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A b s t r a c t :  Support  vector machines (SVMs) are primarily designed for 2-class clas- 
sification problems. Although in several papers it is mentioned that  the combination 
of K SVMs can be used to solve a K-class classification problem, such a procedure 
requires some care. In this paper, the scaling problem of different SVMs is highlighted. 
Various normalization methods are proposed to cope with this problem and their effi- 
ciencies are measured empirically. This simple way of using SVMs to learn a K-class 
classification problem consists in choosing the maximum applied to the outputs of K 
SVMs solving a one-per-class decomposition of the general problem. In the second par t  
of this paper,  more sophisticated techniques are suggested. On the one hand, a stack- 
ing of the K SVMs with other classification techniques is proposed. On the other end, 
the one-per-class decomposition scheme is replaced by more elaborated schemes based 
on error-correcting codes. An incremental algorithm for the elaboration of pert inent  
decomposition schemes is mentioned, which exploits the properties of SVMs for an 
efficient computation.  

1 Introduct ion  

Automated classification addresses the general problem of finding 
an approximation F of an unknown function F defined from an 
input space [2 onto an unordered set of classes {wl , . . .  ,wK}, given 
a training set: T = {(~eP, yP = F(xP)}P1 C ~2 x {•l,... ,09K}. 

Among the wide variety of methods available in the literature to 
learn classification problems, some are able to handle many classes 
(e.g. decision trees [2,12], feedforward neural networks), while others 
are specific to 2-class problems, also called dichotomies. This is the 
case of perceptrons or of support vector machines (SVMs) [1,4,14]. 
When the former are used to solve K-class classification problems, 
K classifiers are typically placed in parallel and each one of them is 
trained to separate one class from the K - 1 others. The same idea 
can be applied with SVMs [13]. This way of decomposing a general 
classification problem into dichotomies is known as a one-per-class 
decomposition, and is independent of the learning method used to 
train the classifiers. 
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In a one-per-class decomposition scheme, each classifier k trained 
on the dichotomy {(a:P, yP = / k ( a . p ) ) } L  1 c a2 x {-1 ,  +1} produces 

an approximation fk of fk of the form fk = sgn(gk), where g k : 
a2 --+ I~. The class wk picked by the global system for an input x will 
then be the one maximizing gk(a:). This supposes, however, that  the 
outputs of all g k are in the same range. 

As long as each of the learning algorithms used to solve the dicho- 
tomies outputs probabilities, their answers are comparable. When a 
dichotomy is learned by a criterion such as the minimization of the 
mean square error between gk(xP) and yP E { -1 ,  +1}, it is reason- 
able to expect (if the model learning the dichotomy is sufficiently 
rich) that for any data drawn with the same distribution than the 
training data, the output of the classifier will have its module around 
+1. Thus, in this case again, one can more or less assume that  the 
answers of the wk classifiers are comparable. 

The output scale of a SVM is determined so that outputs for the 
support vectors are +1. This scale is not robust, since it depends 
on just  a few points, often including outliers. Therefore, it is gener- 
ally not safe to decompose a classification problem in dichotomies 
learned by SVMs whose outputs are compared as such, to provide the 
final output. In this paper, different alternatives will be proposed to 
circumvent this problem. The simplest ones are based on renormal- 
ization of the SVMs outputs. Another approach consists in stacking 
a first level of one-per-class dichotomies solved by SVMs, with other 
classification methods. More elaborated solutions are based on other 
types of decomposition schemes, in which SVMs can be involved 
either as basic classifiers, i.e. to solve the dichotomies, or in recom- 
bining answers of the basic classifiers, or both. 

2 Illustrative example 

To illustrate the normalization problem of the SVMs outputs and 
to get some insight on possible solutions, let consider the artificial 
example of Figure 1. The data, partitioned into three classes, are 
drawn according to three Gaussian distributions with exactly the 
same covariance matrix and different mean vectors indicated by stars 
in Figure 1. 
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F i g .  1 .  A 3-class example. 

Since the three covariance matrices are identical and the a pri- 

ori probabilities are equal, the boundaries of the decision regions 
based on an exact Bayesian classifier are three lines intersecting in 
one point [7], which are represented by continuous lines on Figure 1. 
The 50 data of each class is linearly separable from the data of the 
other two classes. However, the maximal margin of a linear separ- 
ator isolating Class 3 from Class 1 and 2 is much larger than the 
margin of the other two linear separators. Thus, when using 3 linear 
SVMs to solve the three dichotomies, the norm of the optimal hy- 
perplane found by SVM algorithm is much smaller in one case than 
in the other two. Whenever the output class is selected as the one 
corresponding to the SVM with largest output, the decision region 
obtained is shown in Figure 1 by dashed lines, which is quite different 
from the optimal Bayes decision. 

For comparison, the dash-dotted lines (with cross-point marked 
by a square) correspond to the boundaries of the decision regions 
obtained by three linear Perceptrons trained by the Pseudo-inverse 
method, i.e. the linear separators minimize mean square errors [7]. 
This matches closely the optimal one. 

Two different ways of normalizing the outputs of the SVMs are 
also illustrated in Figure 1 and the boundaries of the correspond- 
ing decision regions are shown with dotted lines. In one case, the 
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parameters (w k, b k) of each of the K separating hyperplanes {~ I 
~rwk + b k = O} are divided by the Euclidean norm of w k (the cross- 
point of the boundaries is a circle). In the other case, (w k, b k) are 
divided by the estimate of the standard deviation of the output of the 
SVM (the cross-point of the boundaries is a triangle that superposes 
the circle). 

3 SVM output normalization 

The first normalization technique considered has a geometrical in- 
terpretation. When a linear classifier fk : ~d __+ {--1, +1} of the 
form 

]k(X)  = sgn(gk(w)) ---- sgn(xrw k q- b k) (1) 

is normalized such that the Euclidean norm Ilwkll2 is 1, gk(x) gives 
the Euclidean distance from ~c to the boundary of f k .  

Non-linear SVMs are defined as linear separators in a high di- 
mensionM space 7-/in which the input space I~ d is mapped through a 
non-linear mapping �9 (for more details on SVMs, see for example the 
very good tutorial [3] from which our notations are borrowed). Thus, 
the same geometrical interpretation holds in 7-/. The parameter w k 
of the linear separator fk in 7-/of the form (1) is never computed 
explicitly (its dimension may be huge or infinite). But is known as a 
linear combination of images through �9 of the support vectors (input 
data with indices in N~) 

w k  E P P P = ). (2 )  

p~N ~, 

k used in this work will thus be defined The normalization factor rr w 
by 

1 
- -  - ~ aka~P " ~ P ' y  y r  r  (3) (-~):  

p ,p' 6 N ks 

: E ~P'~P'~'P~'P'I((TP P' ~k~k~ u., ,~C ), (4) 
i k P,P ~-Ns 

where K is the kernel function allowing an easy computation of dot- 
products in 7-/. 
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One way to normalize is scaling the output of each support vector 
machine such that 

Ep[y gk(x)] = 1 

The scaling factor 7r k is defined as the mean over the samples, of 
yPgk(xP), again estimated on the training set or on new data. 

Each normalization factor can also be chosen as the optimal 
solution of an optimization problem. The factor 7r k. minimizes the 
mean square error over the samples, between the normalized output 
7ck, gk(x p) and the target output yP 6 { -1 ,+1} .  

Z(. = 

P 

whose optimal solution is 

(5) 

(6) 

4 Stacking SVMs and singlelayer perceptrons 

So far, the output class is determined by choosing the maximum of 
the outputs of all SVMs. However, the responses of other SVMs than 
the winner carry also some information. Moreover, when a SVM is 
trained to separate one class wk from the K -  1 others, it may happen 
that the mean of gk varies significantly from one class to another. 
For example, if class w2 lies somewhere "in-between" class wl and 
class wa, the function g I separating class Wl from w2 and w3 is likely 
to have a stronger negative answer on w3 than on w2. This knowledge 
can be used to improve the overall recognition. 

A simple way to aggregate the answers of all the K SVMs into 
a score for each of the classes is by a linear combination. If g = 
(91... ,gK)m denotes the output of the system of K SVMs, the idea 
suggested here is to replace the former function 

P -- arg max(g) 

by 
/~ = arg mkax ( M g ) ,  
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where M is a K x K mixture  matrix. The classical way of solving 
a K-class classification problem by one-per-class decomposit ion cor- 
responds to using the identi ty mixture  matrix. The technique given 
in Section 3 with 7c k corresponds to a diagonal M with 7c k as the 
diagonal elements.  If sufficiently many data are available to es t imate  
more parameters,  a full mixture matr ix  can provide a finer way of 
recombining the outputs  of the different SVMs. 

This way of stacking a set of K classifiers with a single layer 
neural network provides a solution to the normalization problem as 
long as the network (i.e. the mixture  matr ix M )  is designed to min- 
imize the mean square error between g (x  p) and yP = { - 1 , . . . , + 1 ,  
. . . , - 1 } .  Generalizing Equation (5), we get 

E ( M )  = ~ - - ] [ M g ( x  p) - yp]2 (7) 
p 

5 Numerical  experiments 

All the exper iments  reported in this section are baed on datasets of 
the Machine Learning repository at Irvine [10]. The values listed are 
pecentages of classification errors, averaged over 10 experiments.  For 
glass and dermatology, one t ime 10-fold cross validation was done, 
while for vowel and soybean, the ten runs correspond to 5 t imes 
2-folding. We used SVMs with polynomial kernel of degrees 2 and 3. 

d a t a b a s e  deg no normal .  

glass 2 35.7 =h 13.5 
glass 3 37.6 =h 12.8 
de rma to logy  2 3.9 -t- 1.9 
de rma to logy  3 3.9 :t: 2.7 
vowel 2 70.3 =t= 39.7 
vowel 3 62.1 =h 44.5 
soybean  2 71.6 4- 34.7 
soybean  3 71.6 :k 34.8 

k k 
71" w ~ ,  

31.6 =h 10.3 31.9 4- 12.3 
33.3 =t= 11.4 35.7 + 10.6 

4.1 -t- 2.0 3.9 + 1.9 
4.4 + 2.7 3.9 4- 2.7 

69.8 -t- 40.7 69.9 ~: 40.5 
61.4 :t: 45.4 61.8 ::h 44.9 
71.6 4- 34.8 71.6 :k 34.9 
71.4 =h 35.1 71.6 :t: 34.8 

M 

~39.0 + 12.5 
45.2 :t: 10.8 

4.2 =h 2.0 
4.4 =h 2.7 

24.2 + 1.6 
10.5 4- 3.2 

29.2 :t: 11.2 
28.8 -4- 11.1 

We notice that  on the four datasets, the two normalization tech- 
k k do not improve accuracy except niques of dividing by ~r w or using 7r, 

in glass where a small improvement  is seen. Using stacking with a 
linear model  on vowel and soybean significantly improves accuracy 
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which demonstrates the useful effect of postprocessing SVM outputs. 
Overtraining certainly explains the deterioration of this stacking ap- 
proach on glass, as this is a very small dataset. One can use more 
sophisticated learners instead of a linear model whereby accuracy 
can be further improved. One interesting possibility is to use an- 
other SVM to combine the outputs of the first layer SVMs. 

We are currently experimenting with larger databases, other types 
of kernels and other combining strategies and we are expecting to 
have more extensive support of this approach in the near future. 

6 Robust  decomposi t ion/reconstruct ion 
schemes 

Lately, some work has been devoted to the issue of decomposing a 
K-class classification problem into a set of dichotomies. Note that  
all the research we are referring to was carried out independently of 
the method used to learn the dichotomies, and consequently all the 
techniques can be applied right away with SVMs. 

The one-per-class decomposition scheme can be advantageously 
replaced by other schemes. If there are not too many classes, the so 
called pairwise-coupling decomposition scheme is a classical alternat- 
ive in which one classifier is trained to discriminate between each pair 
of classes, ignoring the other classes. This method is certainly more 
efficient than one-per-class, but it has two major drawbacks. First, 
the number of dichotomies is quadratic in the number of classes. 
Second, each classifier is trained with data coming from two classes 
only, but in the using phase, the outputs for data from any classes 
are involved in the final decision [11]. 

A more sophisticated decomposition scheme, proposed in [6,5], 
is based on error-correcting code theory and will be referred to as 
ECOC. The underlying idea of the ECOC method is to design a set 
of dichotomies so that  any two classes are discriminated by as many 
dichotomies as possible. This provides robustness to the global clas- 
sifier, as long as the errors of the simple classifiers are not correlated. 
For this purpose, every two dichotomies must also be as distinct as 
possible. 

In this pioneering work, the set of dichotomies was designed a pri- 
ori, i.e. without looking at the data. The drawback of this approach 
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is that each dichotomy may gathers classes very far apart and thus is 
likely hard to learn. Our contribution to this field [8] was to elaborate 
algorithms constructing the decomposition matrix a posteriori ,  i.e. 

by taking into account the organization of the classes in the input 
space as well as the classification method used to learn the dicho- 
tomies. Thus, once again, the approach is immediately applicable 
with SVMs. 

The algorithm constructs the decomposition matrix iteratively, 
adding one column (dichotomy) at a time. At each iteration, it 
chooses a pair of classes (wk,c0k,) at random among the pairs of 
classes that  are so far the less discriminated by the system. A clas- 
sifier (e.g. a SVM) is trained to separate wk from wk,. Then, the 
performance of this classifier is tested on the other classes and a 
class wl is added to the dichotomy under construction as a positive 
(resp. negative) class, if a large part of it is classified as positive 
(resp. negative). The classifier is finally retrained of the augmented 
dichotomy. The iterative construction is complete, either if all the 
pairs of classes are sufficiently discriminated or when a given number 
of dichotomies is reached. 

Although each of these general an robust decomposition tech- 
niques are applicable to SVMs and must be in any case preferred to 
the one-per-class decomposition, they do not solve the normalization 
problem. When choosing a general decomposition scheme composed 
of L dichotomies providing a mapping from the input space J2 into 
{ -1 ,  +1} L or ]~L, one also has to select a mapping rn : IR L --+ 11~ K, 
called the reconstruct ion strategy, on which the arg maxk operator 
will finally be applied. 

Among the large set of possible reconstruction strategies that 
have been explored in [9], one distinguishes the a pr ior i  reconstruc- 
tions from the a pos ter ior i  reconstructions. In the latter, the mapping 
rn can be basically any classification technique (neural networks, de- 
cision trees, nearest neighbor, etc.). It is learned from new data and 
thus, it solves the normalization problem. 

Reconstruction mappings rn composed of L SVMs have also been 
investigated in [9] and provided excellent results, especially for degree 
2 and 3 polynomial kernels. Note that in this case, the normalization 
problem occurs again at the output of the mapping rn and in our 
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experiments we cope with it using the normalization factors l 7rw, l 

1 , . . . , L .  
When the decomposition scheme is constructed iteratively by the 

algorithm described above and the reconstruction mapping is based 
on SVMs, a considerable amount of computation time can be saved 
as follows. At the end of each iteration constructing a new dichotomy, 
the mapping m must be elaborated based on the current number of 
dichotomies, say L, in order to determine (in the next iteration) the 
pair of classes ( w k , w k , )  for which the global classifier is doing the 
worse confusion. But the optimal mapping m : ]I~ L ---+ ]I~ K have some 
similarities with m '  : I~ n - 1  --+ I~ I~ constructed at the previous itera- 
tion. It has been observed that the quadratic program determining 
the 1 ~h SVM of the mapping m is solved much faster when initialized 
with the optimal solution (the a~s indicating the support vectors 
and their weights) of the quadratic program corresponding to the 
l ~h SVM of the mapping m ~. 

7 Conclus ions  

In this paper, the problem of normalizing the outputs of several 
SVMs, for the sake of comparison, is highlighted. Different normal- 
ization techniques are proposed and experimented. More elaborated 
methods allowing the usage of binary classifiers for the resolution 
of multi-class classification problems are briefly presented. The ex- 
perimentation of these approaches with SVMs as well as with other 
learning techniques is a large scale ongoing work and will be presen- 
ted in the final version of this paper. 
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