes redundant and this decreases
the number of stored supports.

This paper is organized as follows: The different approaches
for multiclass SVM are discussed in Section II. Section III con-
tains our proposed mathematical model for multiclass posterior
probability SVM. Experiments and results obtained are summa-
rized in Section IV and Section V concludes this paper.

1045-9227/$25.00 © 2007 IEEE
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II. MULTICLASS SVMS

In a multiclass problem, we have a sample as given in (1)
where an instance can belong to one of classes and the
class label is given as .

There are two basic approaches in the literature to solve
multiclass pattern recognition problems. In the multimachine
approach, the original multiclass problem is converted to a
number of independent, uncoupled two-class problems. In
the single-machine approach, the constraints due to having
multiple classes are coupled in a single formulation.

A. Multimachine Approaches

In one-versus-all, distinct binary classifiers are trained to
separate one class from all others [3], [4]. During test, the class
label which is obtained from the binary classifier with the max-
imum output value is assigned to a test instance. Each binary
classifier uses all training samples, and for each class, we have
an -variable quadratic programming problem to be solved.
There are two basic concerns about this approach. First, binary
classifiers are trained on many more negative examples than
positive ones. Second, real valued outputs of binary classifiers
may be in different scales and direct comparison between them
is not applicable [5].

Another approach is the all-versus-all or pairwise decompo-
sition [6], [7], where there are binary classifiers for
each possible pair of classes. Classifier count is generally much
larger than one-versus-all but when separating class from in-
stances of all classes except and are ignored and hence the
quadratic programs in each classifier are much smaller, making
it possible to train the system very fast. This approach has the
disadvantage of potential variance increase due to the small
training set size for each classifier [8]. The test procedure should
utilize a voting scheme to decide which class a test point be-
longs to, and a modified testing procedure to speed up by using
directed acyclic graph traversals instead of evaluating all

classifiers has also been proposed [9]. In [10], a binary
tree of SVMs is constructed in order to decrease the number of
binary classifiers needed, where the idea is to use the same pair-
wise classifier for more than a single pair. Total training time can
be greatly reduced in problems with large number of classes.

Both one-versus-all and pairwise methods are special cases of
the error-correcting output codes (ECOC) [11] which decom-
pose a multiclass problem to a set of two-class problems and
ECOC has also been used with SVM [12]. The main issue in
this approach is to construct a good ECOC matrix.

B. Single-Machine Approaches

A more natural way than using the multimachine approach
is to construct a decision function by considering all classes at
once, as proposed by Vapnik [1], Weston and Watkins [13], and
Bredensteiner and Bennett [14]

(7)

s.t.

(8)

where contains the index of the class belongs to and
and are the weight coefficients and bias term of separating
hyperplane for class . This gives the decision function

(9)

The objective function of (7) is also composed of the two
regularization and classification error terms. The regularization
term tries to minimize the norm of all separating hyperplanes
simultaneously. The classification errors for each class are
treated equally and their sum is added to the objective function.
There are also modifications to this approach by using different

values for errors of different classes according to some loss
criteria or prior probabilities. The constraint of (8) aims to place
each instance on the negative side of the separating hyperplane
for all classes except the one it belongs to.

The solution to this optimization problem can be found by
finding the saddle point of the Lagrangian dual. After writing
the Lagrangian dual, differentiating with respect to the decision
variables, we get

if
if

s.t.

(10)

This gives the decision function

(11)

The main disadvantage of this approach is the enormous size
of the resulting quadratic programs. For example, one-versus-all
method solves separate -variable quadratic problems, but the
formulation of (10) has variables.

In order to tackle such large quadratic problems, different
decomposition methods and optimization algorithms are pro-
posed for both two-class and multiclass SVMs. Sequential min-
imal optimization (SMO) is the most widely used decomposi-
tion algorithm for two-class SVMs [15]. Asymptotic conver-
gence proof of SMO and other SMO-type decomposition vari-
ants are discussed in [16]. For multiclass SVMs, Crammer and
Singer developed a mathematical model that reduces the vari-
able size from to and proposed an efficient algorithm to
solve the single-machine formulation [17].

Another possibility to decrease the training complexity is to
preselect a subset of training data as support vectors and solve
a smaller optimization problem; this is called a reduced SVM
(RSVM) [18]. Statistical analysis of RSVMs can be found in
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[19]. The same strategy can also be applied for multiclass prob-
lems in single-machine formulation to decrease the size of op-
timization problem.

III. PROPOSED MULTICLASS PPSVM MODEL

The multiclass extension to SVM [1], [13], [14] can also be
modified to include posterior probability estimates instead of
hard labels. The constraint of (8) tries to place each instance
on the correct side of each hyperplane with at least two-units
distance. In the canonical formulation, this comes from the fact
that the true class label is and the wrong class label is .

In the PPSVM formulation, the label of an instance for class
is defined as , and the required difference be-

tween instances on the two sides of the hyperplane becomes
. So, the constraint of (8) in

the primal formulation is replaced by the following constraint:

(12)

The objective function of (10) in the dual formulation be-
comes

(13)

Classical kernel trick can be applied by replacing
with in (10) and (13).

We show the difference of canonical and posterior probability
SVMs on a toy data set in Fig. 1. We see that the canonical
SVM stores the outliers as support vectors and this shifts the
induced boundary. With PPSVM, because the neighbors of the
outliers belong to a different class, the posterior probabilities
are small and the outliers are effectively cancelled resulting in
a reduction in bias (as will be discussed in Section IV-C); they
are not chosen as support vectors and, therefore, they do not
affect the boundary. Though this causes some training error, the
generalization is improved, and the number of support vectors
decreases from six to four.

Weston and Watkins [13] showed that a single-machine mul-
ticlass SVM optimization problem reduces to a classical two-
class SVM optimization problem for binary data sets. Using a
similar analogy, if we have two classes, (12) becomes

if

if

and the resulting optimization problem is equivalent to Tao et
al.’s [2] formulation in terms of the obtained solution.

Fig. 1. Separating hyperplanes (solid lines) and support vectors (filled points)
on a toy data set. Canonical SVM stores the outliers as support vectors which
shift the class boundary. PPSVM ignores the outliers which reduces bias and
leads to better generalization and fewer support vectors. (a) Canonical SVM.
(b) PPSVM.

IV. EXPERIMENTS AND RESULTS

A. Estimating the Posteriors

To be able to solve (13), we need to be able to estimate
. We can use any density estimator for

this purpose. We will report results with two methods, windows
method and -nearest neighbor method ( -NN). The advantage
of using such nonparametric methods, as opposed to a para-
metric approach of, for example, assuming Gaussian ,
is that they make less assumptions about the data, and hence,
their applicability is wider.

1) Windows Method: Tao et al.’s method [2], when general-
ized to multiple classes, estimates the posterior probability as

(14)
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That is, given input , we find all training instances that are
at most away and count the proportion belonging to class
among them. defines the size of the neighborhood and as such
is the smoothing parameter. We call this the windows method
and use a simple heuristic to determine : On the training set,
we calculate the average of the distance from each instance to
its nearest neighbor and name this . We use
in the experiments.

2) The -Nearest Neighbor Method: The correct value of
is data dependent and may be difficult to fine tune it on a new
data set. We also use the -NN estimator which is similar except
that instead of fixing a window width and checking how many
instances fall in there, we fix the number of neighbors as .
If among these , of them belong to class , the posterior
probability estimate is

(15)

We use in the experiments.

B. Kernels

The following three different kernel functions are used in this
paper:

1) linear kernel: ;
2) polynomial kernel of degree :

where ;
3) radial basis function (RBF) kernel with width :

where ,
with calculated as in the windows method.

C. Synthetic Data Sets

We use four synthetic data sets to illustrate the differences be-
tween canonical and posterior probability SVMs (Table I). Total
of 400 instances are generated for each case where 200 instances
are reserved for testing and the remaining part is divided into
two for training and validation. We use the validation set to op-
timize and the kernel and density estimator parameters. We
compare canonical and posterior probability SVMs in terms of
their accuracy and the number of support vectors stored; note
that the latter determines both the space complexity (number of
parameters stored) and the time complexity (number of kernel
calculations).

Table II shows the percent changes in accuracy and support
vector count of posterior probability SVM compared to the
canonical SVM on these four problems, using the two density
estimators and kernel types. We see that with the nonparametric
density estimators, windows, and -NN, PPSVMs achieve
greater accuracy than canonical SVM with fewer support
vectors.

In Fig. 2, we see how the boundary and the support vectors
change with the density estimator used by PPSVM compared
with the canonical SVM. PPSVM variants induce good class
boundaries storing much fewer support vectors. A small number
of instances is sufficient to generate correct posterior probabil-
ities in a large neighborhood effectively covering for a large
number of instances. In Fig. 3, we see how the boundary and the
support vectors change as of -NN is increased; the canonical

TABLE I
SYNTHETIC PROBLEMS USED IN THE EXPERIMENTS

TABLE II
PERCENT CHANGES IN ACCURACY AND CORRESPONDING SUPPORT VECTOR

COUNT OF PPSVM COMPARED TO CANONICAL SVM

SVM corresponds to -NN with . We see that as in-
creases, instances cover larger neighborhoods in the input space
and fewer support vectors suffice.

To see the reason of decrease in error with PPSVM, we do
a bias–variance analysis. We do simulations to see the effect
of using soft labels derived from posterior probabilities on the
bias–variance decomposition of error. On R4 of Table I, we
create 100 training sets and 50 test sets, composed of 200 and
1000 instances, respectively. Each training set is first divided
into two as training proper and validation sets and the best
is found on the validation set after training on the training set
proper for different values (2). After finding the best , the
whole training set is used for training the SVM and evaluation
is done on the test set.

To convert SVM outputs to posterior probabilities, we use the
softmax function (for trained models )
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Fig. 2. Separating hyperplanes (solid lines) and support vectors (filled points)
on R4 data set with linear kernel. Gray dashed lines show the Gaussians from
which the data are sampled and gray solid lines show the optimal Bayes’ dis-
criminant. We see that the PPSVM variants use much fewer support vectors
while inducing the correct boundaries. (a) Canonical SVM. (b) PPSVM with
windows method (r = r ). (c) PPSVM with k-NN (k = 3).

which we average to get the expected value

We use the bias–variance–noise decomposition of error given
by Breiman [20]

Bias

Variance

Noise (16)

where is the number of test instances, denotes the correct
class label ( ), denotes the mean
value of the estimated probabilities obtained from 100 SVMs
trained on training sets, and denotes the estimated class, i.e.,

. We repeat (16) 50 times on the 50 test
sets and look at average values to get smoother estimates.

We see in Fig. 4 that as we go from the canonical SVM
to PPSVM, it is the bias that decreases while variance does
not change. With PPSVM, increasing of the -NN density
estimator further decreases the bias. This is true also for in-
creasing with the windows method. Even with small or , the
nonparametric estimators return a smooth estimate that further
smoothing (by increasing or ) does not decrease variance;
using more instances makes the average estimate closer to the
real discriminant and, therefore, reduces bias.

D. Real Data Sets
We perform experiments on several two-class and multiclass

benchmark data sets from the University of California at Irvine
(UCI) Repository [21] and Statlog Collection [22] (Table III).

Given a data set, a random one-third is reserved as the test
set and then the remaining two-thirds is resampled using 5 2
cross validation to generate ten training and validation sets, with
stratification. These ten normalized folds are processed to ob-
tain posterior probability labels by the two density estimators
and used by PPSVM, whereas the canonical SVM uses the hard
labels. To solve the quadratic optimization problems, we use
CPLEX 9.1 C Callable Library. In each fold, the validation set
is used to optimize (by trying all values between and

in log scale), kernel type and parameters (linear, poly-
nomials of degree 2, 3, 4, 5, and RBF kernel with width ,

, , , and ), and for PPSVM, the parameters of
the density estimators ( -NN with , windows
with , , and ). The best configuration (the one that
has the highest average accuracy on the ten validation folds) is
used to train the final SVM on the whole two-thirds and its per-
formance (accuracy and support vector percentage) is measured
over the test set (the remaining one-third). So, for each data set,
we have ten validation sets and one test set results.

As examples, Figs. 5 and 6 show the effect of density estima-
tors on accuracy and support vector percentages for validation
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Fig. 3. Separating hyperplanes (solid lines) and support vectors (filled points) on R4 data set with polynomial kernel (b = 3 ). We see that as the neighborhood
gets larger, instances cover larger regions, and more instances become redundant, effectively decreasing the number of support vectors while still having a good
approximation of the boundary. (a) Canonical SVM. (b) PPSVM with k-NN (k = 3 ). (c) PPSVM with k-NN (k = 7 ). (d) PPSVM with k-NN (k = 11 ).

and test sets of spambase and glass. On spambase, which is
a two-class problem, we see that PPSVM uses fewer support
vectors and achieves higher accuracy both on validation and
test sets. The improvement in both complexity and accuracy
increases as the neighborhood ( of -NN or of windows)
increases. We see the same type of behavior on glass as well,
which has six classes. We see in the latter data set that with
windows density estimator with very large width, the accuracy
drops (and number of support vectors go up) indicating that it is
important to fine tune the density estimator for PPSVM to work
well.

On all 20 data sets, the comparison of results by canonical and
posterior probability SVM are given in Tables IV–VI. Table IV
shows our results on two-class data sets and Tables V and
VI show the results on multiclass data sets for the single-ma-
chine PPSVM and the multimachine PPSVM utilizing the
one-versus-all approach, respectively. In all three tables, for
the canonical SVM, we report the kernel type and parameter

that has the highest average accuracy on the validation folds,
its average accuracy and support vector percentage on the
validation set, and the accuracy and support vector count of
that model over the test set when it is trained over the whole
two-thirds. Similarly, for the PPSVM, we check for the best
kernel type, parameter, and the density estimator over the
validation set and report similarly its performance on validation
and test sets. Below the PPSVM results, we also report the
count of wins–ties–losses of PPSVM over canonical SVM
using different tests. To compare accuracies on the validation
folds, we use the 5 2 cross-validated (cv) paired test [23];
to compare accuracies over the test sets (there is a single value
for each), we use McNemar’s test. For the support vector
percentages, there is no test that can be used and we just
compare two values. Direct comparison compares averages
without checking for significance. The number of wins, ties,
and losses over ten at the bottom of the table is made bold if
the number of wins out of ten is significant using sign test.
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Fig. 6. Effect of the density estimation method over accuracy and support vector percentages for validation and test sets on glass with polynomial kernel (b = 4).
(a) The k-NN method. (b) Windows method.

TABLE III
BENCHMARK DATA SETS USED IN THE EXPERIMENTS

single-machine case, we see a decrease in the support vector
percentages without sacrificing the accuracy. Both single-ma-
chine and multimachine approaches have significantly higher
accuracy results on validation and test sets than the density
method used as a classifier. Note that the density method
used as a classifier (without the SVM that follows it) is not as
accurate as the canonical SVM, indicating that it is the SVM
part that is more important, and not the density estimation.

Looking at Tables V and VI , we see that single-machine and
multimachine approaches choose similar kernels and density
estimators for both canonical and posterior probability SVM.
Canonical SVM chooses the same (family) kernel for both ap-
proaches on five (eight) data sets, and PPSVM chooses the same
(family) kernel six (seven) times out of ten data sets. Wee also
see that single-machine and multimachine PPSVM use the same
(family) density estimator on four (six) data sets.

Table VII summarizes the comparison of performance results
of single-machine and multimachine approaches for the multi-

class case, where the wins are reported for the multimachine
approach. There does not seem to be a significant difference in
accuracy or support vector percentage between the two using
any test. As the only difference, we notice that the single-ma-
chine approach uses fewer support vectors on validation sets
according to Wilcoxon’s signed rank test. If we compare run-
ning times, we see that solving separate -variable quadratic
problems (multimachine) instead of solving one -variable
quadratic problem (single-machine) significantly decreases the
training time on validation and test sets for both canonical and
posterior probability SVM. On the other hand, the single-ma-
chine approach has significantly less testing time than the mul-
timachine approach for canonical SVM but the differences are
not significant for PPSVM.

To summarize, we see that on both validation folds and test
sets, PPSVM is as accurate as canonical SVM for both two-
class and multiclass problems. Wilcoxon’s signed rank test finds
that PPSVM has higher accuracy on validation folds of two-
class problems. PPSVM uses fewer support vectors on valida-
tion folds and test sets of multiclass data sets for both single-ma-
chine and multimachine approaches; this decrease is significant
according to both 5 2 cv paired test and Wilcoxon’s signed
rank test. The number of support vectors seems also to decrease
on two-class problems though the difference is not statistically
significant (at 0.95 confidence; it would have been significant
using the Wilcoxon’s signed rank test had the confidence been
0.85). We also see that PPSVM uses the -NN estimator in many
cases proving that it is an accurate density estimation method
that can be used along with the windows-based estimator. We
believe that more than the improvement in accuracy, it is the
decrease in the percentage of stored support vectors that is the
main advantage of the PPSVM. On many multiclass data sets,
the percentage is decreased to half or one-third of what is stored
by the canonical SVM.

V. CONCLUSION

This paper extends the posterior probability SVM idea to the
multiclass case. The effect of outliers and noise in the data is
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TABLE IV
COMPARISON BETWEEN CANONICAL SVM AND POSTERIOR PROBABILITY SVM ON TWO-CLASS DATA SETS

TABLE V
COMPARISON BETWEEN CANONICAL SVM AND POSTERIOR PROBABILITY SVM ON MULTICLASS DATA SETS FOR SINGLE-MACHINE CASE

TABLE VI
COMPARISON BETWEEN CANONICAL SVM AND POSTERIOR PROBABILITY SVM ON MULTICLASS DATA SETS FOR MULTIMACHINE CASE

TABLE VII
COMPARISON BETWEEN SINGLE-MACHINE SVM AND MULTIMACHINE (ONE-VERSUS-ALL) SVM
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diminished by considering soft labels as inputs to the SVM
algorithm instead of hard labels and the calculated
discriminants become more robust. Our bias–variance analysis
shows that the effect of PPSVM is on decreasing the bias rather
than variance. Experiments on 20 data sets, both two-class and
multiclass, show that PPSVM achieves similar accuracy results
storing fewer support vectors. The decrease in the support vector
count decreases both the space complexity in that fewer data
need to be stored and also the time complexity in that fewer
kernel calculations are necessary in computing the discriminant.
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