EUROPEAN
JOURNAL
OF OPERATIONAL
RESEARCH

ELSEVIER

European Journal of Operational Research 92 (1996) 230-243

Parametric distance functions vs. nonparametric neural networks
for estimating road travel distances

Ethem Alpaydin *!, . Kuban Altimel >*, Necati Aras !

2 Department of Computer Engineering, Bogazigi University, TR-80815 Istanbul, Turkey
b Department of Industrial Engineering, Bogazici University, TR-80815 Istanbul, Turkey

Received July 1994, revised August 1995

Abstract

Measuring and storing actual road travel distances between the points of a region is often not feasible and it is a common
practice to estimate them. The usual approach is to use distance estimators which are parameterized functions of the
coordinates of the points. We propose to use nonparametric approaches using neural networks for estimating actual
distances. We consider multi-layer perceptrons trained with the back-propagation rule and regression neural networks
implementing nonparametric regression using Gaussian kernels. We also consider training multiple estimators and combin-
ing them using voting and stacking. On a real-world study using cities drawn from Turkey, we found out that these
nonparametric approaches are more accurate than the parametric distance functions. Estimating actual distances has many

applications in location and distribution theory.

Keywords: Artificial intelligence; Location; Neural networks; Regression; Road transportation

1. Introduction

The actual distance between any two points on the
earth surface is the length of the shortest road con-
necting them travellable with the given means of
transportation. Since it is often not feasible to mea-
sure the actual road travel distances (or actual
distances in brief) for all pairs of points, it is a
common practice to use distance estimators. The
question is to choose a good estimator so that accu-
rate distance approximations are obtained.

A good estimation of actual distances is critical in
many applications. Almost all of the location prob-

* Corresponding author. Email: altinel@boun.edu.tr.
! Email: {alpaydin, arasn}@boun.edu.ir.

lems, distribution problems such as the transportation
problem, its generalization the transshipment prob-
lem, the travelling salesman problem, and the vehicle
routing problem assume the knowledge of actual
distances in their formulations. For example, in their
recent simulation study to determine the number of
fire-stations in Istanbul, Erkut and Polat multiply the
Euclidean distance by an inflation factor, which they
call the road coefficient, in order to estimate the
actual distance between the fire-station and fire area
[14].

We can define the problem of distance estimation
formally as follows: Let us say that x=(x,, x,)"
where x, and x, are two points on the Cartesian
plane with coordinates x, =(x,,, x;,)7 and x,=
(x;,, x,)7. The aim is to build an estimator d(x | 6)

0377-2217 /96 /$15.00 Copyright © 1996 Elsevier Science B.V. All rights reserved.

PII S0377-2217(96)00045-8

E. Alpaydin et al. / European Journal of Operational Research 92 (1996) 230-243 231

of the actual distance between x, and x,. S is a
sample of n pairs (x', r') where r' is the actual
distance between x| and x; with i=1...n. 0 isa
vector of parameters estimated using S minimizing
the following error measure:

6=arg min[E[(d(x10. 5). r)]]

12))
=arg min|—) 8(d(x'|0), r'){, (1
0 [M-y
6(-) is the difference measure. One possibility, orig-
inally proposed by Love and Morris [20], is the
absolute value of the deviation:

§(d(x'10), r'y=1d(x'10) —r'l. (2)

According to this criterion, a distance function
must estimate greater actual distances relatively more
accurately than shorter distances. This is a drawback
if we are more interested in proportional deviations
than absolute deviations. Another error measure, also
proposed by Love and Morris [20], is normalized:

d(xi‘l/?—i) —~r - 3)

Although both criteria are very insightful on their
own, the second one is superior not only because it
gives importance to proportional errors but also be-
cause of the following three reasons. First, most of
the experimental results in the literature use the
second criterion, e.g., [4,5,11,20,24,35]. It has impor-
tant statistical properties which leads to statistical
tests for comparing the accuracy of distance func-
tions under certain normality and independence as-
sumptions and thus the results obtained can have
further use. Finally, it is a continuous and differen-
tiable function of the parameter vector and this en-
ables the use of gradient descent methods for mini-
mization which is important in neural network learn-
ing as we will see in Section 3.

The standard approach for distance estimation
uses estimators that are parameterized functions of
certain easy to obtain information, namely the coor-
dinates of the points. This approach has been widely
used ever since the first work by Love and Morris
[20] because it provides simple analytical closed
form expressions of the coordinates once the value
of the parameters are determined. As any parametric

8(d(x'10), r')=

method, it works with small samples but the accu-
racy may not be high if the assumed form of the
function is not appropriate.

We view the problem of estimating distances in
the context of function approximation or nonlinear
regression and apply neural network based estima-
tors for this task of estimating d(x | @). These meth-
ods, being nonparametric, have the advantage that
they do not assume any a priori model and are
trained directly from a training sample. They of
course necessitate larger training samples as we no
longer have the comfort of a parametric model with
just a few parameters.

One approach we use is the multi-layer percep-
tron trained with the back-propagation rule. The
second approach is based on nonparametric regres-
sion using kernel density estimation; in the neural
network literature, this is named a regression neural
network. A recent idea in machine learning is to
combine multiple estimators for improved perfor-
mance. We test two methods for this. One trains
multiple estimators and takes a wote; when vote
weights are equal, this is simple averaging. The
second stacking approach also trains a combiner
network. We provide a comparison of all explained
approaches based on a real-world sample collected
by pairing a subset of the cities of Turkey.

This paper is organized into seven sections. The
next section is a brief literature survey on the use of
suitable distance functions to estimate actual dis-
tances. In Sections 3 and 4, we propose neural-net-
work-based methods, i.e., a multi-layer perceptron
and a regression neural network, for distance estima-
tion. Section S explains the idea of combining multi-
ple estimators. In Section 6, we give results obtained
for Turkey using the previously explained ap-
proaches. Finally in the last section, we compare
approaches using the criteria of estimation accuracy,
memory requirement, and general applicability in
optimization problems.

2. Distance functions

A generally used method for estimating actual
road distances between any pair of points is to make
approximations by means of a distance function,

232 E. Alpaydin er al. / European Journal of Operational Research 92 (1996) 230-243

Table 1

Distance functions used and their associated parameters

Distance function Parameters
(8)

dl(x)=k(|xn_121|+]XIZ“XZZD k

dy(x)= k(| x;, = x3 | + | xpy = x5 1)2 k

dy(x)= k(| x;y = x5y |7+ 1 x5 = x| IV/P k, p

d(x)=k(lx;, = x5y | P+ | x5 = x50 | IS k,p,s

ds(x)= k(| x;; = 2y [+ | x5 = x5, D) ki k
+ kol x = 2 17+ Lxy = x5 1)/

v 2

which is a parameterized function of the planar
coordinates of the two points. These functions can be
classified in three major groups with respect to the
type of coordinates they use. The members of the
first group use spherical coordinates for the purpose
of introducing the spherical effect of the earth sur-
face into the distance estimation [20,21]. Although
this idea provides certain additional accuracy, the
contribution has been experimentally reported to be
minor by Love and Morris [20]. The second group
consists of functions which use polar coordinates
[27,29]. The motivation is based on the observation
that the roads in old cities are not usually planned
according to a rectangular grid structure and there-
fore distances can be approximated better by a ring-
radial measure. This approach seems to be very
accurate especially for a spider’s web-like road net-
work structure. The third group contains some sim-
ple functions of the cartesian coordinates. These are
mostly norms or norm-based functions. We list five
of them which we adopt in this study in Table 1. The
first four are the most important because of their
wide usage in location and distribution problems
[15,23].

The parameters, which should be nonnegative, %,
p, S, k,, and k, constitute @ and are estimated over
a sample to provide good approximations and as
such, encode geographical characteristics of the re-
gion where they are used. There is a large literature
on the determination of these parameters and the
comparison of the distance metrics, sometimes with
conflicting results [5-7,9,20-22].

For all practical purposes, the function chosen to
estimate actual road distances should be as accurate
as possible. In their early study, Love and Morris
[20,21] compute the parameters k, p, and s of

d(x), d)(x), dy(x), and d,(x) for the United States
and compare them with respect to the accuracy they
provide. The important conclusion of this study is
the superiority of d,(x) over the other three. The
second best is d;(x).

At the end of their study on the road network of
the former Federal Republic of Germany (FRG),
Berens and Korling [6] and Berens [5] conclude that
the accuracy provided by the weighted Euclidean
norm d,(x) is sufficient and the use of d,(x) is not
worth the extra computational effort necessary for
calculations. However in a further study over the
largest 25 cities of FRG, Love and Morris [22] report
conflicting results which demonstrate that the accu-
racy of the weighted L, norm, d,(x), is remarkably
higher than the accuracy provided by d,(x). Al-
though it supports the early findings of Berens and
Korling [6] for FRG, the study by Berens [5] includes
mixed results when it is enlarged to cover 11 other
countries; the relative improvement introduced by
d,(x) over d,(x) ranges within 0.00% and 11.27%.
Finally, Berens and Korling [7], in their last com-
ment, state that the empirical distance functions
should be tailored for the regions in which they are
to be used if the accuracy is the main interest and
that there is not one general distance function which
provides the same accuracy all over the world.

There are also distance measures which do not fit
completely in any of the above mentioned three
groups. They can be included in the last one but they
are not always simple functions of the coordinates
and require additional information such as a rotating
angle for the coordinate axes [11,21] or vectors for
possible directions on a typical road [35,36]. All of
them are based on the idea that a travel has two
major components; rectilinear and Euclidean, and the
actual distance between any pair of points can be
modelled as a positive linear combination of them.
Ward and Wendell [35] initiate this hybrid idea by
suggesting the weighted one-infinity norm and ob-
serve that the accuracy of this function is relatively
close to the accuracy of the weighted L, norm,
d4(x), on the data set of Love and Morris [20]. In
their later work, Ward and Wendell generalize the
one-infinity norm to obtain the family of block norms
in which the accuracy of the approximation depends
on possible travel directions [36]. They report that
the approximations obtained by the weighted L,

E. Alpaydin et al. / European Journal of Operational Research 92 (1996) 230-243 233

norm are more accurate than those obtained by a
two-parameter block norm, which is actually the
weighted one-infinity norm, and the accuracy of the
weighted L, norm is slightly worse than the one-of-
eight-parameter block norm’s. Similar conclusions
have been obtained also by Love and Walker [24] in
their detailed empirical study on block and round
norms. Block norms play an important role in loca-
tion models because they lead to linear programming
problems for certain objective functions, such as the
minimax distance function; but the size of the linear
program can become very large.

Another hybrid distance function, which is pre-
sented as ds(x) in Table 1, is due to Brimberg and
Love [10]. It is called the weighted one-two norm
since the rectilinear and Euclidean elements of the
travel are presented respectively by the weighted L,
and L, norms. The authors suggest its use to approx-
imate ds(x) in estimating distances. The weighted
one-two norm also provides good approximations for
the probabilistic L, norm [12]. Besides, its parame-
ters can be calculated easily by simple linear regres-
sion [9)], and it can perform very well when local
information is also introduced through the rotation of
coordinate axes.

Due to the statistical nature of distance functions,
the unknown distance between the points may be
overestimated or underestimated. Then, confidence
intervals for unknown distances become important
since they can be used to measure the accuracy of
the estimated distance. In the recent work of Love et
al. [25], this issue has been addressed. They have
developed a procedure for calculating confidence
intervals for unknown distances. Their procedure
utilizes information provided by the sample Pearson
coefficients.

3. Multi-layer perceptrons

A multi-layer perceptron is a feedforward type of
neural network [18]. Each unit in a neural network
performs a weighted sum of its inputs. In a feedfor-
ward network, input is fed to the input layer which
propagates to the output layer through possibly a
layer of nonlinear hidden units. Weights between
consecutive layers encode interdependencies or con-

straints between the values that the units take simul-
taneously. It has been shown that such a network
with one hidden layer is a universal approximator,
i.e., can approximate any function with the desired
accuracy [16,19]. A feedforward neural network with
one hidden layer of H hidden units operates as
follows:

H
F(ulT,W)= ZThgh(Wh’u)+T’ (4)
h=1

u is the multi-dimensional input vector. T, is the
weight from hidden unit 4 to the output unit. 7, is
the ‘‘bias’’ weight. The output thus is simply a
weighted sum of the hidden basis functions,
&,(W,, w). Hidden units compute a weighted sum of
the k-dimensional input # with their weights W, and
then filter this value through a nonlinear sigmoid
activation function which is a smoothed version of
thresholding:

H,=g,(W,, u)

=1/

1 +exp(— Xk:“iWih_WOh)]- (5)

i=1

The most popular training method for multi-layer
perceptrons is the back-propagation learning algo-
rithm [31] which implements gradient descent over
an error function. Given a differentiable error func-
tion E, we start with any set of weights and repeat-
edly change each parameter 8, by an amount propor-
tional to 9E /96,

OE
AG = —n—, 6
? a0, ©)

where 7 is the stepsize in descent.

In our application of distance estimation, we use
the error function of Egs. (1) and (3). The input to
the neural network is a vector function of the coordi-
nates of the two points: #'= ¢(x’). Similarly the
output of the neural network by a known transforma-
tion gives us the desired distance: y'=d(x'|0) =
x(F(«'|T, W)). 0, the parameter vector of our
estimator corresponds to the weights of the neural
network, 1.e., W and T. The problem of choosing
good coding or representation functions, ¢(-) and
x(-), is critical in the application of neural networks.

234 E. Alpaydin et al. / European Journal of Operational Research 92 (1996) 230-243

Noting that g’(a) = g(aX1 — g(a)), this leads to the
following parameter update equations:

yi__ri
ATO=—7](;)

r

! 7)
)ThHh(l Hh)’

yl_ri
ATh=_77(‘)Hhv

y
AWOh'“ “71(

i i

AWih=_”fI(y)ThHh(l—Hh)ui‘

4. Regression neural networks

The nonparametric density estimate of probability
at a certain value is a weighted sum of the effects of
sample points. Given a sample of n real d— -
dimensional X, values, the estimate of probability at
x is [32):

" x—X,
o) -7z k(7). ®
i=1
K is the kernel density function and A is the window
width of the kernel. We can use this approach for
regression, i.e., for inference of a scalar y value for
a given multi-dimensional vector x if we are given
pairs of (X;, ¥,). The kernel estimate of the joint
probability density f(x, y) is then written as:

BREES ¢
f(x, y)= PRy P

1 (y— Yi)2
X moexp[— =] (9)
Using Bayes theorem:
f(ylx)=f(x’) Hxy) (10)

x - N .
f() f f(x, y) dy
Our estimate of y is the expected value:

[f(x, ¥) dy
E[ylx]=—A——-——. (11)
ff(x, y)dy

Replacing the joint density by its kernel estimate, we
get the Nadaraya—Watson estimator.

LYK((x—X,)/h)
L K((x=X;)/h)

y(x) = (12)

Because of its attractive analytical properties [32],
the kernel function is generally taken as the Gauss-
ian, named a Parzen window [13]:

¢ el ?
K(u)=(—‘/21=w) exp[— 5] (13)

This then leads to the following equation for our
estimate $(x):

Y Yoexp|—llx— X, 11°/2%]
2:=lexp[—||x—X,. I /2h2]

$(x) = (14)

The estimate $(x) is thus a weighted average of
all the observed Y, values where each weight is
exponentially proportional to its Euclidean distance
from x. Note that a good choice of the window
width A is critical. If it is large then even distant
neighbors affect the estimate at x leading to a very
smooth estimate. In the extreme case when h goes to
infinity, our estimate is the average of all Y,, inde-
pendent of the input. When # is small, only a few (if
any) samples play a role, leading to a noisy estimate.

The ‘‘bias/variance dilemma’’ stated by Geman,
Bienenstock, and Doursat [17], points out that when
h is large, $(x) is an average of many samples and
the variance contribution of our estimator is small as
our estimator does not change from one training set
to another (of course assuming that they are all
drawn from the same distribution). The bias is large
in this case as our estimate is biased toward the
population response. When £ is small, there is small
bias but the estimate is dependent on the particular
training set used. Therefore the variance contribution
is high. Thus choosing & implies a trade-off between
bias (systematic error) and variance (random error).
h is determined by trial and error, cross-validating on
a separate test set. A more detailed analysis of the

E. Alpaydin et al. / European Journal of Operational Research 92 (1996) 230243 235

approach and its properties are beyond the scope of
this present paper; the interested reader is referred to
[33].

Back-propagation rule is generally criticized on
the grounds that learning takes many epochs over the
training set and also that the performance depends on
a good choice of H, the number of hidden units. The
method just explained belongs to the class of mem-
ory-based methods where approximation is directly
done from a table of stored values. These methods
require only one epoch over the training set, i.e., to
read in the table. Here @, the parameter vector,
includes the whole training set and 4. Thus learning
is fast but the memory requirement is large. There
are also methods to choose a subset of the training
set without decreasing performance; see [2] for a
review.

As also noted by Specht who names this a gen-
eral regression neural network [34], this approach
can also be written in the framework of Eq. (4). Here
H is equal to table size, i.e., the number of training
patterns with W, = u”, T, = y", the desired output
for u" and we have:

exp[— | W, - ull> /242
Y exp[= 1w, —ull?/2m?]
(15)

The problems of finding good input and output
codings apply also here.

8u(W,, u) =

5. Combining multiple estimators

There are many choices that should be made
before an estimator can be used in an application.
These include the model, method of estimating pa-
rameters, i.e., learning rule, training sample, input
representation, error function minimized, etc. Each
choice made is one additional sort of bias which may
not be appropriate. The general approach is to try
alternatives and choose the one that best performs on
a test sample, distinct from the sample used for
training, i.e., cross-validation. We advocate in this
section that it is better not to discard alternatives but
combine all to improve performance.

There are two ways in which multiple estimators

*r

r COMBINER]

di(xle 1) dz(XIez)

N

X

dc(xle)

e

Fig. 1. Block diagram of combining multiple estimators. The
combiner takes the predictions of the estimators as input and
makes the final prediction. The combiner can be a fixed voting
system or an estimator that is also trained.

can be combined: one is voring and the other is
stacking. Note that regardless of the way we com-
bine the models, there is no reason to expect im-
provement in performance through having multiple
models if they are quite similar. One can only get
fault tolerance through redundancy if the models fail
under different circumstances. In neural networks,
choosing parameters randomly like the initial weight
values and hyperparameters like the network archi-
tecture or by having different learning rules, one
guarantees this to a certain extent. Basically as we
will see in the next subsection, when we have one
mode] that has a certain success, we want to add a
model that succeeds best for inputs on which the first
one fails; we do not care about the new model’s
overall performance.

As seen in Fig. 1, we have ¢ estimators, dj(x | 91-),
each one trained separately. Then during estimation,
each one gives an output and these outputs are
combined by a combiner system to determine the
final output r. We mention two types of combiners:
The voting system computes a weighted sum where
weights are fixed. In the stacking approach, the
combiner is also an estimator that is trained.

In our application, we combined the three estima-
tors — parametric, multilayer perceptron and the
regression neural network - using both types of
combining; parametric, multilayer perceptron, and
the regression neural network. We believe them to be
sufficiently different in our application of distance
estimation.

236 E. Alpaydin et al. / European Journal of Operational Research 92 (1996) 230-243

5.1. Voting

In voting with ¢ voters, each estimator d (x| Bj)
gives an output for the input x. The final output, r,
is a weighted sum [1}:

c
r= 2 d(x16)o;, (16)
i=1
where X¢_, w; = 1. Unless there is a prior reason to
favor one voter over another, weights are taken as

equal: w;=1/c. If we look at the variance of r
[26,30]:

Var(r) = Var

1 [
—Zdj
¢y

=%[ZVar(d,)+2Z 2 Cov(d;,).
C j J k#j
(17)

If the models are statistically independent, the
second term cancels and variance (and mean square
error) decreases with increasing ¢. However variance
can further be decreased by choosing mutually *‘or-
thogonal’’ methods [37]. For example if we have two
models, instead of having them independent, we do
much better by having them negatively correlated.

It may be possible to have an a priori preference
of one estimator over another then we would like to
have the weights of those estimators in voting higher.
We can for example assess them over a cross-valida-
tion set and use their performances to determine
weights so as to assign larger weights to more
successful voters. Using Occam’s razor, we can also
a priori assume that complex models with many free
parameters tend to overfit on a small sample. Thus
we may like to have the tendency to give them less
weight unless they are more successful than simpler
models, i.e., their additional complexity is justified
[1]. We have not tested these two latter approaches in
this present work.

5.2. Stacking

Combination of multiple estimators can also be
considered as an estimation problem. Wolpert who
initiated the idea calls it stacked generalization [37].
Breiman converted it to statistical language as

stacked regression [8]. Here we have two levels of
estimators. First on level 0, L, are our usual estima-
tors chosen carefully to be as different as possible
while maintaining individually acceptable levels of
performances. On top of these, on level 1, L, is
another estimator (the combiner) whose inputs are
the outputs of the first level estimators.

L, estimators are trained separately on the same
training sample. Then they are applied to a different
set on which they make estimations. The L, estima-
tor takes those estimations as input and maps them to
the correct value. Thus L, and L, estimators are
trained on separate training sets. This is because the
performances of the L, estimators on the data that
they are trained on can be very different from their
behavior on the data that they are not trained on; this
is exactly what L, should know about and be trained
on. This is generally done by dividing the training
set into two and using one half for training each
level. When the training set is small, one can use
leave-k-out (jackknife) to avoid losing precious data.
Significant improvement in success has been
achieved using this approach on the classification
task of protein secondary structure prediction [38].

6. Implementation results
6.1. Database

We have collected two distinct samples by pairing
respectively 28 and 23 cities of Turkey for training
and test sets. The first is used for estimating the
parameters and the second one to assess their perfor-
mances. The training and test data sets contain planar
coordinates and intercity distances for respectively
28 and 23 cities which make 28%27/2 =378 and
23%22/2 =253 data pairs. There are 74 cities in
Turkey thus the complete data set contains 74*73 /2
= 2701 pairs and our training set constitutes 14% of
it. The third dimension is ignored since previous
empirical studies have shown that the effect of height
in the accuracy of estimations in Turkey is almost
null [4]. The values we report in the following
sub-sections are average error per pair in kilometers
on both the training and test sets. Recall that the
error per pair is measured by the normalized error
measure given in Eq. (3).

E. Alpaydin et al. / European Journal of Operational Research 92 (1996) 230-243 237

6.2. Distance functions

By looking at properties of the application, it is
realistic to eliminate some of the distance functions a
priori by judging them with the structural properties
of the actual road network. First of all, the road
structure in Turkey has been developed arbitrarily
rather than rectilinearly or ring-radially. This arbi-
trariness makes the identification of a fixed pattern
for possible travel directions within the country im-
possible; this is crucial for the use of block norms.
Besides, the area is too small to require the consider-
ation of the earth’s roundness in estimating actual
distances. Being convinced by these observations, it
is rational to concentrate on functions d,(x),
dy(x), d(x), d(x) and compute the best possible
value of the parameters &, p, s, k,;, and %,. In spite
of this fact, we also computed the value of %k for
d(x) since this function has been heavily considered
in location literature [15].

The calculation of the parameters with respect to
any of the estimation criteria introduced in Section 1
requires minimizing an error function like Eq. (1).
Since we use the normalized error function given in
Eq. (3), the minimization problems are continuous in
the parameters. They are also well-behaved in the
sense that any Karush—Kuhn-Tucker point with re-
spect to the unknowns &, p, s, k|, and k, is optimal.
For d(x), d,)(x), and ds(x), we have analytical
solutions and the values of %, &, k,, which mini-
mize error function (3), can be obtained easily by
using the following equalities.

For d(x):

n " " " .
Z,=1(|x;1 _xérl"'lxiz_xﬁzl)

= . (18)
z — ——2 - (
Yo (hxhy = xy [+ xiy = x, 1) /o
For d,(x):
n . . 2 . -\ 1/2
o Lo = 17+ Dy — i,)
Zi=|(|x§1—x§l| + | xj; — x|)/rl
(19)
and for ds(x):
Ay302 — Gy2ay _ 443 7 a4y,
1 2 ’ 2 2 _
a1 — Andy @31 ~ Gndy,
(20)

where

n

. ; . , 2 .
a, = Z(|xil—xél|+|xi2—x§2|)/l", (21)

1 i i i i|
ZF (lel—x21|+|x12—x22)
i=1

. - . 172
x(1xty = xby 12+ Loy =y 17)]

n

. o : LN
an = E(‘xh*xéJ + 1 x, — x|)/rlv

i=1

n
a3 = Z(Ix{l—x£l|+lxi2_x£2|)’
i=1

n

. - . -
023=E(|x11")‘§1| + 1 xj; —x3 |
i=1

)1/2.

However, the calculations for & and p of d,(x),
and k, p and s of d,(x) are slightly more compli-
cated. They require the solution of the following

unconstrained optimization problems.
For d(x):

2
= k(lxil_xﬁ”p*'lxiz—xézlp)l/p_ri
i (22
T.‘A‘E[wm (22

For d,(x):

. . . i /s
O A L B A M LS R

min
k.p.s i=1 \/r'

Although they are quite simple with respect to the
number of variables, which is two and three respec-
tively, the number of nonlinearities induced by these
problems can be very large depending on the size of
the pairs of points within the training set. Their
minimizations were carried out using MINOS 5.1
[28]. The results are given in Table 2. Observe that
the rectilinear distance function has the worst perfor-
mance. Meanwhile the accuracy of d,(x) is the
highest. These facts definitely support our previous
inference on the arbitrariness of the road structure in
Turkey.

The parameters of the distance functions should
be customized according to the geographical charac-
teristics of the region they are to be used; this has

"] . (23)

238 E. Alpaydin et al. / European Journal

Table 2

of Operational Research 92 (1996) 230243

Average error per pair using the five parametric distance functions

Data sets Distance function
dfx) dy(x) d+(x) d(x) ds(x)
Parameters k=1.073 k= 1310 k=1262 k=1.688 k, =0.280
p = 1603 p=1.686 ky =0.971
s = 1.761
Average error on training set 8.55 4.54 3.92 3.61 3.98
Average error on test set 12.49 9.05 8.48 8.10 8.49

been agreed as a consequence of many empirical
studies previously mentioned. In other words, a dis-
tance function must be flexible enough to introduce
also the effect of regional geography on distances
into the estimations. An interesting attempt for mod-
elling regional characteristics has been realized first
by Love and Morris [21] who suggested the rotation
of the original coordinate axes by an angle i, before
using the weighted L, norm, d,(x). This approach
results in the following two-parameter distance func-
tion:

dl(f)=k(|311_£2||+‘312_322|)- (24)
Here, %,,, %,, %,,, and %,, are the coordinates in

the rotated system and they can be calculated with
the following formula when ¥ is given:

> ST T [xn xpp)fcosdy —sin

(25)
Later on axes rotation has been applied to two more
general distance functions: the weighted L, norm,

Table 3

d(x) [11,24], and the weighted one-two norm d,(x)
[9,10]. Experiments show that rotation improves the
accuracy of estimations.

We also studied the effect of rotation for distance
functions d,(x) to dy(x) by using our data. Al-
though rotation requires the addition of ¢ as the new
parameter to the original parameter vector 8, which
is shown in the second column of Table 1, the
method that we used to obtain Table 2 can be
adopted easily. Once ¢ is fixed, namely axes are
rotated for a certain angle, then Eqgs. (18) to (21) can
be used to compute parameters k, k,, and k, of the
distance functions d,(x) and ds(x) and the uncon-
strained optimization problems (22) and (23) can be
solved in order to compute the parameters k, p, and
s of dy(x) and d,(x). Note that d,(x) is invariant
under rotation, and therefore it is not considered in
this part of the study. The results are given in Table
3. They support the findings of Table 2. The consid-
eration of i as the new parameter increases the
accuracy. However, the rectilinear distance function
has again the worst performance and the accuracy of

Average error per pair using the four parametric distance functions with rotation

Data sets Distance function
d(x) dy(x) d(x) ds(x)
Parameters y=5° = 48° ¢ = 50° P=4°
k=1.069 k=1.395 k=1.807 k, = 0.29
p=2.740 p=2.548 k, =0.958
5= 1.761
Average error on training set 8.28 3.82 3.52 394
Average error on test set 12.90 8.45 8.09 8.56

E. Alpaydin et al. / European Journal of Operational Research 92 (1996) 230-243 239

d,(x), which is closely followed by the accuracies of
d,(x) and d(x), is still the highest.

6.3. Multi-layer perceptrons

We employed a multi-layer perceptron with one
hidden layer with the back-propagation learning rule.
After several trials, the best input representation was
determined as the four data values and the Euclidean
distance in between as a hint:

T
u=¢(x)=(x;1, X2, X1, X0, ¥, = 3501}

In terms of output representation, we found out that
learning the ratio of actual distance to Euclidean
distance is better than leamning the actual distance
itself. This ratio is called the directional bias by
Brimberg and Love [10] and Brimberg and
Wesoloswky [12]:

y=x(r)=r/llx;—x,ll
This may be thought of as extending d,(x) in the
parametric case in that, instead of computing one

constant global k factor, it is as if the neural network
computes a continuous function k(x) by which it

ol F : ; " b

15 +

Training error

05 ¢+

No of hidden units

8.1 ¢

a2 b

76 T
75 +

Test error

7.4 ; — t + —

8 10 12 14 16

No of hidden units

Fig. 2. Average error of multi-layer perceptrons on the training
and test sets as a function of the number of hidden units after 10
independent runs. Squares denote means and error bars are one
standard deviation long on either side.

l —O0— Training —— Tegt l — 9.00

T 8.90
+ 8.80
2 4 1 870

+ 8.60

1850

+ 8.40

4830

0 + + + + + + 820
35 40 45 50 55 60 65

Test error

Training error
o

Fig. 3. Average error of regression neural network on the training
and test sets as a function of the window width.

scales the Euclidean distance. Note that in these two
cases, we can take advantage of our a priori knowl-
edge that the distances are symmetric, namely,
d(x,, x,)=d(x,, x,), and doubie the training set.
This can be done by adding data triples (x,, x,,
d(x,, x,)) to the triples (x,, x,, d(x,, x,)) in the
training set. In Fig. 2, average errors and standard
deviations over the training and test sets are given
over 10 independent runs as a function of the num-
ber of hidden units.

We used a momentum term and updated 7 dy-
namically for faster convergence. Training stops
when no further improvements were made. Networks
require around a hundred epochs for convergence
after which slight improvements (less than 5%) are
achieved if learning is continued.

6.4. Regression neural networks

By playing with the alternatives, we found out
that the following input representation was the best:

u=¢(x)
=(lx“—x21|, Xy, — x|l xl_lel)T'

Kernel-based estimation methods suffer from the
“‘curse of dimensionality”> [13] because the neigh-
borhood information is lost when the dimensionality
of the space increases. Thus decreasing the input
dimensions from five to three helped. The output
was the desired distance:

y=x(r)=r.

Results achieved are given in Fig. 3 as a function
of the window width, 4. Note that there is a large

240 E. Alpaydin et al. / European Journal of Operational Research 92 (1996) 230-243

Table 4

Average error of three estimators and the result of voting
Estimators Training error Test error
Parametric model 3.61 8.10
Multi-layer perceptron 2.63 791
Regression neural network 238 8.49
Voting 2.26 7.63

dependence on h. Overall, the success is slightly
inferior to that of the multi-layer perceptron.

6.5. Combining estimators

6.5.1. Voting

Taking into account the fact that combining multi-
ple estimators is a better idea when estimators are as
different as possible, we used the following three
estimators:

(1) Parameterized distance function, d,(x) with

three parameters %, p, and s.

(2) Multi-layer perceptron with 12 hidden units.

(3) Regression neural network with 4 = 54,

The votes are taken as equal. Results achieved are
given in Table 4. Note that the result of voting is
better than the result of all voters. This indicates that
estimators do fail under different circumstances.

6.5.2. Stacking

We used again three estimators as our L, estima-
tors:

(1) Parameterized distance function, d,(x) with

the parameter k.

(2) Multi-layer perceptron with 12 hidden units.

(3) Regression neural network with s = 54,

The combiner L, estimator is a multi-layer per-
ceptron with 2 hidden units. We divided the training
set into two parts performing ‘‘leave-n/2-out’’; T,
and T|. We have trained all three L, estimators using
T, only and saved their predictions on 7, as R,.
Then we have trained them on 7, and saved their

Table S

Average error achieved through voting vs. stacking
Combiner Training error Test error
Voting 2.26 7.63
Stacking 3.81 7.41

predictions on T, as R,. We have trained the com-
biner network L, on R, and R,. After training the
combiner network, we have trained all three on the
complete training set. Stacking is superior to voting
as is also shown in our study. Values reported are
average errors on both the training and test sets
(Table 5).

7. Conclusions

We compare approaches based on the three crite-
ria of accuracy, memory requirement, and time.

+ Accuracy. We see that the multi-layer percep-
tron can be a better estimator than the parameterized
distance functions in terms of estimation accuracy.
This is because in the latter models, the parameters
are fixed over the whole space. For example when
d,(x) is used, k is constant over the whole country
but we know that for example in Turkey, the eastern
part is more mountainous than the western part and
thus k there is higher than k& of the west as a
consequence of the extra curvature caused by these
natural obstacles. The multi-layer perceptron may be
seen as approximating an input dependent, continu-
ous function &(x). Being nonparametric, it does this
without assuming any a priori form. An approach in
distance function based estimation is to divide the
space into multiple regions and make separate esti-
mations in separate regions; this is a piecewise con-
stant approximation of the k(x) [3].

Though the regression neural network and the
parameterized distance function do not perform as
well as the multi-layer perceptron, when they are
combined, their accuracy is higher. This indicates
that on cases where the perceptron fails, the others
make good guesses. The stacking approach as it is
trained performs better than voting.

+ Memory Requirement. Out of the three estima-
tors we have implemented, the regression neural
network has the highest memory requirement by
storing 4n + 1 parameters: 4 values for each pair for
a training set of n pairs and the parameter A, here
4378 + 1 =1513. When H is the number of hid-
den units, the multi-layer perceptron requires 6 H
(five inputs and one bias) values for W and H + |
for T, thus total of 7H + | weights, here 85. Mem-

E. Alpaydin et al. / European Journal of Operational Research 92 (1996) 230243 241

ory requirement increases when one has multiple
models. In the stacking approach, there are also
parameters of the combiner network. However, the
parameterized distance functions considered in this
work respectively have one, one, two, and three
parameters in addition to the rotating angle .
Therefore, they use memory very efficiently.

+ Learning Time. The regression neural network
is trained in one epoch. Three of the first parameter-
ized distance functions has an analytical solution
where we compute &, k,, and &, by making one pass
over the training set. The computational effort spent
for training the multi-layer perceptron is consider-
ably higher than that is required by the other two
parametric models given in Eqs. (22) and (23), as
many trials should be made with the multi-layer
perceptron to find out the good input and output
representations and the number of hidden units. To
train the stacking network, when one divides the set
into two, the estimators are trained twice. Ideally,
‘‘leave-one-out’” where at each step, the training set
is divided into two parts of size one and n—1 is
better for bias reduction but it requires » trainings.
This is the approach Wolpert originally proposed for
stacked generalization [37]. In short the effort re-
quired to compute the parameters of distance func-
tions is very small compared to the training effort of
neural networks.

It is generally accepted that using this or that
learning technique by itself is not sufficient to train a
neural network appropriately. A good knowledge of
the application and the learning methods are neces-
sary to guide the estimator to learn the important and
ignore the irrelevant. As shown in the preceding
sections, different methods may benefit from differ-
ent input and output representations. Perhaps the
quality of the training sample is the most important
factor that affects the quality of estimation. For
example, a large enough and representative sample is
required for the approximation not to be biased by
the idiosyncrasies of the particular sample used.

Viewing the results achieved, we can say that
nonparametric approaches can be considered better
than parameterized distance functions in terms of
estimation accuracy. This is not just due to having
more parameters. The fact that both training and test
errors are lower implies that the nonparametric meth-

ods are able to extract some underlying structure
which cannot be captured completely by the para-
metric approaches. The nonparametric method does
not simply memorize the training set but generalizes
accurately to unseen patterns in the test set. We
believe that this is due to the fact that the nonpara-
metric estimator can adjust itself to follow the change
in the geographical characteristics of a region as
opposed to the parameterized distance function esti-
mating over the whole country. On the other hand,
the advantage of the parameterized methods is that
because they have a small number of parameters,
they require much less memory and smaller training
samples, making them suitable for applications where
memory and learning time is limited.

Parametric distance functions are often incorpo-
rated into the objective functions of many optimiza-
tion models, e.g. the objective function of continuous
space facility location problems. This is also possible
for neural network estimators. The optimization of
the objective function calculated via a neural net-
work can, in principle, be undertaken by standard
optimization algorithms. Analytic formulae for the
gradient and Hessian of the function on the network
are available, for example for the case of multi-layer
perceptrons. The major drawback of these functions
compared to distance functions, is their being non-
convex, which is not the case for the parametric
distance functions we study in this work — at least
under certain restrictions on the parameters &, p, s,
k,, and k, [20,21]. Convexity with respect to the
coordinates is an important property because the
effort necessary to spend on the solution of the
optimization models decreases drastically if the ob-
jective function to be minimized is a convex function
and the solution space is a convex set.

The function calculated via a neural network is
very suitable for parallel computations, which may
provide considerable advantages especially when
many different optimization calculations have to be
undertaken.

In short there is not one method that is signifi-
cantly superior to others in all four respects of
accuracy, memory requirement, learning time, and
the advantages it provides when incorporated into
objective functions of optimization models. Thus
when choosing a particular estimator, all these as-
pects should be taken into account according to the

242 E. Alpaydin et al. / European Journal of Operational Research 92 (1996) 230-243

particular implementation constraints and not only
accuracy as it is frequently done in the literature.
Finally, we advocate the use of multiple estimators
and combining them to get accurate estimators.

Acknowledgements

We thank the two anonymous referees for their
construtive comments and informing us of recent
work on parameterized distance functions. We thank
Haluk Erkut and Seckin Polat of the Department of
Industrial Engineering, Istanbul Technical University
for the first inspiration and continuous encourage-
ment, D.H. Wolpert of Santa Fe Institute for giving
pointers to related literature on combining estimators
by stacking. This work is supported in part by Grants
TBAG-1336 and EEEAG-143 from Tiibitak, the
Turkish Scientific and Technical Research Council.

References

[1] Alpaydin, E., ‘‘Multiple networks for function learning’’,
IEEE International Neural Network Conference, San Fran-
cisco, CA, Vol. 1 (1993) 9-14.

Alpaydm, E., ““GAL: Networks that grow when they leamn

and shrink when they forget’’, International Journal of

Pattern Recognition and Artificial Intelligence 8 (1994)

391-414.

Altinel, 1.K., and Aras, N., ‘‘Estimating road distances in

Istanbul with single and multi regional models”, Research

Paper Series No: FBE-IE-05/94-05, Department of Indus-

trial Engineering, Bogazi¢i University, stanbul, 1994.

Altnel, L.K., Aras, N., Alie, A., Cangiir, G., Ozel, R., and

Yicel, A., ‘‘Estimating road travel distances in Turkiye”’,

Research Paper Series No: FBE-IE-03 /94-03, Department of

Industrial Engineering, Bogazici University, Istanbul, 1994.

[5] Berens, W., ““The suitability of the weighted L, norm in
estimating actual road distances’’, European Journal of Op-
erational Research 34 (1988) 39-43,

[6] Berens, W., and Kérling, F., *‘Estimating road distances by
mathematical functions’’, European Journal of Operational
Research 21 (1985) 54-56.

[7] Berens, W., and Kérling, F., **On estimating road distances
by mathematical functions — A rejoinder’’, European Jour-
nal of Operational Research 36 (1988) 254-255.

[8] Breiman, L., “‘Stacked regression,”” TR-367, Department of
Statistics, University of California, Berkeley (1992).

[9] Brimberg, J., Dowling, P.D., and Love, R.F., **The weighted
one-two norm distance model: Empirical validation and con-
fidence interval estimation’’, Location Science 2 (1994)
91-100.

{2

—_—

3

—

(4

—

[10] Brimberg, J., and Love, R.F., *‘A new distance function for
modelling travel distances in a transportation network’’,
Transportation Science 26 (1992) 129-137.

[11] Brimberg, J., Love, R.F., and Walker J.H. *‘The effect of
axis rotation on distance estimation’’, European Journal of
Operational Research 80 (1995) 357-364.

[12] Brimberg, J., and Wesolowsky, G.O., ‘‘Probabilistic L,
distances in location models”’, Annals of Operations Re-
search 40 (1992) 67-75.

[13] Duda, R.O., Hart, P.E., Partern Classification and Scene
Analysis, John Wiley, New York, 1973.

[14] Erkut, H., and Polat, S., ‘A simulation model for a urban
fire fighting system’’, Omega 20 (1992) 535-542.

[15) Francis, R.L., McGinnis, L.F. Jr., and White, J.A., Facility
Layowt and Location: An Analytical Approach, 2nd edition,
Prentice Hall, Englewood Cliffs, NJ, 1992,

[16] Funahashi, K., ““On the approximate realization of continu-
ous mapping by neural networks™’, Neural Nerworks 2 (1989)
183-192.

[17] Geman, S., Bienenstock, E., and Doursat, R., ‘‘Neural net-
works and the bias/variance dilemma’’, Neural Computa-
tion 4 (1992) 1-58.

[18] Hertz, J., Krogh, A., and Palmer, R.G., Introduction to the
Theory of Neural Computation, Addison Wesley, Reading,
MA, 1991.

[19] Homik, K., Stinchcombe, M., and White, H., *‘Multilayer
feedforward networks are universal approximators’’, Neural
Networks 2 (1989) 359-366.

[20] Love, RF., and Morris, J.G., ‘‘Modelling inter-city road
distances by mathematical functions’’, Operational Research
Quarterly 23 (1972) 61-71.

[21] Love, R.F., and Morris, J.G., ‘‘Mathematical models of road
travel distances’’, Management Sciences 25 (1979) 130~139.

[22] Love, R.F., and Morris, J.G., *‘On estimating road distances
by mathematical functions’’, European Journal of Opera-
tional Research 36 (1988) 251-253.

[23] Love, R.F., Morris, J.G., and Wesolowsky, J., Facilities
Location: Models and Methods, North-Holland, New York,
1988.

[24] Love, R.F., and Walker, J.H., ‘‘An empirical comparison of
block and round norms for modelling actual distances’’,
Location Science 2 (1994) 21-43.

[25] Love, R.F., Walker, J.H., and Tiku, M.L., ‘‘Confidence
intervals for I , o distances”, Transporiation Science 29
(1995) 93-100.

[26] Mani, G, *‘Lowering variance of decisions by using artificial
neural network portfolios””, Neural Computation 3 (1991)
484-486.

[27] Mittal, AK., and Palsule, V., **Facilities location with ring
radial distances’’, Institute of Industrial Engineers Transac-
tions 16 (1984) 59-64.

[28] Murtagh, B.A., and Saunders, M.A., ‘*“MINOS 5.1 User’s
Guide’’, Technical Report No: SOL 83-20R, Stanford Uni-
versity, Stanford, CA, 1983 (revised 1987).

[29] Perreur, J., and Thisse, J., *‘Central metrics and optimal
location’’, Journal of Regional Science 14 (1974) 411-421,

E. Alpaydin et al. / European Journal of Operational Research 92 (1996) 230-243 243

[30] Perrone, M.P., Improving regression estimation: Averaging
methods for variance reduction with extensions to general
convex measure optimization, Ph.D. Thesis, Department of
Physics, Brown University.

(31] Rumelhart, D.E., Hinton, G.E., and Williams, R.J., *‘Leamn-
ing internal representations by error propagation,” in: D.E.
Rumelhart, J.L. McClelland and the PDP Research Group
(eds.) Parallel Distributed Processing: Explorations in the
Microstructure of Cognition, Vol 1., MIT Press, New York,
1986, 318-362.

[32] Silverman, B.W., Density Estimation for Statistics and Data
Analysis, Chapman and Hall, London, 1986.

[33] Stone, C.J., “‘Consistent nonparametric regression’’, The An-
nals of Statistics 5 (1977) 595-645.

[34] Specht, D.F., ‘‘A general regression neural network’’, JEEE
Transactions on Neural Networks 2 (1991) 568-576.

[35] Ward, JE., and Wendell, RE., “‘A new norm measuring
distance which yields linear location problems’’, Operations
Research 28 (1980) 836-844,

[36] Ward, J.E., and Wendell, R.E., ““Using block norms for
location modelling’’, Operations Research 33 (1985) 1074—
1091.

[37] Wolpert, D.H., *‘Stacked generalization”’, Neural Networks
5(1992) 241-259.

[38] Zhang, X., Mesirov, J.P., Waltz, D.L., “‘Hybrid system for
protein secondary structure prediction”’, Journal of Molecu-
lar Biology 225 (1992) 1049-1063.

