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Introduction

. Questions:

. Isthe error rate ofmy classifieress than 2%?

. Isk-NN more accurate thaNLP?

. Does having PCA before improve accuracy?

- Which kernel leads to highest accuracy with SVM?
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Material

- Training/validation/test sets
. Resampling methods

. Comparing multiple algorithms on a single data set
. Comparison on multiple data sets
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| Algorithm Preference

- Criteria (Applicatiordependent):
. Misclassification error, or risk (loss functions)
- Training time/space complexity
. Testing time/space complexity
. Interpretability
. Easy programmability

. Costsensitive learning
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- Experiment Design:
Factors and Response
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Controllable factors:
-Learning algorithm
-Hyperparameters
-Input representation

Uncontrollable factors:
-Noise in data

-Randomness in splitting
-Randomness in optimization

Arrive to conclusions not
affected by chance, i.e.,

statistically significant.
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(a) Best guess
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(b) One factor at a time

Response surface design

(c) Factorial design



~Basic Principles of Experimental

Design

Randomizationtndependence of results, unaffected by
order

ReplicationAverage over chance and uncontrollable
factors (kfold cv)

BlockingReduce or eliminate the variability due to
nuisance factors: Paired tests
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~ Guidelines for ML experiments

A. Aim of the study:
Compare hyperparameters or two or more algorithms
Single/multiple data sets

B. Selection of the response variable
Accuracy/precisiofmecall/loss function
Costconscious framework

C. Choice of factors and levels
What are the factors to be played with?
What are the factor levels?
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D. Choice of experimental design
Factorial design (grid search)
How many replicates?
E. Performing the experiment
Unbiased in experimentation, a separate tester

Good code and documentation

F. Statistical Analysis of the Data
Hypothesis testing
Visualization of results: Histograms, plots

G. Conclusions and Recommendations
Draw objective conclusions
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| Splitting Data

- The need for training, validation, and test sets
. Training set: Optimize parameters
. Validation set: Optimize hyperparameters
. Test set: Measure generalization performance

. Use data once.
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“Resamplingnd
K-Fold Cros&/alidation

The need for multiple training/validation sets

{X,V}: Training/validation sets of fold
Stratification

K-fold crossvalidation: Divide X int&, Xi=1,...K
V=X, T,=X,CX,C3 C Xy
V=X, T,=X,CX;C3 CXy

4
VK:XK TszngZQB (;XK-l
T. shareK-2 parts
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' 5x2 CrossValidation =

(Dietterich, 1998, Neural Computation)
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/Bo/otstrapping

Draw instances from a dataseith replacement
Prob that we do not pick an instance after N draws

o 16\|
g = 0 o1 =0.368
(; -

that is, only 36.8% is new!
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Making Decisions and Error

- Classifier predicts +H+|X)>g and predicts; otherwise

Prediction R(—|—‘J:) — AllP("‘l*{f) T )‘12P(_ J:) — P(_‘i")

Truth  + — P \P
e (~|r) = AP(+]x)
— | 0

predict .z as positive if

R(+|x) < R(—|x), or if P(—|z) < AP(+|x)

1
P(—HI) = 1_|_—)\
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"~ Measures of Performance

2 % 2 CONFUSION MATRIX

fp+fn tp+tn
- error rate = ¥ —+—  accuracy =
Prediction N ) N
. A _— t_p 4 —_— p
Truth | + - Total Ip-rate = » fp-rate = -
T tp fno|op recall = %D precision = ;—If
- fp in n
c, e . t . .
, ,, - sensitivity = £ specificity =
Total | p n N p n
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(b) Different ROC
(a) Example ROC curve curves for different
classifiers
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Precision and Recall

retrieved relevant
records records

(a) Precision and recall

Relevant
but not
etrieved

(b) Precision =1

&l
Precision: ———
Irecl1s101 a + b
Recall:
) c
Retrieved

(¢)Recall=1
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OQ: Precision/Recall Curves
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