
Pattern Recognition 46 (2013) 795–807
Contents lists available at SciVerse ScienceDirect
Pattern Recognition
0031-32

http://d

n Corr

E-m

alpaydin
journal homepage: www.elsevier.com/locate/pr
Localized algorithms for multiple kernel learning
Mehmet Gönen n, Ethem Alpaydın
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a b s t r a c t

Instead of selecting a single kernel, multiple kernel learning (MKL) uses a weighted sum of kernels

where the weight of each kernel is optimized during training. Such methods assign the same weight to

a kernel over the whole input space, and we discuss localized multiple kernel learning (LMKL) that is

composed of a kernel-based learning algorithm and a parametric gating model to assign local weights

to kernel functions. These two components are trained in a coupled manner using a two-step

alternating optimization algorithm. Empirical results on benchmark classification and regression data

sets validate the applicability of our approach. We see that LMKL achieves higher accuracy compared

with canonical MKL on classification problems with different feature representations. LMKL can also

identify the relevant parts of images using the gating model as a saliency detector in image recognition

problems. In regression tasks, LMKL improves the performance significantly or reduces the model

complexity by storing significantly fewer support vectors.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Support vector machine (SVM) is a discriminative classifier
based on the theory of structural risk minimization [33]. Given
a sample of independent and identically distributed training
instances fðxi,yiÞg

N
i ¼ 1, where xiARD and yiAf�1,þ1g is its class

label, SVM finds the linear discriminant with the maximum
margin in the feature space induced by the mapping function
Fð�Þ. The discriminant function is

f ðxÞ ¼/w,FðxÞSþb

whose parameters can be learned by solving the following quad-
ratic optimization problem:

min:
1

2
JwJ2

2þC
XN

i ¼ 1

xi

w:r:t: wARS, nARN
þ , bAR

s:t: yið/w,FðxiÞSþbÞZ1�xi 8i

where w is the vector of weight coefficients, S is the dimension-
ality of the feature space obtained by Fð�Þ, C is a predefined
positive trade-off parameter between model simplicity and clas-
sification error, n is the vector of slack variables, and b is the bias
term of the separating hyperplane. Instead of solving this opti-
mization problem directly, the Lagrangian dual function enables
ll rights reserved.

,

us to obtain the following dual formulation:

max:
XN

i ¼ 1

ai�
1

2

XN

i ¼ 1

XN

j ¼ 1

aiaiyiyjkðxi,xjÞ

w:r:t: aA ½0,C�N

s:t:
XN

i ¼ 1

aiyi ¼ 0

where a is the vector of dual variables corresponding to each
separation constraint and the obtained kernel matrix of kðxi,xjÞ ¼

/FðxiÞ,FðxjÞS is positive semidefinite. Solving this, we get w¼PN
i ¼ 1 aiyiFðxiÞ and the discriminant function can be written as

f ðxÞ ¼
XN

i ¼ 1

aiyikðxi,xÞþb:

There are several kernel functions successfully used in the
literature such as the linear kernel (kL), the polynomial kernel (kP),
and the Gaussian kernel (kG)

kLðxi,xjÞ ¼/xi,xjS

kPðxi,xjÞ ¼ ð/xi,xjSþ1Þq qAN

kGðxi,xjÞ ¼ expð�Jxi�xjJ
2
2=s2Þ sARþ þ :

There are also kernel functions proposed for particular applications,
such as natural language processing [24] and bioinformatics [31].

Selecting the kernel function kð�,�Þ and its parameters (e.g., q or s)
is an important issue in training. Generally, a cross-validation
procedure is used to choose the best performing kernel function
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among a set of kernel functions on a separate validation set
different from the training set. In recent years, multiple kernel
learning (MKL) methods are proposed, where we use multiple
kernels instead of selecting one specific kernel function and its
corresponding parameters

kZðxi,xjÞ ¼ f Zðfkmðx
m
i ,xm

j Þg
P
m ¼ 1Þ ð1Þ

where the combination function f Zð�Þ can be a linear or a non-
linear function of the input kernels. Kernel functions, fkmð�,�Þg

P
m ¼ 1,

take P feature representations (not necessarily different) of data
instances, where xi ¼ fx

m
i g

P
m ¼ 1, xm

i ARDm , and Dm is the dimen-
sionality of the corresponding feature representation.

The reasoning is similar to combining different classifiers:
Instead of choosing a single kernel function and putting all our
eggs in the same basket, it is better to have a set and let an
algorithm do the picking or combination. There can be two uses
of MKL: (i) Different kernels correspond to different notions
of similarity and instead of trying to find which works best, a
learning method does the picking for us, or may use a combina-
tion of them. Using a specific kernel may be a source of bias, and
in allowing a learner to choose among a set of kernels, a better
solution can be found. (ii) Different kernels may be using inputs
coming from different representations possibly from different
sources or modalities. Since these are different representations,
they have different measures of similarity corresponding to different
kernels. In such a case, combining kernels is one possible way to
combine multiple information sources.

Since their original conception, there is significant work on the
theory and application of multiple kernel learning. Fixed rules use
the combination function in (1) as a fixed function of the kernels,
without any training. Once we calculate the combined kernel, we
train a single kernel machine using this kernel. For example, we
can obtain a valid kernel by taking the summation or multi-
plication of two kernels as follows [10]:

kZðxi,xjÞ ¼ k1ðx
1
i ,x1

j Þþk2ðx
2
i ,x2

j Þ

kZðxi,xjÞ ¼ k1ðx
1
i ,x1

j Þk2ðx
2
i ,x2

j Þ:

The summation rule is applied successfully in computational
biology [27] and optical digit recognition [25] to combine two
or more kernels obtained from different representations.

Instead of using a fixed combination function, we can have a
function parameterized by a set of parameters H and then we
have a learning procedure to optimize H as well. The simplest
case is to parameterize the sum rule as a weighted sum

kZðxi,xj9H¼ gÞ ¼
XP

m ¼ 1

Zmkmðx
m
i ,xm

j Þ

with ZmAR. Different versions of this approach differ in the way
they put restrictions on the kernel weights [22,4,29,19]. For
example, we can use arbitrary weights (i.e., linear combination),
nonnegative kernel weights (i.e., conic combination), or weights
on a simplex (i.e., convex combination). A linear combination
may be restrictive and nonlinear combinations are also possible
[23,13,8]; our proposed approach is of this type and we will
discuss these in more detail later.

We can learn the kernel combination weights using a quality
measure that gives performance estimates for the kernel matrices
calculated on training data. This corresponds to a function that
assigns weights to kernel functions

g¼ gZðfkmðx
m
i ,xm

j Þg
P
m ¼ 1Þ:

The quality measure used for determining the kernel weights could
be ‘‘kernel alignment’’ [21,22] or another similarity measure such as
the Kullback–Leibler divergence [36]. Another possibility inspired
from ensemble and boosting methods is to iteratively update the
combined kernel by adding a new kernel as training continues [5,9].
In a trained combiner parameterized by H, if we assume H to
contain random variables with a prior, we can use a Bayesian
approach. For the case of a weighted sum, we can, for example,
have a prior on the kernel weights [11,12,28]. A recent survey of
multiple kernel learning algorithms is given in [18].

This paper is organized as follows: We formulate our proposed
nonlinear combination method localized MKL (LMKL) with detailed
mathematical derivations in Section 2. We give our experimental
results in Section 3 where we compare LMKL with MKL and single
kernel SVM. In Section 4, we discuss the key properties of our
proposed method together with related work in the literature. We
conclude in Section 5.
2. Localized multiple kernel learning

Using a fixed unweighted or weighted sum assigns the same
weight to a kernel over the whole input space. Assigning different
weights to a kernel in different regions of the input space may
produce a better classifier. If the data has underlying local structure,
different similarity measures may be suited in different regions. We
propose to divide the input space into regions using a gating function
and assign combination weights to kernels in a data-dependent
way [13]; in the neural network literature, a similar architecture is
previously proposed under the name ‘‘mixture of experts’’ [20,3]. The
discriminant function for binary classification is rewritten as

f ðxÞ ¼
XP

m ¼ 1

Zmðx9VÞ/wm,Fmðx
mÞSþb ð2Þ

where Zmðx9VÞ is a parametric gating model that assigns a weight to
FmðxmÞ as a function of x and V is the matrix of gating model
parameters. Note that unlike in MKL, in LMKL, it is not obligatory to
combine different feature spaces; we can also use multiple copies of
the same feature space (i.e., kernel) in different regions of the input
space and thereby obtain a more complex discriminant function. For
example, as we will see shortly, we can combine multiple linear
kernels to get a piecewise linear discriminant.

2.1. Gating models

In order to assign kernel weights in a data-dependent way, we
use a gating model. Originally, we investigated the softmax gating
model [13]

Zmðx9VÞ ¼
expð/vm,xGSþvm0ÞPP

h ¼ 1 expð/vh,xGSþvh0Þ
8m ð3Þ

where xGARDG is the representation of the input instance in the
feature space in which we learn the gating model and VARP�ðDGþ1Þ

contains the gating model parameters fvm,vm0g
P
m ¼ 1. The softmax

gating model uses kernels in a competitive manner and generally a
single kernel is active for each input.

It is possible to use other gating models and below, we discuss
two new ones, namely sigmoid and Gaussian. The gating model
defines the shape of the region of expertise of the kernels. The
sigmoid function allows multiple kernels to be used in a coop-
erative manner

Zmðx9VÞ ¼ 1=ð1þexpð�/vm,xGS�vm0ÞÞ 8m: ð4Þ

Instead of parameterizing the boundaries of the local regions
for kernels, we can also parameterize their centers and spreads
using Gaussian gating

Zmðx9VÞ ¼
expð�JxG�lmJ

2
2=s2

mÞPP
h ¼ 1 expð�JxG�lhJ

2
2=s2

hÞ
8m ð5Þ
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where VARP�ðDGþ1Þ contains the means, flmg
P
m ¼ 1, and the

spreads, fsmg
P
m ¼ 1; we do not experiment any further with this

in this current work.
If we combine the same feature representation with different

kernels (i.e., x¼ x1 ¼ x2 ¼ . . . ¼ xP), we can simply use it also in
the gating model (i.e., xG ¼ x) [13]. If we combine different feature
representations with the same kernel, the gating model repre-
sentation xG can be one of the representations fxmgPm ¼ 1, a
concatenation of a subset of them, or a completely different
representation. In some application areas such as bioinformatics
where data instances may appear in a non-vectorial format such
as sequences, trees, and graphs, where we can calculate kernel
matrices but cannot represent the data instances as x vectors
directly, we may use an empirical kernel map [31, Chapter 2],
which corresponds to using the kernel values between x and
training points as the feature vector for x, and define xG in terms
of the kernel values [15]

xG ¼ ½kGðx1,xÞ kGðx2,xÞ � � � kGðxN ,xÞ�>

where the gating kernel, kGð�,�Þ, can be one of the combined
kernels, fkmð�,�Þg

P
m ¼ 1, a combination of them, or a completely

different kernel used only for determining the gating boundaries.

2.2. Mathematical model

Using the discriminant function in (2) and regularizing the
discriminant coefficients of all the feature spaces together, LMKL
obtains the following optimization problem:

min:
1

2

XP

m ¼ 1

JwmJ
2
2þC

XN

i ¼ 1

xi

w:r:t: wmARSm , nARN
þ , VARP�ðDGþ1Þ, bAR

s:t: yif ðxiÞZ1�xi 8i ð6Þ

where nonconvexity is introduced to the model due to the non-
linearity formed using the gating model outputs in the separation
constraints. Instead of trying to solve (6) directly, we can use a
two-step alternating optimization algorithm [13], also used for
choosing kernel parameters [6] and obtaining Zm parameters of
MKL [29]. This procedure consists of two basic steps: (i) solving
the model with a fixed gating model, and, (ii) updating the gating
model parameters with the gradients calculated from the current
solution.

Note that if we fix the gating model parameters, the optimiza-
tion problem (6) becomes convex and we can find the correspond-
ing dual optimization problem using duality. For a fixed V, we
obtain the Lagrangian dual of the primal problem (6) as follows:

LDðVÞ ¼
1

2

XP

m ¼ 1

JwmJ
2
2þC

XN

i ¼ 1

xi�
XN

i ¼ 1

bixi�
XN

i ¼ 1

ai yif ðxiÞ�1þxi

� �
and taking the derivatives of LDðVÞ with respect to the primal
variables gives

@LDðVÞ

@wm
¼ 0) wm ¼

XN

i ¼ 1

aiyiZmðxi9VÞFmðx
m
i Þ 8m

@LDðVÞ

@b
¼ 0)

XN

i ¼ 1

aiyi ¼ 0

@LDðVÞ

@xi
¼ 0) C ¼ aiþbi 8i: ð7Þ

From LDðVÞ and (7), the dual formulation is obtained as

max: JðVÞ ¼
XN

i ¼ 1

ai�
1

2

XN

i ¼ 1

XN

j ¼ 1

aiaiyiyjkZðxi,xjÞ

w:r:t: aA ½0,C�N
s:t:
XN

i ¼ 1

aiyi ¼ 0 ð8Þ

where the locally combined kernel function is defined as

kZðxi,xjÞ ¼
XP

m ¼ 1

Zmðxi9VÞkmðx
m
i ,xm

j ÞZmðxj9VÞ:

Note that if the input kernel matrices are positive semidefinite, the
combined kernel matrix is also positive semidefinite by construc-
tion. Locally combined kernel matrix is the summation of P

matrices obtained by pre- and post-multiplying each kernel matrix
by the vector that contains gating model outputs for this kernel.
Using the support vector coefficients obtained from (8) and the
gating model parameters, we obtain the following discriminant
function:

f ðxÞ ¼
XN

i ¼ 1

aiyikZðxi,xÞþb: ð9Þ

For a given V, the gradients of the objective function in (8) are
equal to the gradients of the objective function in (6) due to
strong duality, which guarantees that, for a convex quadratic
optimization, the dual problem has the same optimum value as
its primal problem. These gradients are used to update the gating
model parameters at each step.

2.3. Training with alternating optimization

We can find the gradients of JðVÞ with respect to the para-
meters of all three gating models. The gradients of (8) with
respect to the parameters of the softmax gating model (3) are

@JðVÞ

@vm
¼�

1

2

XN

i ¼ 1

XN

j ¼ 1

XP

h ¼ 1

U j
i Zhðxi9VÞkhðx

h
i ,xh

j ÞZhðxj9VÞ

�ðxGi ðd
h
m�Zmðxi9VÞÞþxGj ðd

h
m�Zmðxj9VÞÞÞ

@JðVÞ

@vm0
¼�

1

2

XN

i ¼ 1

XN

j ¼ 1

XP

h ¼ 1

U j
i Zhðxi9VÞkhðx

h
i ,xh

j ÞZhðxj9VÞ

�ðdh
m�Zmðxi9VÞþd

h
m�Zmðxj9VÞÞ

where U j
i ¼ aiajyiyj, and dh

m is 1 if m¼h and 0 otherwise. The same
gradients with respect to the parameters of the sigmoid gating
model (4) are

@JðVÞ

@vm
¼�

1

2

XN

i ¼ 1

XN

j ¼ 1

U j
i Zmðxi9VÞkmðx

m
i ,xm

j ÞZmðxj9VÞ

�ðxGi ð1�Zmðxi9VÞÞþxGj ð1�Zmðxj9VÞÞÞ

@JðVÞ

@vm0
¼�

1

2

XN

i ¼ 1

XN

j ¼ 1

U j
i Zmðxi9VÞkmðx

m
i ,xm

j ÞZmðxj9VÞ

�ð1�Zmðxi9VÞþ1�Zmðxj9VÞÞ

where the gating model parameters for a kernel function are
updated independently. We can also find the gradients with respect
to the means and the spreads of the Gaussian gating model (5) are

@JðVÞ

@lm

¼�
XN

i ¼ 1

XN

j ¼ 1

XP

h ¼ 1

U j
i Zhðxi9VÞkhðx

h
i ,xh

j ÞZhðxj9VÞ

�ððxGi �lmÞðd
h
m�Zmðxi9VÞÞþðx

G
j �lmÞðd

h
m�Zmðxj9VÞÞÞ=s2

m

@JðVÞ

@sm
¼�

XN

i ¼ 1

XN

j ¼ 1

XP

h ¼ 1

U j
i Zhðxi9VÞkhðx

h
i ,xh

j ÞZhðxj9VÞ

�ðJxGi �lmJ
2
2ðd

h
m�Zmðxi9VÞÞþJxGj �lmJ

2
2ðd

h
m�Zmðxj9VÞÞÞ=s3

m:

The complete algorithm of our proposed LMKL is summarized in
Algorithm 1. Previously, we used to perform a predetermined number
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of iterations [13]; now, we calculate a step size at each iteration using
a line search method and catch the convergence of the algorithm by
observing the change in the objective function value of (8). This
allows converging to a better solution and hence a better learner. Our
algorithm is guaranteed to converge in a finite number of iterations.
At each iteration, we pick the step size using a line search method
and there is no chance of increasing the objective function value.
After a finite number of iterations, our algorithm converges to one of
local optima due to nonconvexity of the primal problem in (6).

Algorithm 1. Localized Multiple Kernel Learning (LMKL).
1: Initialize Vð0Þ randomly
2: repeat

3: Calculate KðtÞZ ¼ fkZðxi,xjÞg
N
i,j ¼ 1 using VðtÞ

4: Solve kernel machine with KðtÞZ

5: Calculate descent direction
@JðVÞ

@V
6: Determine step size, DðtÞ, using a line search method

7: Vðtþ1Þ
( VðtÞ�DðtÞ

@JðVÞ

@V
8: until convergence
2.4. Extensions to other algorithms

We extend our proposed LMKL framework for two-class
classification [13] to other kernel-based algorithms, namely sup-
port vector regression (SVR) [16], multiclass SVM (MCSVM), and
one-class SVM (OCSVM). Note that any kernel machine that has
a hyperplane-based decision function can be localized by replac-
ing /w,FðxÞS with

PP
m ¼ 1 Zmðx9VÞ/wm,FmðxmÞS and deriving the

corresponding update rules.

2.4.1. Support vector regression

We can also apply the localized kernel idea to E-tube SVR [16].
The decision function is rewritten as

f ðxÞ ¼
XP

m ¼ 1

Zmðx9VÞ/wm,Fmðx
mÞSþb

and the modified primal optimization problem is

min:
1

2

XP

m ¼ 1

JwmJ
2
2þC

XN

i ¼ 1

ðxþi þx
�

i Þ

w:r:t: wmARSm , nþ ARN
þ , n�ARN

þ , VARP�ðDGþ1Þ, bAR

s:t: Eþxþi Zyi�f ðxiÞ 8i

Eþx�i Z f ðxiÞ�yi 8i

where fnþ ,n�g are the vectors of slack variables and E is the width
of the regression tube. For a given V, the corresponding dual
formulation is

max: JðVÞ ¼
XN

i ¼ 1

yiðaþi �a
�
i Þ�E

XN

i ¼ 1

ðaþi þa
�
i Þ

�
1

2

XN

i ¼ 1

XN

j ¼ 1

ðaþi �a
�
i Þða

þ

j �a
�
j ÞkZðxi,xjÞ

w:r:t: aþ A ½0,C�N , a�A ½0,C�N

s:t:
XN

i ¼ 1

ðaþi �a
�
i Þ ¼ 0

and the resulting decision function is

f ðxÞ ¼
XN

i ¼ 1

ðaþi �a
�
i ÞkZðxi,xÞþb:
The same learning algorithm given for two-class classification
problems can be applied to regression problems by simply replacing
U j

i in gradient-descent of the gating model (see Section 2.3) with
ðaþi �a

�
i Þða

þ

j �a
�
j Þ.

2.4.2. Multiclass support vector machine

In a multiclass classification problem, a data instance can
belong to one of K classes and the class label is given as
yiAf1,2, . . . ,Kg. There are two basic approaches in the literature
to solve multiclass problems. In the multimachine approach, the
original multiclass problem is converted to a number of indepen-
dent, uncoupled two-class problems. In the single-machine
approach, the constraints due to having multiple classes are
coupled in a single formulation [33].

We can easily apply LMKL to the multimachine approach by
solving (8) for each two-class problem separately. In such a case,
we obtain different gating models parameters and hence, different
kernel weighing strategies for each of the problems. Another
possibility is to solve these uncoupled problems separately but learn
a common gating model; a similar approach is used for obtaining
common kernel weights in MKL for multiclass problems [29].

For the single-machine approach, for class l, we write the
discriminant function as follows:

f l
ðxÞ ¼

XP

m ¼ 1

Zmðx9VÞ/wl
m,Fmðx

mÞSþbl:

The modified primal optimization problem is

min:
1

2

XP

m ¼ 1

XK

l ¼ 1

Jwl
mJ

2
2þC

XN

i ¼ 1

XK

l ¼ 1

xl
i

w:r:t: wl
mARSm , nlARN

þ , VARP�ðDGþ1Þ, blAR

s:t: f yi ðxiÞ�f l
ðxiÞZ2�xl

i 8ði,layiÞ

xyi

i ¼ 0 8i:

We can obtain the dual formulation for a given V by following the
same derivation steps:

max: JðVÞ ¼ 2
XN

i ¼ 1

XK

l ¼ 1

al
i�

1

2

XN

i ¼ 1

XN

j ¼ 1

dyj
yi

AiAjkZðxi,xjÞ

þ
1

2

XN

i ¼ 1

XN

j ¼ 1

XK

l ¼ 1

al
ið2a

yi

j �a
l
jÞkZðxi,xjÞ

w:r:t: alARN
þ

s:t:
XN

i ¼ 1

al
i�
XN

i ¼ 1

dl
yi

Ai ¼ 0 8l

ð1�dl
yi
ÞCZal

iZ0 8ði,lÞ

where Ai ¼
PK

l ¼ 1 al
i. The resulting discriminant functions that use

the locally combined kernel function are given as

f l
ðxÞ ¼

XN

i ¼ 1

ðdl
yi

Ai�al
iÞkZðxi,xÞþbl:

U j
i should be replaced with ðdyj

yi
AiAj�

PK
l ¼ 1 al

ið2a
yi

j �a
l
jÞÞ in learning

the gating model parameters for multiclass classification problems.

2.4.3. One-class support vector machine

OCSVM is a discriminative method proposed for novelty detection
problems [30]. The task is to learn the smoothest hyperplane that
puts most of the training instances to one side of the hyperplane
while allowing other instances remaining on the other side with a
cost. In the localized version, we rewrite the discriminant function as

f ðxÞ ¼
XP

m ¼ 1

Zmðx9VÞ/wm,Fmðx
mÞSþb,
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and the modified primal optimization problem is

min:
1

2

XP

m ¼ 1

JwmJ
2
2þC

XN

i ¼ 1

xiþb

w:r:t: wmARSm , nARN
þ , VARP�ðDGþ1Þ, bAR

s:t: f ðxiÞþxiZ0 8i:

For a given V, we obtain the following dual optimization problem:

max: JðVÞ ¼�
1

2

XN

i ¼ 1

XN

j ¼ 1

aiajkZðxi,xjÞ

w:r:t: aA ½0,C�N

s:t:
XN

i ¼ 1

ai ¼ 1

and the resulting discriminant function is

f ðxÞ ¼
XN

i ¼ 1

aikZðxi,xÞþb:

In the learning algorithm, U j
i should be replaced with aiaj

when calculating the gradients with respect to the gating model
parameters.
3. Experiments

In this section, we report empirical performance of LMKL
for classification and regression problems on several data sets and
compare LMKL with SVM, SVR, and MKL (using the linear formulation
of [4]). We use our own implementations1 of SVM, SVR, MKL, and
LMKL written in MATLAB and the resulting optimization problems
for all these methods are solved using the MOSEK optimization
software [26].

Except otherwise stated, our experimental methodology is as
follows: A random one-third of the data set is reserved as the test
set and the remaining two-thirds is resampled using 5�2 cross-
validation to generate ten training and validation sets, with
stratification (i.e., preserving class ratios) for classification pro-
blems. The validation sets of all folds are used to optimize C by
trying values {0.01, 0.1, 1, 10, 100} and for regression problems, E,
the width of the error tube. The best configuration (measured as
the highest average classification accuracy or the lowest mean
square error (MSE) for regression problems) on the validation
folds is used to train the final classifiers/regressors on the training
folds and their performance is measured over the test set. We
have 10 test set results, and we report their averages and
standard deviations, as well as the percentage of instances stored
as support vectors and the total training time (in seconds)
including the cross-validation. We use the 5�2 cv paired F test
for comparison [2]. In the experiments, we normalize the kernel
matrices to unit diagonal before training.

3.1. Classification experiments

3.1.1. Illustrative classification problem

In order to illustrate our proposed algorithm, we use the toy data
set GAUSS4 [13] consisting of 1200 data instances generated from four
Gaussian components (two for each class) with the following prior
probabilities, mean vectors and covariance matrices:

p11 ¼ 0:25 m11 ¼
�3:0

þ1:0

 !
S11 ¼

0:8 0:0

0:0 2:0

� �
1 Available at http://www.cmpe.boun.edu.tr/�gonen/lmkl.
p12 ¼ 0:25 m12 ¼
þ1:0

þ1:0

 !
S12 ¼

0:8 0:0

0:0 2:0

� �

p21 ¼ 0:25 m21 ¼
�1:0

�2:2

� �
S21 ¼

0:8 0:0

0:0 4:0

� �

p22 ¼ 0:25 m22 ¼
þ3:0

�2:2

� �
S22 ¼

0:8 0:0

0:0 4:0

� �

where data instances from the first two components are labeled as
positive and others are labeled as negative.

First, we train both MKL and LMKL with softmax gating to
combine a linear kernel, kL, and a second-degree polynomial kernel,
kP (q¼2). Fig. 1(b) shows the classification boundaries calculated
and the support vectors stored on one of the training folds by
MKL that assigns combination weights 0.32 and 0.68 to kL and kP,
respectively. We see that using the kernel matrix obtained by
combining kL and kP with these weights, we do not achieve a good
approximation to the optimal Bayes’ boundary. As we see in
Fig. 1(c), LMKL divides the input space into two regions and uses
the polynomial kernel to separate one component from two others
quadratically in one region and the linear kernel for the other
component in the other region. We see that we get a very good
approximation of the optimal Bayes’ boundary. The softmax func-
tion in the gating model achieves a smooth transition between the
two kernels. The superiority of the localized approach is also
apparent in the smoothness of the fit that uses fewer support
vectors: MKL achieves 90.9570.61 per cent average test accuracy
by storing 38.2372.34 per cent of training instances as support
vectors, whereas LMKL achieves 91.8370.24 per cent average test
accuracy by storing 25.1370.91 per cent support vectors.

With LMKL, we can also combine multiple copies of the same
kernel, as shown in Fig. 1(d), which shows the classification and
gating model boundaries of LMKL using three linear kernels and
approximates the optimal Bayes’ boundary in a piecewise linear
manner. For this configuration, LMKL achieves 91.7870.55 per
cent average test accuracy by storing 23.8371.20 per cent support
vectors. Instead of using complex kernels such as polynomial
kernels of high-degree or the Gaussian kernel, local combination
of simple kernels (e.g., linear or low-degree polynomial kernels) can
produce accurate classifiers and avoid overfitting. Fig. 2 shows the
average test accuracies, support vector percentages, and training
times with one standard deviation for LMKL with different number
of linear kernels. We see that even if we provide more kernels than
needed, LMKL uses only as many support vectors as required and
does not overfit. LMKL obtains nearly the same average test accura-
cies and support vector percentages with three or more linear
kernels. We also see that the training time of LMKL is increasing
linearly with increasing number of kernels.

3.1.2. Combining multiple feature representations of benchmark

data sets

We compare SVM, MKL, and LMKL in terms of classification
performance, model complexity (i.e., stored support vector percen-
tage), and training time. We train SVMs with linear kernels
calculated on each feature representation separately. We also train
an SVM with a linear kernel calculated on the concatenation of all
feature representations, which is referred to as ALL. MKL and LMKL
combine linear kernels calculated on each feature representation.
LMKL uses a single feature representation or the concatenation of
all feature representations in the gating model. We use both
softmax and sigmoid gating models in our experiments.

We perform experiments on the Multiple Features (MULTIFEAT)
digit recognition data set2 from the UCI Machine Learning Repository,
2 Available at http://archive.ics.uci.edu/ml/datasets/MultipleþFeatures.

http://www.cmpe.boun.edu.tr/~gonen/lmkl
http://www.cmpe.boun.edu.tr/~gonen/lmkl
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
http://archive.ics.uci.edu/ml/datasets/Multiple+Features
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Fig. 1. MKL and LMKL solutions on the GAUSS4 data set. (a) The dashed ellipses show the Gaussians from which data are sampled and the solid line shows the optimal

Bayes’ discriminant. (b)–(d) The solid lines show the discriminants learned. The circled data points represent the support vectors stored. For LMKL solutions, the dashed

lines shows the gating boundaries, where the gating model outputs of neighboring kernels are equal. (a) GAUSS4 data set. (b) MKL with (kL-kP). (c) LMKL with (kL-kP). (d)

LMKL with (kL-kL-kL).
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Fig. 2. The average test accuracies, support vector percentages, and training times on the GAUSS4 data set obtained by LMKL with multiple copies of linear kernels and

softmax gating.
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composed of six different data representations for 2000 handwritten
numerals. The properties of these feature representations are sum-
marized in Table 1. A binary classification problem is generated from
the MULTIFEAT data set to separate small (‘0’–‘4’) digits from large
(‘5’–‘9’) digits. We use the concatenation of all feature representations
in the gating model for this data set.

Table 2 lists the classification results on the MULTIFEAT data set
obtained by SVM, MKL, and LMKL. We see that SVM (ALL) is
significantly more accurate than the best SVM with single feature
representation, namely SVM (FAC), but with a significant increase
in the number of support vectors. MKL is as accurate as SVM (ALL)
but stores significantly more support vectors. LMKL with softmax
gating is as accurate as SVM (ALL) using significantly fewer
support vectors. LMKL with sigmoid gating is significantly more
accurate than MKL, SVM (ALL), and single kernel SVMs. It stores
Table 1
Multiple feature representations in the MULTIFEAT data set.

Name Dimension Data source

FAC 216 Profile correlations

FOU 76 Fourier coefficients of the shapes

KAR 64 Karhunen–Lo�eve coefficients

MOR 6 Morphological features

PIX 240 Pixel averages in 2�3 windows

ZER 47 Zernike moments

Table 2
Classification results on the MULTIFEAT data set.

Method Test accuracy Support vector Training time (s)

SVM (FAC) 94.9770.87 17.9370.91 5.4270.20

SVM (FOU) 90.5471.11 28.9071.69 5.4770.26

SVM (KAR) 88.1370.73 33.6271.31 5.5870.56

SVM (MOR) 69.6170.14 61.9070.49 6.5070.65

SVM (PIX) 89.4270.65 46.3571.64 5.7170.62

SVM (ZER) 89.1270.63 26.2771.67 5.2870.35

SVM (ALL) 97.6970.44 23.3671.15 3.6570.32

MKL 97.4070.37 32.5970.82 38.9073.83

LMKL (softmax) 97.6970.44 15.0671.03 5568.5171590.39

LMKL (sigmoid) 98.5870.41 15.2770.92 1639.037278.17

LMKL (6 FAC and sigmoid) 97.0370.67 18.5272.47 1190.747562.49
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Fig. 3. The average test accuracies, support vector percentages, and training times on t

sigmoid gating on the FAC representation.
significantly fewer support vectors than MKL and SVM (ALL), and
ties with SVM (FAC). For the MULTIFEAT data set, the average kernel
weights and the average number of active kernels (whose gating
values are nonzero) calculated on the test set are given in Table 3.
We see that both LMKL with softmax gating and LMKL with sigmoid
gating use fewer kernels than MKL in the decision function. MKL
uses all kernels with the same weight for all inputs; LMKL uses a
different smaller subset for each input. By storing significantly fewer
support vectors and using fewer active kernels, LMKL is significantly
faster than MKL in the testing phase.

MKL and LMKL are iterative methods and need to solve SVM
problems at each iteration. LMKL also needs to update the gating
parameters and that is why it requires significantly longer
training times than MKL when the dimensionality of the gating
model representation is high (649 in this set of experiments)—
LMKL needs to calculate the gradients of (8) with respect to the
parameters of the gating model and to perform a line search using
these gradients. Learning with sigmoid gating is faster than
softmax gating because with the sigmoid during the gradient-
update only a single value is used and updating takes OðPÞ time,
whereas with the softmax, all gating outputs are used and updating
is OðP2

Þ. When learning time is critical, the time complexity of this
step can be reduced by decreasing the dimensionality of the gating
model representation using an unsupervised dimensionality reduc-
tion method. Note also that both the output calculations and the
gradients in separate kernels can be efficiently parallelized when
parallel hardware is available.

Instead of combining different feature representations, we can
combine multiple copies of the same feature representation with
LMKL. We combine multiple copies of linear kernels on the single
best FAC representation using the sigmoid gating model on the
same representation (see Fig. 3). Even if we increase accuracy (not
significantly) by increasing the number of copies of the kernels
compared to SVM (FAC), we could not achieve the performance
obtained by combining different representations with sigmoid gating.
Table 3
Average kernel weights and number of active kernels on the MULTIFEAT data set.

Method FAC FOU KAR MOR PIX ZER

MKL 0.2466 0.2968 0.0886 0.1464 0.1494 0.0722

LMKL (softmax) 0.1908 0.1333 0.1492 0.3335 0.1134 0.0797

LMKL (sigmoid) 0.5115 0.5192 0.5429 0.5566 0.5274 0.5132

The average numbers of active kernels are 6.00, 2.43, and 5.36, respectively.
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Table 4
Multiple feature representations in the ADVERT data set.

Name Dimension Data source

URL 457 Phrases occurring in the URL

ORIGURL 495 Phrases occurring in the URL of the image

ANCURL 472 Phrases occurring in the anchor text

ALT 111 Phrases occurring in the alternative text

CAPTION 19 Phrases occurring in the caption terms

Table 5
Classification results on the ADVERT data set.

Method Test

accuracy

Support

vector

Training

time (s)

SVM (URL) 94.6770.24 83.3271.89 26.4271.27

SVM (ORIGURL) 92.0470.26 96.1670.51 23.3470.96

SVM (ANCURL) 95.4570.31 64.9075.41 26.6571.42

SVM (ALT) 89.6470.38 87.7371.17 22.5270.77

SVM (CAPTION) 86.6070.09 96.6570.42 20.0270.75

SVM (ALL) 96.4370.24 41.9971.76 31.9072.59

MKL 96.3270.50 35.8274.35 101.4274.89

LMKL (softmax) 95.7870.46 41.72711.59 914.427162.14

LMKL (sigmoid) 96.7270.46 34.4071.51 819.617111.22

LMKL (5 ANCURL

and sigmoid)

95.6670.29 10.8771.07 1287.677405.55

Table 6
Average kernel weights and number of active kernels on the ADVERT data set.

Method URL ORIGURL ANCURL ALT CAPTION

MKL 0.3073 0.1600 0.3497 0.1828 0.0003

LMKL (softmax) 0.3316 0.0160 0.6292 0.0172 0.0060

LMKL (sigmoid) 0.9918 0.9820 0.9900 0.9913 0.4027

The average numbers of active kernels are 4.10, 4.04, and 4.96, respectively.
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For example, LMKL with sigmoid gating and kernels over six
different feature representations is better than LMKL with sigmoid
gating and six copies of the kernel over the FAC representation in
terms of both classification accuracy (though not significantly) and
the number of support vectors stored (significantly) (see Table 2).
We also see that the training time of LMKL is increasing (though
not monotonically) with increasing number of kernels.

We also perform experiments on the Internet Advertisements
(ADVERT) data set3 from the UCI Machine Learning Repository,
composed of five different feature representations (different bags
of words) with some additional geometry information of the
images, which is ignored in our experiments due to missing
values. The properties of these feature representations are sum-
marized in Table 4. The classification task is to predict whether an
image is an advertisement or not. We use the CAPTION representa-
tion in the gating model due to its lower dimensionality com-
pared to the other representations.

Table 5 gives the classification results on the ADVERT data set
obtained by SVM, MKL, and LMKL. We see that SVM (ALL) is
significantly more accurate than the best SVM with single feature
representation, namely SVM (ANCURL), and uses significantly
fewer support vectors. MKL has comparable classification accu-
racy to SVM (ALL) and the difference between the number of
support vectors is not significant. LMKL with softmax/sigmoid
gating has comparable accuracy to MKL and SVM (ALL). LMKL with
sigmoid gating stores significantly fewer support vectors than
SVM (ALL). The average kernel weights and the average number of
active kernels on the ADVERT data set are given in Table 6. The
difference between the running times of MKL and LMKL is not as
significant as on the MULTIFEAT data set because the gating model
representation (CAPTION) has only 19 dimensions. Different from
the MULTIFEAT data set, LMKL uses approximately the same number
3 Available at http://archive.ics.uci.edu/ml/datasets/InternetþAdvertisements.
of or more kernels compared to MKL on this data set. (On one of
the ten folds, MKL chooses five and on the remaining nine folds, it
chooses four kernels, leading to an average of 4.1.)

When we combine multiple copies of linear kernels on the
ANCURL representation with LMKL using the sigmoid gating model
on the same representation (see Fig. 4), we see that LMKL stores
much fewer support vectors compared to the single kernel SVM
(ANCURL) without sacrificing from accuracy. But, as before on the
MULTIFEAT data set, we could not achieve the classification accu-
racy obtained by combining different representations with sig-
moid gating. For example, LMKL with sigmoid gating and kernels
over five different feature representations is significantly better
than LMKL with sigmoid gating and five copies of the kernel over
the ANCURL representation in terms of classification accuracy but
the latter stores significantly fewer support vectors (see Table 5).
We again see that the training time of LMKL is increasing linearly
with increasing number of kernels.

3.1.3. Combining multiple input patches for image recognition

problems

For image recognition problems, only some parts of the images
contain meaningful information and it is not necessary to exam-
ine the whole image in detail. Instead of defining kernels over the
whole input image, we can divide the image into non-overlapping
patches and use separate kernels in these patches. The kernels
calculated on the parts with relevant information take nonzero
weights and the kernels over the non-relevant patches are
ignored. We use a low-resolution (simpler) version of the image
as input to the gating model, which selects a subset of the high-
resolution localized kernels. In such a case, it is not a good idea to
use softmax gating in LMKL because softmax gating would choose
one or very few patches and a patch by itself does not carry
enough discriminative information.

We train SVMs with linear kernels calculated on the whole
image in different resolutions. MKL and LMKL combine linear
kernels calculated on each image patch. LMKL uses the whole
image with different resolutions in the gating model [14].

We perform experiments on the OLIVETTI data set,4 which
consists of 10 different 64�64 grayscale images of 40 subjects.
We construct a two-class data set by combining male subjects (36
subjects) into one class versus female subjects (four subjects) in
another class. Our experimental methodology for this data set is
slightly different: We select two images of each subject randomly
and reserve these total 80 images as the test set. Then, we apply
8-fold cross-validation on the remaining 320 images by putting
one image of each subject to the validation set at each fold. MKL
and LMKL combine 16 linear kernels calculated on image patches
of size 16�16.

Table 7 shows the results of MKL and LMKL combining kernels
calculated over non-overlapping patches of face images. MKL
achieves significantly higher classification accuracy than all single
kernel SVMs except in 32�32 resolution. LMKL with softmax
gating has comparable classification accuracy to MKL and stores
significantly fewer support vectors when 4�4 or 16�16 images
4 Available at http://cs.nyu.edu/�roweis/data.html.

http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://archive.ics.uci.edu/ml/datasets/Internet+Advertisements
http://cs.nyu.edu/~roweis/data.html
http://cs.nyu.edu/~roweis/data.html
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Fig. 4. The average test accuracies, support vector percentages, and training times on the ADVERT data set obtained by LMKL with multiple copies of linear kernels and

sigmoid gating on the ANCURL representation.

Table 7
Classification results on the OLIVETTI data set.

Method Test

accuracy

Support

vector

Training

time (s)

SVM (x¼ 4� 4) 93.2870.65 21.7070.93 1.6770.19

SVM (x¼ 8� 8) 97.5071.16 20.1371.04 1.2170.22

SVM (x¼ 16� 16) 97.0370.93 19.9171.01 1.2470.12

SVM (x¼ 32� 32) 97.9771.48 23.7171.39 2.0570.22

SVM (x¼ 64� 64) 97.6671.41 25.9471.01 2.1070.18

MKL 99.0670.88 22.1971.00 11.5370.82

LMKL (softmax and xG ¼ 4� 4) 97.1972.81 16.6573.34 83.13732.09

LMKL (softmax and xG ¼ 8� 8) 97.1972.48 22.5474.56 139.73749.78

LMKL (softmax and

xG ¼ 16� 16)

99.2271.33 16.3871.50 405.617153.25

LMKL (sigmoid and xG ¼ 4� 4) 99.2270.93 22.7271.83 45.3975.62

LMKL (sigmoid and xG ¼ 8� 8) 99.8470.44 26.8872.24 64.55714.99

LMKL (sigmoid and

xG ¼ 16� 16)

99.3871.34 21.6571.44 81.03736.59
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are used in the gating model. This is mainly due to the normal-
ization property of softmax gating that generally activates a single
patch and ignores the others; this uses fewer support vectors
but is not as accurate. LMKL with sigmoid gating significantly
improves the classification accuracy over MKL by looking at the
8�8 images in the gating model and choosing a subset of the
high-resolution patches. We see that the training time of LMKL is
monotonically increasing with the dimensionality of the gating
model representation.

Fig. 5 illustrates the example uses of MKL and LMKL with
softmax and sigmoid gating. Fig. 5(b)–(c) show the combination
weights found by MKL and sample face images stored as support
vectors weighted with those. MKL uses the same weights over the
whole input space and thereby the parts whose weights are
nonzero are used in the decision process for all subjects. When
we look at the results of LMKL, we see that the gating model
activates important parts of each face image and these parts are
used in the classifier with nonzero weights, whereas the parts
whose gating model outputs are zero are not considered. That is,
looking at the output of the gating model, we can skip processing
the high-resolution versions of these parts. This can be considered
similar to a selective attention mechanism whereby the gating model
defines a saliency measure and drives a high-resolution ‘‘fovea’’/‘‘eye’’
to consider only regions of high saliency [1]. For example, if we use
LMKL with softmax gating (see Fig. 5(d)–(f)), the gating model
generally activates a single patch containing a part of eyes or
eyebrows depending on the subject. This may not be enough for
good discrimination and using sigmoid gating is more appropriate.
When we use LMKL with sigmoid gating (see Fig. 5(g)–(i)), multiple
patches are given nonzero weights in a data-dependent way.

Fig. 6 gives the average kernel weights on the test set for MKL,
LMKL with softmax gating, and LMKL with sigmoid gating. We
see that MKL and LMKL with softmax gating use fewer high-
resolution patches than LMKL with sigmoid gating.

We can generalize this idea even further: Let us say that we
have a number of information sources that are costly to extract or
process, and a relatively simpler one. In such a case, we can feed
the simple representation to the gating model and feed the costly
representations to the actual kernels and train LMKL. The gating
model then chooses a costly representation only when it is
needed and chooses only a subset of the costly representations.
Note that the representation used by the gating model does not
need to be very precise, because it does not do the actual decision,
but only chooses the representation(s) that do the actual decision.
3.2. Regression experiments

3.2.1. Illustrative regression problem

We illustrate the applicability of LMKL to regression problems
on the MOTORCYCLE data set discussed in [32]. We train LMKL with
three linear kernels and softmax gating (C¼1000 and E¼ 16)
using 10-fold cross-validation. Fig. 7 shows the average of global
and local fits obtained for these 10 folds. We learn a piecewise
linear fit through three local models that are obtained using linear
kernels in each region and we combine them using the softmax
gating model (shown by dashed lines). The softmax gating model
divides the input space between kernels, generally selects a single
kernel to use, and also ensures a smooth transition between
local fits.
3.2.2. Combining multiple kernels for benchmark data sets

We compare SVR and LMKL in terms of regression perfor-
mance (i.e., mean square error), model complexity (i.e., stored
support vector percentage), and training time. We train SVRs with
different kernels, namely linear kernel and polynomial kernels up
to fifth degree. LMKL combines these five kernels with both
softmax and sigmoid gating models.



Fig. 5. Example uses of MKL and LMKL on the OLIVETTI data set. (a) FmðxmÞ: features fed into kernels, (b) Zm: combination weights, and (c) ZmFmðxmÞ: features weighted

with combination weights, (d) xG: features fed into softmax gating model, (e) Zmðx9VÞ: softmax gating model outputs, (f) Zmðx9VÞFmðxmÞ: features weighted with softmax

gating model outputs, (g) xG: features fed into sigmoid gating model, (h) Zmðx9VÞ: sigmoid gating model outputs, and (i) Zmðx9VÞFmðxmÞ: features weighted with sigmoid

gating model outputs.

Fig. 6. Average kernel weights on the OLIVETTI data set. (a) MKL, (b) LMKL with softmax

gating on 16�16 resolution, and (c) LMKL with sigmoid gating on 8�8 resolution.
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Fig. 7. Global and local fits (solid lines) obtained by LMKL with three linear

kernels and softmax gating on the MOTORCYCLE data set. The dashed lines show

gating model outputs, which are multiplied by 50 for visual clarity.
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We perform experiments on the Concrete Compressive Strength
(CONCRETE) data set5 and the Wine Quality (WHITEWINE) data set6

from the UCI Machine Learning Repository. E is selected from {1, 2,
4, 8, 16} for the CONCRETE data set and {0.08, 0.16, 0.32, 0.64, 1.28} for
the WHITEWINE data set.

Table 8 lists the regression results on the CONCRETE data set
obtained by SVR and LMKL. We see that both LMKL with softmax
gating and LMKL with sigmoid gating are significantly more
accurate than all of the single kernel SVRs. LMKL with softmax
gating uses kL, kP (q¼4), and kP (q¼5) with relatively higher
weights but LMKL with sigmoid gating uses all of the kernels with
significant weights (see Table 9). When we combine multiple
copies of the linear kernel using the softmax gating model (shown
in Fig. 8), we see that LMKL does not overfit and we get
significantly lower error than the best single kernel SVR (kP and
q¼3). For example, LMKL with five copies of kL and softmax
gating gets significantly lower error than SVR (kP and q¼3) and
stores significantly fewer support vectors. Similar to the binary
classification results, the training time of LMKL is increasing
linearly with increasing number of kernels.
5 Available at http://archive.ics.uci.edu/ml/datasets/ConcreteþCompressiveþ

Strength.
6 Available at http://archive.ics.uci.edu/ml/datasets/WineþQuality.
Table 10 lists the regression results on the WHITEWINE data set
obtained by SVR and LMKL. We see that both LMKL with softmax
gating and LMKL with sigmoid gating obtain significantly less
error than SVR (kL), SVR (kP and q¼2), and SVR (kP and q¼3), and
have comparable error to SVR (kP and q¼4) and SVR (kP and q¼5)
but store significantly fewer support vectors than all single kernel
SVRs. Even if we do not decrease the error, we learn computa-
tionally simpler models by storing much fewer support vectors.
We see from Table 11 that LMKL with softmax gating assigns
relatively higher weights to kL, kP (q¼3), and kP (q¼5), whereas
LMKL with sigmoid gating uses the polynomial kernels nearly
everywhere in the input space and the linear kernel for some of
the test instances.
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4. Discussion

We discuss the key properties of the proposed method and
compare it with similar MKL methods in the literature.
4.1. Computational complexity

When we are training LMKL, we need to solve a canonical
kernel machine problem with the combined kernel obtained with
the current gating model parameters and calculate the gradients
of JðVÞ at each iteration. The gradients calculations are made
using the support vectors of the current iteration. The gradient
calculation step has lower time complexity compared to the
kernel machine solver when the gating model representation is
low-dimensional. If we have a high-dimensional gating model
representation, we can apply an unsupervised dimensionality
reduction method (e.g., principal component analysis) on this
representation in order to decrease the training time. The com-
putational complexity of LMKL also depends on the complexity of
the canonical kernel machine solver used in the main loop, which
Table 8
Regression results on the CONCRETE data set.

Method MSE Support vector Training time (s)

SVR (kL) 120.6172.15 44.3173.46 30.3273.10

SVR (kP and q¼2) 92.5774.19 36.2271.24 32.8178.18

SVR (kP and q¼3) 58.3273.66 73.1671.21 47.7173.64

SVR (kP and q¼4) 63.8379.58 52.5272.40 34.3775.19

SVR (kP and q¼5) 61.2675.31 52.1772.23 34.5573.72

LMKL (softmax) 44.8076.33 64.2874.02 818.327113.65

LMKL (sigmoid) 48.1875.22 49.2072.05 575.32781.75

LMKL (5 kL and softmax) 53.1476.42 34.9378.45 1115.327137.15

Table 9
Average kernel weights and number of active kernels on the CONCRETE data set.

Method kL kP kP kP kP

q¼2 q¼3 q¼4 q¼5

LMKL (softmax) 0.1495 0.0091 0.0117 0.0951 0.7346

LMKL (sigmoid) 0.6675 0.8176 0.9962 0.9721 0.9989

The average numbers of active kernels are 4.52 and 4.68, respectively.
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Fig. 8. The average test mean square errors, support vector percentages, and training tim

and softmax gating.
can be reduced using a hot-start procedure (i.e., starting from the
previous solution). The number of iterations before convergence
clearly depends on the training data and the step size selection
procedure. The key issue for faster convergence is to select good
gradient-descent step sizes at each iteration. The step size of each
iteration should be determined with a line search method (e.g.,
Armijo’s rule whose search procedure allows backtracking and
does not use any curve fitting method), which requires solving
additional kernel machine problems. Clearly, the time complexity
for each iteration increases but the algorithm converges in fewer
iterations. In practice, we see convergence in 5–20 iterations.

One main advantage of LMKL is in reducing the time complex-
ity for the testing phase as a result of localization. When
calculating the locally combined kernel function, kZðxi,xÞ, in (9),
kmðxm

i ,xmÞ needs to be evaluated or calculated only if both ZmðxiÞ

and ZmðxÞ are active (i.e., nonzero).

4.2. Knowledge extraction

The kernel weights obtained by MKL can be used to extract
knowledge about the relative contributions of kernel functions used
in combination. Different kernels define different similarity mea-
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es on the CONCRETE data set obtained by LMKL with multiple copies of linear kernels

Table 10
Regression results on the WHITEWINE data set.

Method MSE Support vector Training time (s)

SVR (kL) 0.5970.00 66.8370.57 1870.137148.78

SVR (kP and q¼2) 0.5470.01 66.2270.67 1864.247166.48

SVR (kP and q¼3) 0.5470.00 66.1471.13 3622.557297.24

SVR (kP and q¼4) 0.5270.01 66.5571.03 4223.707328.03

SVR (kP and q¼5) 0.5270.01 66.2771.24 2469.317221.74

LMKL (softmax) 0.5270.01 18.66713.41 60632.5176905.62

LMKL (sigmoid) 0.5170.00 38.2972.34 76249.60712724.65

Table 11
Average kernel weights and number of active kernels on the WHITEWINE data set.

Method kL kP kP kP kP

q¼2 q¼3 q¼4 q¼5

LMKL (softmax) 0.2238 0.0302 0.1430 0.0296 0.5733

LMKL (sigmoid) 0.5956 0.9698 0.9978 0.9849 0.9929

The average numbers of active kernels are 1.05 and 4.58, respectively.
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sures and we can deduce which similarity measures are appropriate
for the task at hand. If kernel functions are evaluated over different
feature subsets or feature representations, the important ones
have higher combination weights. With our LMKL framework, we
can extract similar information for different regions of the input
space. This enables us to extract information about kernels (simi-
larity measures), feature subsets, and/or feature representations in
a data-dependent manner.

4.3. Regularization

Canonical kernel machines learn sparse models as a result of
regularization on the weight vector but the underlying complex-
ity of the kernel function is the main factor for determining
the model complexity. The main advantage of LMKL in terms of
regularization over canonical kernel machines is the inherent
regularization effect on the gating model. When we regularize
the sum of the hyperplane weight vectors in (6), because these
weight vectors are written in terms of the gating model as in (7),
we also regularize the gating model as a side effect. MKL
can combine only different kernel functions and more complex
kernels are favored over the simpler ones in order to get better
performance. However, LMKL can also combine multiple copies of
the same kernel and it can dynamically construct a more complex
locally combined kernel using the kernels in a data-dependent
way. LMKL eliminates some of the kernels by assigning zero
weights to the corresponding gating outputs in order to get a
more regularized solution. Figs. 2–4 and 8 give empirical support
to this regularization effect, where we see that LMKL does not
overfit even if we increase the number of kernels up to 20.

4.4. Dimensionality reduction

The localized kernel idea can also be combined with dimension-
ality reduction. If the training instances have a local structure (i.e.,
lie on low-dimensional manifolds locally), we can learn low-
dimensional local projections in each region, which we can also
use for visualization. Previously, it had been proposed to integrate
a projection matrix into the discriminant function [6] and we
extended this idea to project data instances into different feature
spaces using local projection matrices combined with a gating
model, and calculate the combined kernel function with the dot
product in the combined feature space [17]. The local projection
matrices can be learned with the other parameters, as before, using
a two-step alternating optimization algorithm.

4.5. Related work

LMKL finds a nonlinear combination of kernel functions with the
help of the gating model. The idea of learning a nonlinear combina-
tion is also discussed in different studies. For example, a latent
variable generative model using the maximum entropy discrimina-
tion to learn data-dependent kernel combination weights is proposed
in [23]. This method combines a generative probabilistic model with
a discriminative large margin method using a log-ratio of Gaussian
mixtures as the classifier.

In a more recent work, a nonlinear kernel combination method
based on kernel ridge regression and polynomial combination of
kernels is proposed [8]

kZðxi,xjÞ ¼
X
qAQ

Zq1

1 . . .ZqP

P k1ðx
1
i ,x1

j Þ
q1 . . . kPðx

P
i ,xP

j Þ
qP

where Q¼ fq : qAZP
þ ,
PP

m ¼ 1 qm ¼ dg and the kernel weights are
optimized over a positive, bounded, and convex set using a
projection-based gradient-descent algorithm.
Similar to LMKL, a Bayesian approach is developed for combin-
ing different feature representations in a data-dependent way
under the Gaussian process framework [7]. A common covariance
function is obtained by combining the covariances of feature
representations in a nonlinear manner. This formulation can
identify the noisy data instances for each feature representation
and prevent them from being used. Classification is performed
using the standard Gaussian processes approach with the com-
mon covariance function.

Inspired from LMKL, two methods that learn a data-dependent
kernel function are used for image recognition applications [34,35];
they differ in their gating models that are constants rather than
functions of the input. In [34], the training set is divided into
clusters as a preprocessing step and then cluster-specific kernel
weights are learned using an alternating optimization method. The
combined kernel function can be written as

kZðxi,xjÞ ¼
XP

m ¼ 1

Zm
ci

kmðx
m
i ,xm

j ÞZ
m
cj

where Zm
ci

corresponds to the weight of kernel kmð�,�Þ in the cluster
xi belongs to. The kernel weights of the cluster which a test instance
is assigned to are used in the testing phase. In [35], instance-specific
kernel weights are used instead of cluster-specific weights. The
corresponding combined kernel function is

kZðxi,xjÞ ¼
XP

m ¼ 1

Zm
i kmðx

m
i ,xm

j ÞZ
m
j

where Zm
i corresponds to the weight of kernel kmð�,�Þ for xi and

instance-specific weights are optimized using an alternating opti-
mization problem for the training set. But, in the testing phase, the
kernel weights for a test instance are all taken to be equal.
5. Conclusions

This work introduces a localized multiple kernel learning
framework for kernel-based algorithms. The proposed algorithm
has two main ingredients: (i) a gating model that assigns weights
to kernels for a data instance, (ii) a kernel-based learning algo-
rithm with the locally combined kernel. The training of these two
components is coupled and the parameters of both components
are optimized together using a two-step alternating optimization
procedure. We derive the learning algorithm for three different
gating models (softmax, sigmoid, and Gaussian) and apply the
localized multiple kernel learning framework to four different
machine learning problems (two-class classification, regression,
multiclass classification, and one-class classification).

We perform experiments for several two-class classification
and regression problems. We compare the empirical performance
of LMKL with single kernel SVM and SVR as well as MKL. For
classification problems defined on different feature representa-
tions, LMKL is able to construct better classifiers than MKL by
combining the kernels on these representations locally. In our
experiments, LMKL achieves higher average test accuracies and
stores fewer support vectors compared to MKL. If the combined
feature representations are complementary and do not contain
redundant information, the sigmoid gating model should be
selected instead of softmax gating, in order to have the possibility
of using more than one representation. We also see that, as
expected, combining heterogeneous feature representations is
more advantageous than combining multiple copies of the same
representation. For image recognition problems, LMKL identifies
the relevant parts of each input image separately using the gating
model as a saliency detector on the kernels on the image patches,
and we see that LMKL obtains better classification results than
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MKL for a gender recognition task using face images. For regres-
sion problems, LMKL improves the performance by reducing the
mean square error significantly on one of the data sets and storing
significantly fewer support vectors on the other data set. Different
from MKL methods that use global kernel weights, LMKL can
combine multiple copies of the same kernel. We show that even if
we provide more kernels than needed, LMKL uses only as many
support vectors as required and does not overfit.
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