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Introduction
·Questions:

·Is the error rate of my classifier less than 2%?

·Is k-NN more accurate than MLP?

·Does having PCA before improve accuracy?

·Which kernel leads to highest accuracy with SVM?
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Material
·Training/validation/test sets

·Resampling methods

·Comparing multiple algorithms on a single data set

·Comparison on multiple data sets
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Algorithm Preference
·Criteria (Application-dependent):

·Misclassification error, or risk (loss functions)

·Training time/space complexity

·Testing time/space complexity

·Interpretability

·Easy programmability

·Cost-sensitive learning
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Experiment Design: 
Factors and Response
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Controllable factors:
-Learning algorithm
-Hyperparameters
-Input representation

Uncontrollable factors:
-Noise in data
-Randomness in splitting
-Randomness in optimization

Arrive to conclusions not 
affected by chance, i.e., 
statistically significant. 



Strategies of Experimentation
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Response surface design



Basic Principles of Experimental 
Design
1. Randomization:Independence of results, unaffected by 

order

2. Replication: Average over chance and uncontrollable 
factors (k-fold cv)

3. Blocking:Reduce or eliminate the variability due to 
nuisance factors: Paired tests
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Guidelines for ML experiments
A. Aim of the study: 

Compare hyperparameters or two or more algorithms

Single/multiple data sets

B. Selection of the response variable

Accuracy/precision-recall/loss function

Cost-conscious framework

C. Choice of factors and levels

What are the factors to be played with?

What are the factor levels?
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DǳƛŘŜƭƛƴŜǎ όŎƻƴǘΩŘύ
D. Choice of experimental design

Factorial design (grid search)

How many replicates?

E. Performing the experiment
Unbiased in experimentation, a separate tester

Good code and documentation

F. Statistical Analysis of the Data
Hypothesis testing

Visualization of results: Histograms, plots

G. Conclusions and Recommendations
Draw objective conclusions
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Splitting Data
·The need for training, validation, and test sets

·Training set: Optimize parameters

·Validation set: Optimize hyperparameters

·Test set: Measure generalization performance

·Use data once.
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·The need for multiple training/validation sets
{Xi,Vi}i: Training/validation sets of fold i
·Stratification
·K-fold cross-validation: Divide X into k, Xi,i=1,...,K

·Ti share K-2 parts

Resampling and 
K-Fold Cross-Validation
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5×2 Cross-Validation 
(Dietterich, 1998, Neural Computation)
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Bootstrapping
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·Draw instances from a dataset with replacement

·Prob that we do not pick an instance after N draws

that is, only 36.8% is new!



Making Decisions and Error
·Classifier predicts + if P(+|x)>q and predicts ςotherwise
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Measures of Performance
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Precision and Recall
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but not 
retrieved
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Retrieved 
but not 
relevant



ROC ςPrecision/Recall Curves
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