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Abstract. Lazy learning methods like the k-nearest neighbor classifier require storing the
whole training set and may be too costly when this set is large. The condensed nearest
neighbor classifier incrementally stores a subset of the sample, thus decreasing storage and
computation requirements. We propose to train multiple such subsets and take a vote over
them, thus combining predictions from a set of concept descriptions. We investigate two
voting schemes: simple voting where voters have equal weight and weighted voting where
weights depend on classifiers’ confidences in their predictions. We consider ways to form such
subsets for improved performance: When the training set is small, voting improves performance
considerably. If the training set is not small, then voters converge to similar solutions and we
do not gain anything by voting. To alleviate this, when the training set is of intermediate size,
we use bootstrapping to generate smaller training sets over which we train the voters. When
the training set is large, we partition it into smaller, mutually exclusive subsets and then train
the voters. Simulation results on six datasets are reported with good results. We give a review
of methods for combining multiple learners. The idea of taking a vote over multiple learners
can be applied with any type of learning scheme.
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1. Introduction

Lazy learning methods like the k-nearest neighbor classifier estimate directly
from a given labelled sample (Duda and Hart 1973). In statistical estima-
tion theory, such techniques are named nonparametric. This differs from the
parametric approaches where a given model is assumed whose parameters
are estimated from the given sample (e.g., using maximum likelihood). In
many situations, no appropriate parametric model is known or the estimation
of parameters may be too costly or not optimal. In such cases, one opts for the
nonparametric approach where particular instances or examples are stored as
opposed to abstracting general rules.

Methods where response is computed by interpolating from a table of
stored patterns is called instance-based (Aha et al. 1991) or memory-based
(Stanfill and Waltz 1986) in the machine learning literature. In statistics, this
approach is called kernel-based density estimation (Silverman 1986) when
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one estimates the class-conditional densities for classification and locally-
weighted regression (Härdle 1990) when one estimates a continuous function.
The assumption is that the real world is smooth and that similar inputs give
similar outputs or belong to the same class. Thus when giving an output,
closest patterns with known outputs are the ones that should be taken into
account; see (Hastie and Tibshirani 1990; Chapter 2) for a review of smoothing
models.

In this paper, we concentrate on classification where a given input is to be
assigned to one of several mutually exclusive classes; extension to continu-
ous function approximation is straightforward. In Section 2, we explain the
condensed nearest neighbor classifier that incrementally forms a “sufficient”
subset of the training sample. Section 3 advocates forming multiple such
subsets and taking a vote over their responses. This approach is empirically
justified in Section 4 on six datasets with varying characteristics. In Section
5, a review of related literature on combining multiple learners is given. The
final section concludes by pointing out the implications of the current work
in a more general setting.

2. Condensed Nearest Neighbor Rule

A main disadvantage of a lazy learner like the k-nearest neighbor classifier is
the large memory requirement to store the whole sample. When the sample
is large, response time on a sequential computer is also large. To get rid of
the redundancy and decrease the number of free parameters, an alternative to
abstract, parametric models is an editing procedure that selectively discards
the redundant part of the training set. Hart (1968) proposed to minimize the
number of stored patterns by storing only a subset of the training set. The
basic idea is that patterns in the training set may be very similar and some do
not add extra information and thus may be discarded.

We want to find a subset of the sample S that is small and accurate. To
choose the best subsetZ�, out of the 2jSj possible subsets, we define the error
measure given in Equation (1) using regularization theory:

Z
� = arg min

Z

E(Z)

E(Z) =
X
x2S

L(xjZ) + 
jZj (1)

L(xjZ) =

8<
:

1; if D(zc; x) = minj D(zj ; x) and
class(x) 6= class(zc);

0; otherwise.
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zc 2 Z is the closest stored pattern to x 2 S using the distance measureD(�).
L(xjZ) is non-zero when the labels of x and zc do not match.

According to regularization theory (Vapnik 1995), the solution to a problem
can be obtained by combining the data and prior smoothness information.
The first term in Equation (1) measures the data-misfit that is due to the
error in classification using the 1-NN rule. The second term measures the
size of the subset stored and as such defines the smoothness of the class
boundary. The nearest neighbor classifier divides the input space in the form of
a Voronoi tesselation and the class boundaries are piecewise linear (Preparata
and Shamos 1985). As we have more examples, this boundary becomes more
ragged and less smooth. The smoothest case is when we have only one
example per class where we have linear boundaries between classes. 
 is
the regularization parameter that indicates the trade-off between these two
terms. Equivalently, this is a Bayesian approach that attributes higher prior
probabilities to simpler models.

Minimizing Equation (1) is a combinatorial problem and no known poly-
nomial time procedure can solve it to optimality. Though no formal proof
is known, we believe this problem to be NP-complete. A computationally
simple local search method has been proposed first as Condensed Nearest
Neighbor (CNN) (Hart 1968) and then later independently as IB2 (Aha et al.
1991) and Grow and Learn (GAL) (Alpaydın1990). The consistent subset,
Z , of a sample S , is the set of patterns that can classify all the elements of
S correctly using the 1-NN rule. There are usually many consistent subsets –
one trivial consistent subset is the set itself. One normally is interested in the
minimal consistent subset (i.e., the subset with the minimum cardinality) to
minimize the cost of storage and computation.

The CNN algorithm is given in Table 1. Starting from an empty stored
subset, we pass one by one over the patterns and add a pattern to the subset if
it cannot be classified correctly with the already stored subset. This implies
that error is more important than size (i.e., 
 < 1 in Equation 1). This
method, being a local search, does not guarantee finding the minimal subset
and furthermore, different subsets are found when the training set order is
changed. Generally passing over the sample a few times is sufficient until no
more additions are made when the stored subset classifies all the patterns in
the training set. At each pass, on the average, classification accuracy increases
and fewer patterns are added to the subset. To make learning even faster, one
can stop if the number of added patterns in the last pass is fewer than say,
5%, of the training set.

The classification rule is 1-NN but other nonparametric variants are also
possible at the expense of more computation. If the sample is noisy, there is
also the possibility of using k-CNN but this may be costlier (Gates 1972). If
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Table 1. The Condensed Nearest Neighbor Algorithm (CNN).

PROCEDURE CNN(S ,D,Z)
BEGIN
Z := fg;
REPEAT

additions:=FALSE;
FOR all patterns in the training set DO

Randomly pick x from training set, S
Find zc 2 Z such that D(x; zc) = minj D(x; zj)

IF class(x) 6= class(zc) THEN
Z := Z [ x;
additions:=TRUE

END IF
END FOR

UNTIL NOT(additions);
END CNN;

k = 2i+ 1, then for the correct classification of a new pattern, at least i+ 1
of its nearest neighbors must be from the correct pattern class and if this is
not true, in the worst case, it would have to be added i+ 1 times to Z .

Gates (1972) proposed the reduced nearest neighbor (RNN) rule that aims
to further reduce the stored subset. With RNN, after having applied CNN,
for each element of the subset we check if its removal causes an error in the
training set and we accept the removal if it does not. GAL (Alpaydın1990)
also has a “sleep” mode where an element of the stored subset is removed if
the closest stored element is also of the same class. In both approaches, it is
concluded that the small saving in memory is not worth the extra computation.

3. Voting over Multiple Learners

The problem with this approach to determining a consistent subset is that
when the order of the training set is changed, the search trajectory changes
and one can converge to a different local minimum storing a different subset.
These subsets, although they all classify all the patterns in the training set
correctly, perform differently on the test set. A method proposed previously
(Alpaydın1991) is to train multiple such subsets and then take a vote over
their responses. This method is not limited to lazy learning methods but can
be generalized to any kind of learning scheme. A review of methods for
combining multiple learners is given in Section 5.
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VOTING OVER MULTIPLE CONDENSED NEAREST NEIGHBORS 119

Let us say we have m classifiers and n classes. We denote by dji, the
estimate of classifier j for class i, computed for example using a lazy learning
method. In voting, we combine votes for classes through a weighted sum and
then assign the input to the class c receiving the maximum vote:

ri =
mX
j=1

dji�j (2)

c = arg
n

max
i=1

[ri] (3)

The weights are nonnegative and sum up to unity: �j � 0;
Pm

j=1 �j = 1.
Unless there is any a priori reason to favor one voter over another, weights
are taken as equal: �j = 1=m. This is simple voting.

There is a method that can be used to determine the weights �j easily for
weighted voting: the outputs of most classifiers can be converted to probabil-
ities. Then if, for classifier j, e is the most probable class and f is the next
most probable, one can compute:

�j = pj(ejx)� pj(f jx) (4)

which, after normalization can be used as weights: �j = �j=
Pm

l=1 �l. If
�j � 1, classifier j is very “certain”; as x gets closer to the boundary then
pj(ejx) � pj(f jx) and the difference gets closer to zero and classifier j is
less certain. Thus certain classifiers will have more say in the final output
than the classifiers who are not that sure.

In the case of CNN, we use a simple method to compute �j by just looking
at two neighbors. If zj;[1] is the closest pattern to x in Zj and zj;[2] is the
second closest, we have:

�j =

(
1; if class(xj;[1]) = class(xj;[2]);
D(x;zj;[2])�D(x;zj;[1])

D(x;zj;[2])
; otherwise.

(5)

where D(�) is the distance measure. If the two neighbors both belong to the
same class, the classifier is very certain. Otherwise its certainty decreases as
the input gets closer to the boundary which is halfway between them.

We show in the Appendix that error decreases through voting with an
increasing number of uncorrelated voters. Intuitively what is happening is
that each particular subset is generating a different noisy approximation to
the real class boundary and the averaging process is smoothing over the noise
(Figure 1). Each particular learner falls into a different (local) minimum and
they perform poorly in different regions of the input space and their error
terms will not be strongly correlated. As the number of voters increase, this
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Figure 1. Patterns 1 and 2 belong to one class and 3 and 4 to the second one. One run of CNN
can choose 1 and 4 which define the discriminant A and another CNN can choose 2 and 3 that
define the discriminant B. Both are minimal consistent subsets. C is the average of A and B
and is the right discriminant. Adapted from (Perrone 1993).

assumption of independence breaks down and voters become more similar
and there is nothing to be gained by combining learners unless measures are
taken to force them to be dissimilar.

4. Simulation Results

4.1 Datasets

To validate the advantage of voting over multiple CNN, we have compared
it on six datasets with CNN and 1-NN. The properties of the datasets are
given in Table 2. OCR is a handwritten digit database (Guyon et al. 1989).
Others are available from the UCI Repository (Murphy 1994). In the OCR,
VOWEL, and THYROID datasets, the training and test sets are separated. In
others, we chose small training set sizes to prevent NN from having too large
accuracy, thus leaving space for improvement. Euclidean distance is used as
the distance metric; the WINE and THYROID databases are z-transformed
before training (i.e., to normalize the numeric attributes such that all have zero
mean and unit variance). 1-NN and 1-CNN are used in all datasets except
VOWEL, where 7-NN and 7-CNN are used. This optimal k is chosen by
2-fold cross validation from among f1; 3; 5; 7; 9g. At each run of the CNN,
the training set is scanned in a different order to get a new subset. Reported
values are average and standard deviations of ten independent runs.

4.2 First comparison

We applied nearest neighbor (NN), condensed nearest neighbor (CNN) and
voting to all six datasets. Both simple and weighted voting are used with
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Table 2. Properties of the datasets used.

Number of Number of Number of training Number of test
features classes examples examples

OCR 256 10 600 600
IRIS 4 3 15 135
WINE 13 3 100 78
VOWEL 10 11 528 462
THYROID 21 3 3,772 3,428
GLASS 9 7 100 114

Table 3. Accuracy results of applying nearest neighbor (NN), condensed nearest
neighbor (CNN) and simple and weighted voting over three voters are given. Per-
centage of training stored by CNN is also given to show the gain in memory.

NN CNN (% of training Voting NN on
set stored by CNN) Simple Weighted union

OCR 93.17 90.08 (0.20) 91.95 93.67 92.42
IRIS 91.85 91.41 (0.29) 92.67 94.00 92.22
WINE 94.87 93.21 (0.14) 93.85 95.00 93.97
VOWEL 60.17 51.62 (0.67) 56.56 55.97 57.14
THYROID 93.14 90.95 (0.17) 91.63 92.23 92.55
GLASS 71.93 69.82 (0.57) 70.00 71.67 71.40

various numbers of voters. Another way to combine the subsets found by
multiple CNN is by applying NN to the union of subsets chosen by multiple
CNN. Comparing the results of voting with the performance on the union
allows us to highlight whether it is the voting process or the number of
instances that increase the performance. However, this union approach can
still be considered a multiple learner scheme because we run CNN multiple
times as opposed to just once. This can only be used with a method like k-NN
where effects are local; one cannot for example train multiple multi-layer
perceptrons and combine all hidden units together as one big hidden layer
and accept any improvement.

By taking a vote over as few as three CNN subsets, in three out of six
datasets, although one collectively stores a subset of the training set, one
achieves higher classification accuracy than the nearest neighbor, where the
whole training set is stored (Table 3). In GLASS and THYROID, with three
voters we also get better results by partitioning the dataset, as described in
Section 4.3. We also note that voting is better than using NN on the union,
showing that the performance benefit is not due to the larger number of stored
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Figure 2. Average classification accuracy on the OCR dataset with weighted voting and the
number of stored patterns stored as a function of the number of voters. For comparison,
classification accuracy and the number of stored patterns are marked when NN is used over
the whole training set.

patterns but rather to the way predictions are combined from a set of concept
descriptions. Generally, weighted voting is better than simple voting.

As can be seen in Figure 2 for the case of weighted voting on the OCR
database, when the number of voters increase, not only the average classifi-
cation accuracy goes higher but the variance also decreases. This indicates
better generalization and is the clear advantage of voting. Complete results
are given in Table 4. Results for the IRIS and WINE datasets are similar and
are omitted.

When one increases the number of voting subsets, after a certain number,
new subsets do not contribute much. Whether an additional subset pays off
the additional complexity and memory is a trade-off that needs to be resolved
depending on the particular application at hand.

In three datasets, VOWEL, THYROID, and GLASS, we do not seem to gain
anything by voting. The VOWEL database defines a quite difficult problem
and is very noisy; the optimal k is 7. The result with 7-NN is the highest
achieved and is better than all reported in the UCI Repository for that dataset
(e.g., the multi layer perceptron gives 51.0). This is most probably due to
the fact that each vowel sound is coded using only ten attributes and much
information is lost in the process.

4.3 Multiple training subsets

In the case of the THYROID and GLASS datasets, the problem seems to
be the large training set. It has been pointed out before that voting averages
over noisy discriminants. As the training set gets larger, the variance of an
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Table 4. Results on the OCR dataset with nearest neighbor classifier (NN) and
condensed nearest neighbor classifier (CNN). Values are average, standard devi-
ation over ten independent runs. Results with simple and weighted voting over
multiple condensed 2-nearest neighbor classifiers are also given. Results on the
IRIS and WINE datasets are similar.

Method Accuracy Patterns Epochs

NN 93.17, 0.00 600.00, 0.00 1.00, 0.00
CNN 90.08, 0.97 117.70, 5.25 2.80, 0.63

Accuracy
Number of voters Simple Weighted Union Patterns

3 91.95, 0.78 93.67, 0.48 92.42, 0.64 250.40, 8.54
5 93.23, 0.55 94.12, 0.49 92.77, 0.53 325.50, 5.02
7 93.38, 0.50 94.45, 0.42 93.02, 0.30 373.50, 8.07
9 93.53, 0.53 94.70, 0.35 93.05, 0.16 412.10, 7.48

estimator decreases and the voters become more similar. This has been shown
empirically for the case of linear regression by Meir (1994). To test this, we ran
CNN on mutually exclusive subsets of the THYROID dataset while always
testing on the same test set. As can be seen in Figure 3, as the training set
gets larger, although classification accuracy on the test set increases, variance
decreases indicating that the subsets become more similar.

Having multiple learners only make sense when they differ so that they fail
under different circumstances. So with m voters, the training set is partitioned
intom and a separate CNN is trained on each part. Subset sizes are as given in
Figure 3. Voting over these we get better results than what we get when all are
trained on the same large training set. The large difference is noticeable in the
comparitive results given in Figure 4. The complete results with partitioning
are given in Table 5.

We also use this approach on the GLASS dataset where the training set
contains 100 patterns. When we use three voters, each voter has 33 patterns
to be trained on and, with simple voting, we get 72.2%, which is higher than
that achieved by the previous scheme and 1-NN on the whole training set.
However if we partition the training set for example into five, each subset
contains only 20 patterns and classification accuracy is low and gets lower as
the number of voters is increased.

If the training set is not large enough to allow partitioning, one can use
bootstrap which involves generating new datasets from one original dataset by
sampling randomly with replacement (Perrone 1993) (LeBlanc and Tibshirani
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Figure 3. Average classification accuracy on the THYROID dataset with CNN as a function
of the number of the training samples. The partitioning is into 9, 7, 5, 3, and 1.

Figure 4. Comparison of averages on the THYROID dataset when the voters are trained on the
entire training set (‘o’) vs. its partitions (‘x’) with simple (continuous) and weighted (dashed)
voting.

1994). These new datasets can then be used to generate multiple CNN subsets.
With the GLASS dataset, we used bootstrapping to generate samples of size 50
from a training set of 100 patterns. For more than three voters, bootstrapping
worked better than partitioning. Results are given in Table 6. Especially with
7 and 9 voters, these results are higher than those achieved by applying CNN
on the entire training set and also on its partitions.
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Table 5. Complete results on the THYROID dataset. Partitioning is used when
taking a vote.

Method Accuracy Patterns Epochs

NN 93.14, 0.00 3,772.00, 0.00 1.00, 0.00
CNN 90.95, 0.24 625.30, 7.69 3.60, 0.70

Accuracy
Number of voters Simple Weighted Union Patterns

3 93.57, 0.19 94.49, 0.13 90.25, 0.53 708.70, 14.36
5 94.03, 0.29 94.44, 0.09 89.48, 0.44 738.50, 10.84
7 94.35, 0.15 94.40, 0.11 89.11, 0.28 776.30, 14.88
9 94.32, 0.14 94.34, 0.07 89.13, 0.36 792.50, 13.85

Table 6. Results on the GLASS dataset.

Method Accuracy Patterns Epochs

NN 71.93, 0.00 100.00, 0.00 1.00, 0.00
CNN 69.82, 0.94 57.10, 3.11 2.30, 0.48

Accuracy
Number of voters Simple Weighted Union Patterns

3 (partition) 72.19, 1.31 70.53, 2.16 70.00, 1.93 64.30, 1.49
5 (bootstrap) 72.02, 1.96 72.11, 2.44 71.84, 1.52 74.60, 2.12
7 (bootstrap) 74.56, 1.89 73.25, 2.04 71.32, 1.24 84.50, 1.72
9 (bootstrap) 74.12, 1.39 74.30, 1.66 71.67, 0.59 88.60, 1.90

We thus conclude that if the training set is small, the voters converge to
sufficiently different solutions, then voting helps. When the training set is of
intermediate size, one can use bootstrapping to generate smaller training sets.
When the training set is large, each voter can use a separate training set. What
makes a training set “small” or “large” is the difficulty of the underlying task
depending on several factors (e.g., the variance of noise, the dimensionality
of the input, number of classes).
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5. Combining Multiple Learners

The simplest way to combine multiple learners is by voting, which cor-
responds to taking a linear combination of the learners. If each voter just
indicates the class it thinks the input belongs to, then one can only have
simple voting where all voters have equal weight. If the voters can also sup-
ply information on how much they vote for each class, then these can be
converted to certainties and used as weights in a weighted voting scheme.

In Section 3, we discussed one way to compute these weights in the case
of lazy learning based on distances. A belief measure (Xu et al. 1992) or
Dempster-Schafer theory can be used for the same purpose (Xu et al. 1992;
Rogova 1994). Lincoln and Skrzypek (1990) propose a way to learn the
weights in a voting scheme. Model complexities can also be taken into account
in a Bayesian framework to make sure that complex models are not given
very large weights (Alpaydın1993). Perrone (1993) gives a number of didactic
examples that depict the advantage of voting. He also shows that for minimum
square error, when the learners are unbiased and uncorrelated, weights should
be inversely proportional to variances (see Appendix). Benediktsson and
Swain (1992) propose to use a voting scheme for multisource sensing where
data from different sources are integrated based on consensus theory.

It has been shown by Hansen and Salamon (1990) that given independent
classifiers with classification accuracy probability higher than 1/2, by taking
a majority vote, classification accuracy increases as the number of voting
classifiers increase. Mani (1991) has shown that in the case of simple voting,
variance decreases as the number of voters increase (see Appendix).

Adapting what Perrone (1993) stated for regression to classification, if
we view each learner as a random noise function added to the true class
discriminant function and if these noise functions are uncorrelated with zero
mean, then the averaging of the individual estimates is like averaging over the
noise. In this sense, the voting method is smoothing in the functional space
and can be thought of as a regularizer with a smoothness assumption on the
true discriminant function.

Wolpert (1992) proposed a method called stacked generalization that
extends voting. In stacking, the output of the learners is combined through
a combiner system which is also trained and is not restricted to be linear.
The learners are called level 0 generalizers and the combiner is the level 1
generalizer. The level 1 generalizer learns what the correct output is when
level 0 generalizers give a certain output combination. Thus level 1 needs be
trained on data unused in training the level 0 generalizers. Wolpert proposes
to use leave-one-out though this is too costly and n-fold cross validation
seems to be better. Zhang et al. (1992) use stacking for protein secondary
structure prediction with significant improvement in accuracy. In their study,
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the level 0 generalizers are a statistical model, a lazy learner and a one hid-
den layer neural network. The level 1 generalizer is another neural network
with one hidden layer. Breiman (1992) discusses stacking from a statistical
perspective.

Boosting (Drucker et al. 1993) trains the learners serially. After having
trained the first, they train the second learner with the data on which the first
fails (and as many data on which the first succeeds) thus making sure that
that the two learners complement one another. Then a third learner is trained
with the data on which the two learners disagree. During testing, if the first
two learners agree then that is taken as the output, otherwise the third learner
is consulted. Large training samples are required for boosting as a learner is
trained only with the data on which the previous learners fail.

The boosting approach makes sense because when we have a second learner,
we do not care about its overall performance but we just want it to perform
well on cases where the first one fails and an intelligent switch to choose
between the two. In the adaptive mixtures of local experts (Jacobs et al.
1991), there are a set of local experts that partition the input space among
themselves and a separate gating expert that, given an input, decides which
expert to use. The local experts and the gating expert are trained all in parallel
as opposed to the serial approach taken by boosting.

Krogh and Vedelsby (1995) measure “ambiguity” as the variation of the
output of voters averaged over unlabelled data to quantify the disagreement
among the voters. They define:

E = E �A

where E is the error after voting, E is the average of the generalization
errors of the individual voters and A is the average of ambiguities. Thus for
minimum error, we need to maximize the ambiguity. They show that if the
voters are strongly biased, the ambiguity will be small because the voters
implement very similar functions and thus agree on inputs even outside the
training set. If on the other hand there is a large variation, the ambiguity is
high and in this case the generalization error will be smaller than the average
generalization error. They also note that one way to increase the ambiguity is
to train the voters on different datasets. Our results given in Section 4 are in
accordance with theirs.

Tresp and Taniguchi (1995) propose to use a “competence” measure to
determine the weights in a voting scheme. This uses p̂(xjj), an estimate of
the distribution of input data used to train voter j.

Although much work has been done on how to combine learners, the
question of what to choose as the learners is an open problem. Wolpert (1992)
stated that one wants level 0 generalizers to “span the space of generalizers”
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and be “mutually orthogonal.” Generally this is done by biasing the learners
in different ways (e.g., by using different learning methods or different initial
conditions). For example because CNN is a local search method, we get
different subsets by reordering the training set. A better idea seems to have
rather different learners as opposed to variants of one method.

6. Conclusions

Many lazy learning techniques require storing the complete sample. They
generalize well indicating that they are serious competitors to more complex,
gradient-descent methods. Much of the functionality of neural networks (i.e.,
parallel structures for pattern recognition) can be obtained from closely relat-
ed but simpler techniques (e.g., distance-based classifiers) without needing
complex network structures, learning rules nor precise weights (Alpaydın
and Gürgen 1995). Actually the distinction between a neural network and a
lazy learning method is quite hazy. Omohundro (1987) shows how simple
lazy learners can be implemented as a neural network. The neural network
implementation of CNN is given in (Alpaydın1990). Most neural networks
whose hidden units implement a local activation function like the gaussian
can be recast as a lazy learner and vice versa.

To decrease storage requirements and speed-up processing, one can incre-
mentally select a subset of the sample by making just a few passes over the
sample. Most of the time, the gain in memory is worth the cost of this extra
training time, which is much smaller than the time it takes to do gradient-
descent. A method like CNN is promising when very rapid adaptation is
necessary (e.g., in real-time systems such as robotics) and when memory
space is a premium. Examples of its usage in a robotics domain is given in
(Reignier et al. 1995) and in industrial measurement in (Hines et al. 1993).

Generalization can be improved by training a number of such subsets and
combining their predictions. It is generally accepted that there is not one
optimal learning method to do anything (Schaffer 1994). If we do not know
a priori which learning method is the best, we can train a number of different
learners and combine their predictions (e.g., by voting). This approach of
voting is not limited to lazy learners but can be generalized to any estimation
method. Recent advances in parallel processing technology allow separate
voters to be implemented on separate processors thus leading to considerable
increases in computational speed.

aireda04.tex; 28/05/1997; 12:30; v.5; p.14



VOTING OVER MULTIPLE CONDENSED NEAREST NEIGHBORS 129

Acknowledgments

This work is supported by Grant EEEAG–143 from Tübitak, Turkish Scien-
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Appendix. Effect of Voting on Estimation Error

Let us denote the output of learner j as dj and the output after voting as r
where

r =

mX
j=1

dj�j

where �j � 0 and
Pm

j=1 �j = 1. We assume that dj ; j = 1 : : : m are inde-
pendent and identically distributed. When b is an estimator of the parameter
�,

b�(d) = E[d]� �

is the bias of d as an estimator of �. If b�(d) = 0 for all �, then d is an
unbiased estimator. In other words, an estimator is unbiased if its expected
value equals the value of the parameter it is attempting to estimate. If we
compute the expected value of r, we see that it is equal to the expected value
of dj:

E[r] = E

2
4 mX
j=1

dj�j

3
5 =

X
j

�jE[dj ] = E[dj ]
X
j

�j

= E[dj ] (6)

Thus voting does not change the bias; if the voters are unbiased so is the
combined estimator. The variance of estimator d measures how much d
deviates from its expected value:

Var(d) = E[(d�E[d])2]
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Let us compute the variance of r in the case of simple voting where
�j = 1=m. We see that it decreases as the number of voters m increases:

Var(r) = Var

0
@ mX

j=1

dj�j

1
A = Var

0
@X

j

dj

m

1
A =

1
m2

X
j

Var(dj)

=
1
m

Var(dj) (7)

The mean square error of an estimator is equal to the sum of its variance
and the square of its bias:

r(d; �) = Var(d) + (b�(d))
2

Thus variance and mean square error decreases with increasing m. Note that
this assumes independence of dj which may not always be true. It can also
be shown that for minimum variance, the optimal weight to give an estimator
is inversely proportional to its variance. We want to minimize:

E(�) = Var

0
@X

j

dj�j

1
A =

X
j

�2
jVar(dj)

Taking �2
j � Var(dj) and using the method of Lagrange multipliers, we look

for �2
j that minimize:

E(�) =
X
j

�2
j�

2
j + �

0
@1 �

X
j

�j

1
A

Find �j and � that satisfy:

@E

@�j
= 2�j�

2
j � � = 0 and

X
j

�j = 1

We find:

�j =
1=�2

jP
l 1=�2

l

(8)
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