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Abstract

In this paper, we show that through self-interaction and self-observation, an anthropomorphic robot equipped with a range camera

can learn object affordances and use this knowledge for planning. In the first step of learning, the robot discovers commonalities

in its action-effect experiences by discovering effect categories. Once the effect categories are discovered, in the second step,

affordance predictors for each behavior are obtained by learning the mapping from the object features to the effect categories. After

learning, the robot can make plans to achieve desired goals, emulate end states of demonstrated actions, monitor the plan execution

and take corrective actions using the perceptual structures employed or discovered during learning. We argue that the learning

system proposed shares crucial elements with the development of infants of 7-10 months age, who explore the environment and

learn the dynamics of the objects through goal-free exploration. In addition, we discuss goal-emulation and planning in relation

to older infants with no symbolic inference capability and non-linguistic animals which utilize object affordances to make action

plans.
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1. Introduction

For a growing infant, a major problem is to make sense of

the incoming sensorimotor data by learning what changes she

can generate in the environment. Only after this problem is

overcome, the infant starts making plans and executes them for

achieving goals, for example pulling the table cloth to reach a

toy that is otherwise unreachable. It is plausible to think that

earlier planning takes place in the perceptual domain of the in-

fant, which is later augmented by symbolic planning capability

as the infant forms symbolic representations through her inter-

action with the environment.

In this article, we consider the former phase of this devel-

opmental progression in a robotics context, where the robot

learns its visuomotor capabilities by interacting with its envi-

ronment. We are content that by adopting such a developmen-

tal approach, adaptive and human-like robotic systems can be

synthesized. In the last decade, with similar views in mind,

various developmental stages have been studied, modeled and

transfered to robots. These stages correspond to acquisition

of skills at different levels and ages, ranging from emergence

of motor patterns before birth [1] and development of pattern

generators for crawling [2] to language learning [3] (see Asada

et al. [4] for a comprehensive review).
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In the postnatal age of 7-10 months, the infant explores the

environment actively. By observing the effects of her hitting,

grasping and dropping actions on objects, she can learn the dy-

namics of the objects [4]. The infant in this stage has already

acquired a number of manipulation behaviors and is able to de-

tect different properties of objects such as shape, position, color,

etc. Using her motor skills, the infant interacts with the envi-

ronment and observes the changes she creates via her percep-

tual system, accumulating knowledge about the relationships

between objects, actions and the effects. This process effec-

tively corresponds to the learning of the affordances [5] pro-

vided by the environment. The learning in this stage is largely

performed in a goal-free fashion through self-exploration and

self-observation [6, 7, 8, 9]. After approximately 9 months of

age, the infant starts using the learned object-action-effect rela-

tions in a goal-directed way anticipating a desirable change in

the environment and behaving accordingly [10, 11, 12]. This

behavior ranges from recalling action-effect mappings to mak-

ing simple plans that may involve multiple steps [13]. Goal-

emulation, a form of imitation characterized by the replication

of the observed end effect [9], starts after this period, and in-

fants become skilled at imitating unseen movements after 12

months of age [14]. According to Elsner and Hommel [15], in-

fants learn to use anticipation for goal-directed actions in two

phases. In the first phase, they execute random actions in the en-

vironment, self-monitor the changes, and learn the action-effect

associations in a bi-directional way. Later, in the second phase,

they start to control their actions by predicting the effects they

can create.
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In a similar vein, in Stage 1, our manipulator robot expe-

riences a goal-free self-exploration and self-monitoring phase

where it discovers the affordances provided by the environment

and learns how to use these affordances to predict the next per-

ceptual state after the execution of a given behavior. In Stage

2, the robot emulates goals presented in its sensory space by

generating multi step plans based on the learned affordance and

prediction capabilities. The computational elements of our sys-

tem derives from the affordance framework [16] that captures

the active perception-action cycle of a learning agent from a

computational point of view.

In the remainder of this section, we present a brief overview

of the affordance concept, its computational interpretation, and

its use in the field of robotics. The following section introduces

the experimental platform and details on how the affordance

framework was instantiated in our case, i.e. within a manipu-

lator robot system. Sections 3-6 present the robotic analogs of

the two phases of the aforementioned infant development pro-

cess together with the learning and execution results obtained.

Section 7 discusses our system in the light of human infant and

chimpanzee studies, and presents potential improvements in a

robotics context.

1.1. Affordances: A computational view

The concept of affordances was introduced by J. J. Gibson

to explain how inherent “values” and “meanings” of things in

the environment can be directly perceived and how this infor-

mation can be linked to the action possibilities offered to the

organism by the environment [5]. The definition of the term of-

ten depends on the field it is used in; in fact Gibson himself gave

differing definitions over the course of his publications [17]. In

general, the question ‘what does this mug afford for me?’ can

be equated with ‘what type of actions can I apply on this mug?’.

One clear fundamental notion of the affordance concept is that

object recognition is not a necessary step for interacting with

objects. That is, a specific combination of object properties

with respect to the agent and its action capabilities are enough

to detect the affordances of a given object (and act on it). Al-

though it is not the classical engineering approach of identify

and then act, this strategy appears to be the one employed by

our brains. It is known that the cerebral cortex processes visual

information in at least two channels, the so called dorsal and

ventral pathways. The ventral pathway appears to be respon-

sible for object identification, whereas the dorsal pathway is

mainly involved in perception for action [18, 19, 20, 21]. These

data suggest that an agent does not necessarily need to possess

object recognition capabilities to learn about its environment,

and use this knowledge for making plans.

Placing the concept of affordance on a general computational

ground is difficult due to its elusive and multi-facet nature. Re-

cently, Şahin et al. [16] proposed a computational interpretation

of the affordance concept that was shown to be effective for

mobile robot control [22, 23, 24]. In this study, we adopt this

framework, and build upon our preliminary work in robot hand

control [24]. One key feature of this framework is that the affor-

dances are defined from the viewpoint of the acting agent (see

Sahin et al. 2007 for alternatives). An affordance is a learned

relation between an effect obtained when a behavior is applied

to an entity. Hence, affordance is the relation between the pair

(entity, behavior) and the (effect). For instance, the lift-ability

affordance is represented as the existence of at least one relation

between the lifted effect2, an object and a behavior of the robot.

‘Entity’ denotes the environmental relata obtained via percep-

tion of the environment and the self. Entity is a high level term

that can encapsulate the perceptual representation of an agent

at different complexity levels, ranging from raw sensory data to

the features extracted from the environment. Behavior repre-

sents the physical embodiment of the agents interaction. It is

an internal representation that defines a unit of action that can

often take parameters for the initiation and online control. As

in the entity definition, the level of complexity is not part of the

definition; therefore a simple joint rotation, as well as a grasp-

ing action directed to an object can be considered as behaviors.

Finally, an effect is defined as the change generated in the envi-

ronment due to a behavior execution.

In this work, the entities are encoded as continuous valued

feature vectors representing the objects that the agent can inter-

act with. In other words, the environment consists of only the

objects, excluding the surrounding and the state of the robot it-

self. The behaviors are represented as open loop control units

with multiple parameters (e.g. push-forward(x,y,z)). The ef-

fects are taken as the vectorial differences between the entity

representations before and after behavior execution. With this

setting, in order to learn the affordances, our robot goes into

interactions with the environment using its actuation capabili-

ties, and monitors the environment and the changes that were

created in it. In each interaction, the initial perception of the

environment generates a feature vector ( fo) corresponding to an

entity before behavior execution. Then the robot executes one

of its behaviors, bi, in its repertoire. After the execution of the

behavior, the robot, once more, perceives the environment and

obtains the final feature vector. Finally, effect, eo, created is

found by taking the difference between final and initial feature

vectors.

1.2. Related Work

During the recent years, studies inspired by ideas in devel-

opmental psychology have increased considerably ([25, 26, 4,

27]). These studies typically use exploration, learning and em-

bodiment to enable robots learn about their environment via ex-

ploration with minimal expert knowledge. In the rest of this

section, we review related studies (see Table 1 for a summary)

and discuss our contribution to the field.

The pioneering studies that used motor babbling as a means

of exploration for learning of affordances include Metta and

Fitzpatrick [28], Fitzpatrick et al. [29] and Stoytchev [30]. For

example, Fitzpatrick et al. [29] studied the learning of rolla-

bility affordance by executing different actions on different ob-

jects and observing their effects. Stoytchev [30] investigated

2Note that ‘lifted effect’ is a label used to describe the sensory change here;

in the agent’s world this just corresponds to an internal representation which is

not necessarily assigned to any label.
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tool affordances by discovering tool-behavior pairs that give

the desired effects. In these studies, the learning of the as-

sociation between the visual features of the objects/tools and

their effects (i.e. affordances) were not addressed; therefore the

learned affordance knowledge could not be generalized to novel

objects/tools.

Later this issue was addressed by Ugur and Şahin

[22], Erdemir et al. [31], Fritz et al. [32], where the relations be-

tween the visual features of entities and their affordances were

learned. However, in these studies the target affordance cate-

gories (e.g. liftability and traversability) were pre-defined, and

learning was performed in a supervised way based on the suc-

cess criteria defined over the effect of each action. Thus, the

affordances were not discovered by pure exploration and the

robot only learned to predict the effects designed by the pro-

grammer.

Sinapov and Stoytchev [33], Griffith et al. [34], Cos-Aguilera

et al. [35] proposed the self-discovery of the affordances, where

the effect categories were found through unsupervised cluster-

ing in the effect space. Furthermore, using these categories, the

mappings of object→ effect categories were learned. Thus, the

robot was able to make predictions to choose actions that would

fulfil a desired environment change.

All the aforementioned studies were deterministic and relied

on one-directional mappings. Demiris and Dearden [36], Hart

et al. [37], Montesano et al. [38] used probabilistic networks

that capture the stochastic relations between objects, actions

and effects. These networks allowed bi-directional relation

learning and prediction. For example in Montesano et al. [38],

after training Bayesian networks, the robot could predict the

object categories when effects and actions were given, or it

could predict the effect categories when objects and actions

were given. One drawback of this approach was that the ob-

ject categories were created by unsupervised clustering in fea-

ture space without any reference to the interaction experience

of the robot. Cognitive development in humans suggest that ac-

tions and the effects created by them are used together to parse

the perceptual space into categories that may be called ‘objects’

(entities). Therefore, it is not that the object categories exist in

the environment and their relations with the effects and actions

are learned; but rather the effects and actions define the object

categories. In our work, we will follow this full action based

perception view by categorizing the object feature space based

on the effects. This is central to the affordance concept.

In all of the studies mentioned above, the agent acquires

the ability to make predictions about the effects it can create

through active exploration of the environment. However, due

to the ‘effect’ representation adopted in these studies, the sys-

tems described cannot predict more than one step ahead, which

prohibits complex planning.

In [39, 40, 41] on the other hand, after learning, the robots

could make multi-step predictions using transition rules and

hence were able to demonstrate complex planning. The tran-

sition rules were defined as actions linked by logical precon-

dition and postcondition predicates. This approach is differ-

ent from the previous ones since sensorimotor experience of

the robot was used to associate the predicates of the transition

rules. These conditions were pre-defined binary functions of

sensor readings inWörgötter et al. [40], where the robot learned

to combine these conditions in the form of pre-conditions and

effects through human assistance. Petrick et al. [39] used pre-

defined or pre-learned high-level object and environment prop-

erties as the predicates of the transition rules. On the other hand,

Modayil and Kuipers [41] discovered these predicates from

low-level sensory readings during a goal-free exploration and

learning phase. Although objects could be categorized based

on their shapes in the sensory level, this information was not

used in effect prediction. Moreover, only position features were

used to learn “simple affordances of the object” [41, p.886]. In

short, in these approaches, the learned affordances were either

simple or acquired through supervision. In addition, the map-

ping of these architectures to developmental psychology is not

straightforward as logical inference mechanisms were assumed

to be available to the learning agent.

A biologically plausible model was proposed in [42], where

the robot was able to plan novel continuous motions that cor-

responded to multi-step behavior patterns that were observed

during training. A multi-component recursive neural network

was used to learn the object-robot dynamics and generate plans

in the continuous sensory-motor space. This approach had no

prior assumptions in terms of perceptual and behavior represen-

tation since raw retinal image and arm joint angles were used in

system training and generation of novel actions. However, this

system was trained using only one object, and did not focus on

affordance learning.

In our study, we will follow a similar approach to the studies

[33, 34, 35] that were discussed above (Unsupervised group in

Table 1). The main novelty of our approach is the encoding of

the effects and objects in the same feature space. In contrast,

in the other studies the effect representation were context and

task dependent, and therefore did not correspond to the object

feature space. Having the effects and objects encoded in the

same space will provide the ability to predict the next percep-

tual state by adding the current features to the predicted effect

features. This will enable the robot to make plans (without us-

ing high-level AI rule techniques) based on the structures that

are learned in a completely bottom-up manner during its inter-

action with the environment.

From the planning viewpoint, Pisokas and Nehmzow [43]

can be considered as the closest to our approach, where the

robot learned the environment dynamics in its perceptual space

and made multi-step action plans to achieve goals in a locomo-

tion task. However, there are important differences that sets our

work apart: In [43], first, the initial percept space was catego-

rized in an unsupervised manner, i.e. irrespective of the inter-

action experience of the robot (as was the case for [38]). Sec-

ond, the robot learned the initial→final mapping, whereas our

system learns the initial→effect mapping which provides better

generalization. For example, in our case, pushing a box located

on the table will always generate the same effect regardless of

its position (unless, of course the object is at the edge). Yet, at

the same time, it will be possible to obtain the final percept (i.e.

the predicted position of the box). Generalization of the knowl-

edge obtained via exploration is a critical issue when the world

3



of the agent becomes more complex, i.e. when the number of

actions and the type of environments that can be experienced

becomes large. An adaptive agent needs to utilize its resources

parsimoniously, and needs to be able to predict in situations that

it never encountered before.

In summary, the points that set our work apart from the ex-

isting ones are (1) multi-step planning, (2) categorization of the

perceptual space based on actions and their effects, (3) general-

ization of the knowledge obtained through exploration.
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ö
rg
ö
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2. System Realization

2.1. Robot System

An anthropomorphic robotic system, equipped with a range

camera, and its physics-based simulator is used as the experi-

mental platform (Figure 1). The robot platform consists of a

five fingered 16 DOF robot hand3 and a 7 DOF robot arm 4.

For robot perception, an infrared range camera5, with 176x144

pixel array, 0.23◦ angular resolution and 1 cm distance accu-

racy was used. Along with the range image, the camera also

provides grayscale image of the scene and a confidence value

for each pixel.

The simulator (Figure 2 (a)), developed using the Open Dy-

namics Engine (ODE) library, is used during the exploration

phase. The range camera is simulated by sending a 176 × 144

ray array from camera center with 0.23◦ angular intervals. For

each ray, the first contact with any surface is retrieved using

ODE functions, distance between the contact point and ray ori-

gin point is used as range value, and a Gaussian noise with

µ = 0, σ2 = 0.2 is added to account for camera noise.

2.2. Perception

Object Detection. The first step of pre-processing is to filter

out the pixels whose confidence values are below an empiri-

cally selected threshold value. The robot’s workspace consists

of a black table, so region of interest is defined as the volume

over the table, and black pixels are filtered out as the range read-

ings from black surfaces are noisy. As a result, the remaining

pixels of the range image are taken as belonging to one or more

objects. These objects are segmented by the Connected Com-

ponent Labeling algorithm [44] which differentiates object re-

gions that are spatially separated by a preset threshold value (2

cm in the current implementation). In order to reduce the effect

of camera noise, the pixels at the boundary of the object are re-

moved, and Median and Gaussian filters with 5x5 window sizes

are applied. The detected objects on the range image of a sam-

ple setup is shown in Figure 1 (b). Finally, a feature vector for

each object is computed using the 3D positions obtained from

depth values of the corresponding object pixels as detailed in

the next paragraph.

Object feature vector computation. The perception of the robot

at time t is denoted as [ f t,()o0
, f t,()o1
..] 6 where f is a feature vec-

tor of size 43, and the superscript () denotes that no behavior

has been executed on the object yet. Three channels of infor-

mation are gathered and encoded in a feature vector for each

object oi (Figure 2 (b)). The first channel consists of object

visibility feature which encodes the knowledge regarding the

existence of the object. The second channel corresponds to the

distance perception of object’s borders. Here, the points with

3Gifu Hand III, Dainichi Co. Ltd., Japan. http://www.kk-dainichi.

co.jp/e/gifuhand.html
4PA-10, Mitsubishi Heavy Industries.
5SwissRanger SR-4000 http://www.mesa-imaging.ch/
6Note that t and oi are sometimes omitted in the rest of the text in order to

ensure easy readability of the notation.

Algorithm 1 Object Detection

isConfident(p): true if confidence[p] ≥ confidence-threshold

isOnTable(p): true if position[p] is on table

isBright(p): true if amplitude[p] ≥ amplitude-threshold

setObjectPart(p): pixel p is assigned as object part

1: for each pixel p (from 0 to 174 × 144) do

2: if (isConfident(p)) and (isOnTable(p)) and (isBright(p))

then

3: setObjectPart(p)

4: end if

5: end for

6: Find distinct objects with Connected Component Labeling

7: Remove pixels on object boundaries

8: Apply Median and Gaussian filters to object pixels

minimum and maximum values along longitudinal, lateral and

vertical axes are used as 6 position related features. The third

channel encodes the shape related features, where the distribu-

tion of the local surface normal vectors are used. Specifically

histograms of normal vector angles along the latitude and lon-

gitude are computed and used as follows.

The normal vector of the local surface around each point is

calculated using the positions of the two neighbors in the range

image:

Nr,c = (pr−n,c − pr,c) × (pr,c−n − pr,c)

where p represents 3D position, n corresponds to the neighbor

pixel distance and is here set to 5. In spherical coordinates, the

unit length 3D normal vector is represented by two angles, po-

lar (θ) and azimuthal (ϕ) angles that encode information along

latitude and longitude, respectively. The polar angle (θ) corre-

sponds to the angle between x-z plane and the normal vector,

whereas ϕ is the angle between z-axis and the normal vector’s

orthogonal projection on x-z plane. After polar and azimuthal

angles are computed for each pixel, two histograms are com-

puted in θ and ϕ using a 20◦ bin size. Finally, the angular his-

tograms represent the 36 shape related features.

Effect feature vector computation. For each object, the effect

created by a behavior is defined as the difference between its

final and initial features:

f
(b j)

effect,oi
= f

(b j)
oi − f ()oi

where f
(b j)
oi represents the final feature vector computed for ob-

ject oi after the execution of behavior b j.

2.3. Interaction

The robot interacts with the objects using three push behav-

iors and one lift behavior. The object position computed from

the range camera is used as argument for the behaviors to enable

the robot interact with objects placed in different positions. The

hand is initially wide-open for all behaviors, is clenched into

a fist during push-forward execution, and remains open for the

6



Figure 1: In (a), the 23 DOF hand-arm robotic platform, infrared range camera (on the top-right) and the objects that are used in this study are shown. In (b), the

range image obtained from the range camera and the detected objects are shown where range is encoded in grayscale and in color for the environment and objects,

respectively.

a) Snapshot from the simulator b) Object feature vector

Figure 2: (a) The robot arm grasps and lifts a cylindrical object in the physics based simulator. The coordinate system is also illustrated. (b) The 43-dimension

feature vector computed for the object in the robot’s hand in Figure 1 is given. It is composed of 1 visibility, 6 position and 36 shape related features whose values

correspond to the height of the bars in normalized form.

other push behaviors. For push-forward, push-left, and push-

right behaviors the robot hand is brought to the rear, right and

left side of the object, respectively. Then, the hand moves to-

wards the object center, pushing the object in the appropriate

direction. After behavior execution, the hand is placed to a

‘home’ position. In the lift behavior, the robot hand is placed at

the back-right diagonal of the object first, then moved towards

the object while the fingers are closed to grasp the object. After

the fingers come to a halt, the hand is lifted vertically.

The robot interacts with three types of objects: boxes, cylin-

ders and spheres of different size and orientation. During the

execution of push behaviors, the robot observes the conse-

quences of its actions. For instance, when the robot pushes a

box ( ) or an upright cylinder ( ), the object is dragged

during the execution of the behavior and stand still at the end

of the action. However, when the robot pushes a sphere ( ),

the object rolls away and falls down the table. The lift behavior

would succeed in lifting an object, if the object is within the

arm length of the robot and small enough to fit into the robot

hand. However the consequences of the lift behavior execution

is not limited to having lifted the objects and can be complex.

For example, some spheres may roll out of the view after an

attempt to grasp and lift, while large boxes will be pushed away

but still remain in the view after the lift behavior execution.

2.4. Exploration

The exploration phase, conducted only in simulation, con-

sists of episodes, where the robot interacts with the objects, and

monitors the changes. The data from an interaction is recorded

in the form of < f
bi
effect
, f (), bi > tuples, i.e. (object, effect, be-

havior) instances (Algorithm 2). Here, bi is the behavior used

for interaction, f () and f
bi
effect

denote the initial object feature

vector and the difference between final and initial feature vec-

tors, respectively. Note that o j notation is omitted since the

robot interacts with a single object at a time in this phase.
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Algorithm 2 Exploration phase

1: for each trial k (from 1 to m) do

2: Reset robot joint angles

3: Put a random object in random position, size, and orien-

tation

4: while isObjectVisible() and isObjectPositionChanged()

do

5: Perceive the environment and compute initial feature

vector f ()

6: Execute a random behavior bi where 0 ≤ i ≤ 3

7: Perceive the environment and compute effect feature

vector f
b j

effect

8: Put < f
b j

effect
, f (), bi > into repository.

9: end while

10: end for

3. Stage 1: Learning Affordances

The data collected as tuples during the exploration phase are

stored in a repository

{< f
b j

effect
, f (), bi >}

and is used by the robot to learn the affordances of objects. The

learning process consists of two steps: the unsupervised discov-

ery of effect categories, and the training of classifiers to predict

the effect categories from object features. The learning process

is applied separately for each behavior as detailed below.

Effect category discovery. In the first step, the effect categories

and their prototypes are discovered through a hierarchical clus-

tering algorithm (Figure 3). In the lower level, channel-specific

effect categories are found by clustering in the space of each

channel, discovering separate categories for visibility, position

and shape. In the upper level, the channel-specific effect cate-

gories are combined to obtain all-channel effect categories us-

ing the Cartesian product operation. In Figure 3, where a hypo-

thetical example is depicted, the effect category E1 = V1P1S 1

stands for E1 = V1 ∧ P1 ∧ S 1 and contains the effect feature

vector instances which are classified as V1, P1, and S 1 when

only the corresponding feature-channel is considered, respec-

tively. Finally, the effect categories that occur rarely (indicated

in the figure as shaded regions) are automatically discarded to-

gether with their members. The proposed hierarchical cluster-

ing method is superior to simple one-level clustering method,

since the result of one-level clustering is sensitive to the rela-

tive weighting of the effect features that are encoded in differ-

ent units (e.g. continuous position features vs. binary visibility

feature). Additionally, the performance of the clustering pro-

cess is optimized by running the clustering algorithm multiple

times and selecting the best clusters based on their utility in the

second step of learning.

After discovering the effect categories and assigning each

feature vector in the set of { f
b j

effect
} to one of the effect categories

(E
b j

id
), the prototype effect vectors ( f

b j

prototype,id
) are computed as

Figure 3: The proposed hierarchical clustering method to discover effect cate-

gories. Channel-specific and all-channel effect categories are shown on lower

and upper levels, respectively.

the average of the category members. To represent the experi-

ence of the robot in a more compact way, the continuous effect

vectors are replaced by the effect category id’s and their proto-

types; and the repository is thus transformed into the following

form:

{E
b j

id
, f (), b j}, {< E

b j

id
, f

b j

prototype,id
>}

Here, the first list corresponds to the set of affordance relation

instances where effects are generalized and the second one cor-

responds to the list of <effect-category-id, prototype vector>

pairs.

Learning effect category prediction. In the second step, clas-

sifiers are trained to predict the effect category for a given

object feature vector and a behavior by learning the mapping

f () → E
b j

id
mapping. Effectively, this establishes a forward

model, Predictorbi ( f ()) that returns E
b j

id
for each behavior.

At the end of these two learning steps, affordance relations

are encoded as:

{Predictorb j ()}, {< E
b j

id
, f

b j

prototype,id
>}

or

{{Predictor()}, {< Eid, f prototype,id >}}
b j

allowing the robot to ‘know’ the effect of a behavior in terms of

the effect category and its prototype.

4. Stage 1: Results

In the experiments, a table with 100 × 70 cm2 surface area

was placed in front of the robot with 40 cm distance, as shown

in Figure 1. At the beginning of each exploration trial, one ran-

dom object ( , , or ) of random size [20cm − 40cm]

was placed on the table at random orientation (see Algorithm 2).

For all behaviors, 5000 interactions were simulated and the re-

sulting set of relation instances were used in learning. The X-

means algorithm [45] was used to find channel-specific effect
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Figure 4: Each dashed-box corresponds to a channel-specific effect category

discovered for the push-right behavior. The category prototype vectors are rep-

resented by the bars in normalized form. For example, the position of the ob-

jects, which created the last effect category in position channel, reduced along

lateral axis and did not change along other axes. The light colored prototypes

are discarded since the number of members was below the threshold.

categories7, and Support Vector Machine (SVM) [46] classi-

fiers were employed to learn effect category prediction.

In the rest of the section, the effect categories that were dis-

covered using the proposed hierarchical clustering algorithm

are interpreted, and the contributions of specific object features

for affordance prediction are assessed.

4.1. Discovered Effect Categories for Push Behaviors

The detailed results are given for only one representative be-

havior, push-right, as all the push behaviors produced similar

effect categories. The channel specific effect categories discov-

ered for the push-right behavior and their prototypes are shown

in Figure 4. Two categories are discovered within the visibility

channel. The first category corresponds to the disappearance of

the object (indicated by a change of -1 on the visibility feature)

and the second category represents the effect where the object

remains in the view (indicated by no change).

The changes in object position channel are represented by

four distinct effect categories. The first category represents the

case for no change in object position, and the third and fourth

categories represent different magnitudes of object movement.

The occurrence of the second effect category is very rare, i.e.

the ratio of the members in this category to whole sample set

is below a preset threshold (of 3%), hence this category is dis-

carded. In the shape channel, four effect categories are discov-

ered but one of them (third category) is discarded as its ratio

was below the threshold.

The all-channel effect categories are computed by taking the

Cartesian product of the channel-specific effect categories. The

2 categories in the visibility and 3 categories in both the posi-

tion and shape channels generate 2 × 3 × 3 = 18 all-channel

categories. A pruning process is applied as in the lower level,

to remove the impossible and rare effects based on the number

of category members.

Figure 5 shows some of such categories that are obtained due

to rare occurrence in robot’s experience. The first illustrated

category is physically impossible because the object disappears

according to the visibility feature, and at the same time moves

7X-means implementation in Weka data mining software is used. http:

//www.cs.waikato.ac.nz/ml/weka/

Figure 5: Impossible or rare effect categories that are formed through Cartesian

product of channel-specific categories for push-right behavior. Some of the

categories can be created due to inaccuracies in simulator and some of them do

occur very rarely.

Figure 6: The prototypes of effect categories for push-right behavior. It can be

seen that push-right has an effect on visibility and lateral position features but

not in others.

to a visible position based on the position feature. In the sec-

ond category, object’s position is not changed but it is rotated

around. This is also impossible unless the object is attached to

the table, which is not the case in our setup. The third category,

where the object is pushed to the right and rotated, is possible

but rare, as the objects are pushed from the center.

Next, we analyze the prototypes of remaining effect cate-

gories (Figure 6).

• The unreachable effect (Effect-2) corresponds to the pro-

totype where no feature change is observed. The average

distance of the objects that produced an unreachable ef-

fect is 124.4 cm indicating their unreachability given the

kinematics of our robot.

• In the disappear effect (Effect-1), the visibility of objects

drop from 1 to 0, indicating the objects falling off the table.

This can happen when the objects are pushed and rolled

out of the table. We found that most of the objects that fall

under this category are spheres, since they are likely to roll

away and fall from the table. However, boxes and upright

cylinders placed on the edge of the table also fall under this

category as they fall of the table when pushed. The disap-

pear effect (Effect-1) was also created by the objects which

were elevated over the table. This happens when the robot

had executed a successful lift behavior in the previous step.

In such situations, a subsequent push-right behavior would

open the hand causing the lifted object to drop and hence

might make it disappear. Note that the disappearance of

an object through dropping it (lift followed by push-right

) was an unexpected emergent behavior.
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Figure 7: The prototypes of effect categories for lift behavior. It can be seen

that lift behavior has an effect on vertical, frontal and lateral position features

as well as visibility.

• In the less-dragged effect (Effect-3) and the more-dragged

effect (Effect-4), the lateral position of the objects are re-

duced (the objects are pushed right with respect to the

robot) as a result of push-right behavior. These categories

were created by only boxes and upright cylinders, and do

not include any spheres since they always roll-away when

pushed.

4.2. Discovered Effect Categories for Lift Behavior

Figure 7 shows the all-channel effect prototypes, discovered

by the hierarchical clustering process for the lift behavior:

• The unreachable effect (Effect-2) corresponds to no sig-

nificant change in the feature vector since it was created

by (failed) interaction with unreachable objects, similar to

Effect-2 for the push-right behavior.

• In the disappear effect (Effect-5), objects became invisible

after execution of lift behavior. This effect was created by

(1) ungraspable large spherical objects that roll away after

interaction, (2) ungraspable large objects that are pushed

off from the left edge of the table, and (3) the objects that

were already in robot’s hand due to a previous lift behavior

execution.

• In the dragged effects (Effect-1 & Effect-4), the vertical

position of the object remains same, but its position on

the table is changed indicating a drag over the table. This

effect was created by large ungraspable objects that are

not rollable. The objects that create dragged effects were

pushed on the table for different amounts and in differ-

ent directions as interactions with different object types

and sizes result in different collision dynamics between the

hand and object.

• In the lifted effect (Effect-3), the elevation of the objects

(represented by first two columns) increase, corresponding

to the cases where objects were successfully grasped and

lifted.

The lift behavior was designed to grasp and lift the objects.

Thus, from the designer’s point of view, there can be two differ-

ent outcomes resulting from the execution of the lift behavior:

Either the object can be grasped and lifted successfully, or it

can not be grasped, so can not be lifted. However, when the

effects that were obtained during the robot’s exploration were

clustered using the hierarchical clustering algorithm, five dif-

ferent effect categories were generated. These results show that

the effect categories should not be limited to the definition of the

behavior or the intention of the behavior designer, but should be

discovered through interaction.

4.3. Effect Category Prediction Results

After the discovery of effect categories, the mapping from

the initial object features to these categories is learned for

each behavior b j (Predictor
b j ()) by multi-class Support Vector

Machines (SVMs). The Libsvm8 software package was used

with optimized parameters of the RBF kernel through cross-

validated grid-search in parameter space. 4000 simulated in-

teractions were used in training and a separate set of simu-

lated 1000 interactions were used for testing. At the end, 95%,

84.3%, 82.2%, and 79.7% accuracy was obtained in predicting

the correct effect categories for push-forward, push-left, push-

right, and lift behaviors, respectively. The accuracy of push-

forward is higher than other push behaviors since it has three

effect categories (compared to four effect categories in other

two push behaviors).

We analyzed the relevance of the features in affordance pre-

diction for the push-right and lift behaviors using the Schemata

Search [47] by computing the relevance of a feature based on

its impact on the prediction accuracy. The Schemata Search

is a greedy iterative method that starts with the whole feature

set (R0), and reduces it by removing the least relevant fea-

ture in each iteration. At each iteration (t), candidate subsets

are formed by removing a different feature from Rt-1 (remain-

ing feature set of previous iteration), and they are evaluated by

training SVM classifiers in 5-fold cross-validation. The sub-

set with the highest mean prediction accuracy is chosen as Rt

and transfered to the next iteration. The computation time is re-

duced by grouping the vertical (longitude) and horizontal (lati-

tude) shape features, and treating them as single units.

Figure 8 shows the prediction accuracies of the feature sets

produced by this method. In both plots, the first bar corresponds

to the prediction accuracy with the full feature set (R0) and the

last bar corresponds to the accuracy without use of any features

(R8 = {}, base condition).

The effects of these features were further investigated by per-

forming t-tests contrasting the prediction accuracies of adjacent

feature subsets. We found that the prediction accuracy changed

significantly after removal of features from the subsets R5 and

R4 for push-right and lift behaviors, respectively.

• For the the push-right behavior (Figure 8 (a)), the three

most relevant features were Min. Lateral, Shape Verti-

cal, and Max. Frontal. The Shape Vertical feature has di-

rect relation to the rollability of objects, whereas the Max.

8http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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(a) Push-right behavior
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(b) Lift behavior

Figure 8: The prediction accuracies of the classifiers that are computed using different feature sets. The feature set is reduced by one feature in each iteration by

deleting the most irrelevant one. The left-most and right-most bars in each plot show the results obtained using all and no features, respectively. Error bars on

prediction accuracies indicate the best, median, and worst classifiers found by 5-fold cross-validation. Significant changes between adjacent feature subsets from

t-test are shown (*: p < 0.002).

Frontal and Min. Lateral features determine the object’s

position on the table and hence give information about

whether the object is reachable or fallable from the edge.

Note that, removing Min. Frontal feature from the train-

ing set did not have a significant effect on accuracy since

existence of Max. Frontal in that set makes Min. Frontal

redundant.

• For the lift behavior (Figure 8 (b)), Min. Frontal is among

the most relevant four features together withMax. Frontal.

This is unlike the case in push-right, where either of them

would suffice for successful prediction. In the lift behavior,

these together, define the size of the object, and so deter-

mine whether the object is graspable or not. The removal

of Shape Vertical did not have significant effect on accu-

racy since the number of cases where the object rolled out

of view was not high. However Shape Horizontal feature

was significant as it tells about the surface opposed by the

fingers during grasping.

5. Stage 2: Use of affordances in task execution

In this section, we present the methods that enable the use of

learned affordances to accomplish tasks which require sequen-

tial planning. State space search algorithms are used for this

purpose, where the world state is represented in the perceptual

space of the robot. Here, the world state corresponds to the list

of feature vectors obtained from the objects in the environment.

The initial world state can be represented as follows:

[ f ()o0 , f
()
o1
, .., f ()om ]

where, () denotes the zero length behavior sequence executed

on the objects, and m is the maximum number of objects. If the

actual number of objects is less than m, the visibility features of

non-existing objects are set to 0:

f ()oi [0] = 0, i ≤ m

where 0 is the index of visibility feature.

State transition occurs when the robot executes one of its be-

haviors on an object. Only one object is assumed to be affected

at a time during the execution of a single behavior, i.e. only the

state of the corresponding object is changed during a state tran-

sition. For example, if the robot executes its 3rd, 2nd, 3rd, and

1st behaviors on 1st, 1st, 2nd, and 1st objects, respectively, where

m = 3, the resulting state will be shown as:

[ f (b3→b2→b1)
o1

, f (b3)o2
, f ()o3 ]

In the previous section, the robot acquired the ability to pre-

dict the next state ( f (bi)) based on the current state of the object

f () using SVM classifiers (Predictorbi ) for each behavior (Fig-

ure 9). Based on this prediction scheme, the robot can estimate

the total effect that a sequence of behaviors will create and use

this to predict the final object state. Thus, any goal can be en-

coded in the perceptual state of the robot, and a search can be

done through predicting effects of different behavior sequences

to reach that goal state.

Goals. The goals are represented by a set of constraints on the

object features that are encoded in states. For example, the state

that includes an object feature vector with f
(... )
o2 [5] = [0.75m −

0.85m] will roughly satisfy the goal of move the 2nd object to

0.8m distance along the frontal axis where 5 corresponds to
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the index of the feature that encodes ‘minimum distance along

frontal axis’. As another example, the goal of pick-up a partic-

ular object is satisfied in a state, where f
(... )
o∗ [2] = [0.35− 0.45].

Here, the 2nd feature corresponds to ‘minimum position along

vertical axis’ and ‘∗’ corresponds to any object in robot’s view,

i.e. any object included in the world state description. If the

task is to lift the 2nd object with 0.8m frontal distance to the

robot, both features are required to be satisfied.

Formally, the constraint set (goal) is composed of (object-

index, feature-index, value and range) tuplesCS = {(o j, i, v, r)}.

A state satisfies the goal if for all the constraints, the following

inequality holds:

v − r ≤ f (... )o j
[i] ≤ v + r

Goal Specification. The straightforward means to set a goal is

to manually decide what the constraints (features, objects, val-

ues, and ranges) are. In this way, one can encode any goal by

manually setting the desired feature value ranges for any ob-

ject or objects. However, this approach requires full knowledge

of the representations of the states and the meaning of all the

features. In case of any change in feature space, the goal set-

ting procedure needs to be repeated. Furthermore, hand-tuned

goal setting requires programmer intervention each time, mak-

ing it time-consuming and inconvenient in a world with chang-

ing tasks and goals. A more convenient way is to demonstrate

an action from which the robot can automatically extract the

goal and encode it in its perceptual space. This second approach

is used in the next section, where the robot self-discovers the

goals by observing the desired goal state of the object or ob-

jects, and then generates plans based on these.

Plan generation. This refers to finding the behavior sequence

required to transform the given state into the goal state. In this

study, forward chaining is used to search the state space and

find a sequence. Forward chaining uses a tree structure with

nodes holding the perceptual states and edges corresponding

to (behavior-object) pairs. The execution of each behavior on

each different object can transfer the state to a different state

making the branching factor of the search tree to be number of

behaviors × number of objects. Starting from the initial state

encoded in the root node, the next states for different behavior-

object pairs are predicted for each state (Figure 9). Note that

object features do not change if the behavior is not executed

on them, thus only one prediction is performed and one feature

vector is predicted in each transition.

Figure 9: Next state prediction using the general affordance relations encoded

in: {{Predictor()}, {< Eid , f prototype,id >}}
b.

In order to reduce the search time, the states with minimal

distance to the goal state are expanded first. The distance be-

tween states is computed using the features that appear in the

Figure 10: Robot control architecture.

constraint set. When a state reached satisfies the goal con-

straints, the sequence of behavior-object pairs ({< bi, o j >}) that

transfers the initial state to that state is returned as the plan.

5.1. Control Architecture

In order to test the proposed method on the real robot

platform, a control architecture that supports goal emulation

through automatic goal specification was implemented. The

robot, the infrared range camera, and a table were placed similar

to the simulated interaction environment. A closed-loop robot

control architecture, which can be viewed as a 3-layer hybrid

architecture ([48, Chapter 7]), was used for this purpose (Fig-

ure 10). The Perception Module receives data from the range

camera and computes the features of the objects, i.e. the state of

the world, as described in Section 2.2. TheUser Interface Mod-

ule is the means of communication with the robot: It shows the

range image, the detected objects, and the features of the ob-

jects; gives a status report to the user about the plan being exe-

cuted; and illustrates the search plan tree. Through the User In-

terface Module and the Set-goal command, the user can provide

the goal environment to the robot, and he can initiate the process

of goal-emulation in another environment by giving Generate-

plan and Start-plan-execution commands. The predictions on

object features that were calculated during the planning process

and stored in the nodes of the search tree can be used to assess

the difference between the predictions and actual perception of

the environment. The Plan Generation Module stores the nec-

essary knowledge ({{Predictor()}, {< Eid, f prototype,id >}}
b j ) for

making predictions in the perceptual space of the robot. It stores

the goal state and starts the plan generation when the Set-goal

and Generate-plan commands are received. Note that both goal

state and initial state of planning are provided by the Perception

Module .

The Execution Manager Module is responsible for the or-

dered execution of behaviors and monitoring of the plan execu-

tion. It receives the plan (behavior-object pairs) from the Plan

Generation Module and when the Start-plan-execution com-

mand is sent through the User Interface Module, the behaviors

to be executed are sent one-by-one to the Behavior Controller

Module. At each step, the Execution Manager Module checks

whether the change in the state is as the one that was predicted

in the plan, to decide whether the execution was successful or
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not. A mismatch detected during the execution of a behavior is

reported to the User Interface Module causing the execution of

the plan to stop. The Behavior Controller Module receives the

behavior-id to be executed, generates a trajectory of the joint

angles based on the specified behavior, object position and cur-

rent joint angles, and sends it to the low-level controller of the

robot arm and hand. This system is tested with several objects

at varying positions in different tasks as shown in the following

sections, and used to assess the effectiveness of our approach

for real world applications.

5.2. Goal Setting through Observation

We introduced observation and imitation phases to facilitate

automatic goal setting. In the observation phase, the robot

perceives the environment and encodes the goal based on the

feature vectors obtained from the environment. In the imita-

tion phase, the robot searches a sequence of behaviors that will

transform the current state to the observed goal state. “What

to imitate” is still an open question in developmental psy-

chology and cognitive robotics [49, 50]. Here we followed a

feature-channel-specific goal-emulation mechanism that priori-

tize some features over others.

As mentioned earlier, the states are encoded in three differ-

ent feature channels. We postulated a hierarchy of importance

on these features for the agent. According to this, the visibility

channel is the most important one since it determines whether

an object exists or not. The position-channel represents the ob-

ject’s location (and relation to the robot and the other objects)

in the world. Lastly, the shape channel gives information about

the contour of the object. The robot first checks whether the

object-visibility feature condition is satisfied or not. If not, it

only focuses on satisfying the object-visibility condition. If it

is already satisfied, then the robot makes a plan to obtain the

observed position-related features. If both object-visibility and

position-related features satisfy the goal constraints, the shape-

related features are chosen as the goal channel.

6. Stage 2: Results

6.1. One-Object Imitation

Clear the table task. The goal of this task was to keep the ta-

ble clear, hence an empty table was shown to the robot in the

observation phase. Since no object was perceived, the object-

visibility feature was automatically set to 0. Later, during the

imitation phase, different objects were placed on the table and

the robot generated and executed plans to reduce the object-

visibility to 0.

The snapshots taken from this experiment are shown in Fig-

ure 11. In (1), the object was pushed and dropped from the

left edge of the table using two push-left behaviors. In (2), a

graspable object was placed at almost the same position and the

robot generated a plan with lift and push-left behaviors. When

these behaviors were executed, the robot lifted the object using

lift behavior and then the object dropped from the hand in the

beginning of push-left behavior. The object, that landed on the

Figure 12: Move the object to a target position task. The first panel/column

corresponds to the observation phase and the next panels correspond to the

imitation phase steps. The details of the computed features (third panel) are

described in the text.

table was pushed from the edge of the table by the push-left be-

havior. In (3), the push-left behavior execution was predicted to

drop the object from the table, however at the end of the push-

left the object remained on the table. The plan monitoring mod-

ule detected the failure and generated a new (correct) plan (4)

to roll away the object in this slightly changed configuration.

In (5), when a ball was placed on the table, the push-forward

action was executed to roll it off the table. When a large non-

rollable cylinder was placed in (6), a wrong plan was gener-

ated since the diameter of the large cylinder was on the deci-

sion boundary for liftability (grasp-ability). However, when the

object’s position was slightly changed, the system was able to

make a new plan (7) with four subsequent push-right behaviors.

This experiment verifies that through interaction the robot had

learned the affordances related to physical characteristics and

positions of the objects. Additionally, unsuccessful plan execu-

tions due to incorrect predictions could be corrected through the

self-monitoring mechanism. Note that in order to save space,

we did not include the experiments with the unreachable ob-

jects where no plan was generated, and box shaped objects that

have similar movement characteristics with upright cylinders.

Move the object to a target position task. In the observation

phase, an object lifted in the air was shown to the robot. The

observation phase and the initial step of the imitation phase are

shown in the upper and lower panels, respectively in Figure 12

(a-c). Visibility, distance and shape features were normalized

and their magnitudes are shown by bars in compact form. Due

to the priority-based automatic goal setting, the robot sets the

goal based on position-related features and generates a plan

which could transform the given object features to the observed

ones. Figure 12 (d) shows the expanded nodes of the search

tree, and the found plan.

The snapshots from the execution of the generated plan are

shown in Figure 13. The top panel shows the initial range im-

ages before the execution of the corresponding behaviors. The

figures in the middle panel show the feature values computed

from the range image. The predictions made for each feature

during planning for the visibility and position feature channels

are indicated by small blue boxes. The lower panel illustrates

the execution of each behavior. In the end, the 7-step plan was

successfully executed bringing the object approximately to the

goal configuration.
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Figure 11: Clear the table task. In the observation phase, an empty table is shown to the robot and the robot sets the goal object-visibility feature to 0. Environment

snapshots, range images and generated plans are given in top, middle and bottom rows, respectively.

Movies are available at http://www.cns.atr.jp/~emre/ras10/.

Figure 13: The execution steps of a 7-step plan that was generated to bring the object to the observed position in Figure 12 (a) top.

14



Figure 14: Two-object imitation. The left-most panel shows the placement of

objects in the observation phase. The second panel shows the feature vectors of

objects in observation phase, and the difference between these vectors encoded

as the goal. Right-most 4 panels show the generated plans in different setups to

achieve the goal.

6.2. Two-Object Imitation

We can use the learned affordances to make predictions over

multiple objects under the assumption that only one object is

affected by each behavior execution. For this, not plan genera-

tion but the goal setting scheme needs to be modified for tasks

involving multiple objects. In the case of two objects, the goal

constraint set can be specified either absolutely or relatively. In-

spired from goal-emulation in biology (Section 7.1), our system

sets the goals in accordance with the latter, where the relation

between objects is important. The robot computes the features

of the objects in the observation phase, gets the vectorial dif-

ference between these features and encodes this difference as

the desired goal to be achieved. Setting the goal in this way is

also consistent with previous one-object imitation experiments

if a second fixed object is assumed to exist (like the table or the

robot’s body).

The left-most panel of Figure 14 shows a goal configuration

with two objects. The top and middle feature vectors in the

second panel correspond to the robot’s perception in this con-

figuration and the bottom vector refers to the goal, computed

as the difference between position features of the two objects.

The right-most four panels show different situations where the

robot was expected to generate plans in order to achieve the

goal. In situation (1), a lying cylindrical object was placed close

to the robot and a box shaped object far away. To bring these

objects closer, the robot needed to either pull the box towards

the cylinder or push the cylinder towards the box. The system

correctly predicted that the cylinder rolls away when pushed

forward and the box can not be pulled back with the existing

behaviors. Hence, no plan was generated. When the orientation

of the cylinder was changed in (2), the robot predicted that the

cylinder was no longer rollable, and it could be moved towards

the box if pushed forward. As a result a 4-step plan was gen-

erated with 2 push-forward and 2 push-right behaviors on the

cylinder. In (3), the box was placed closer to the robot, so in-

stead of any push-forward behavior, the plan consisted of two

push-right behaviors for the cylinder and one push-left behavior

for the box. In (4), when the upright cylinder was replaced by

a sphere, i.e. a rollable object, the generated plan only included

movements targeted to the box.

7. Discussion

The development of artificial agents that learn through em-

bodied interaction with the environment is rather recent in

robotics. Yet, the concepts leading to these ideas have been

studied in developmental psychology for years. In the first

part of this section, we discuss our robotic study in the light of

cognitive science and development of human infants and chim-

panzees. In addition, we discuss the representation and mech-

anisms required to make multi-step plans in animals with and

without symbolic manipulation capabilities. In the second part,

we switch our attention to the potential improvements on our

study in the context of robotics.

7.1. Cognitive Development

The necessity of prediction capability for goal-directed ac-

tion execution and planning goes back to 19th century. The

ideomotor principle postulates that an agent must use his/her

anticipation of an action’s outcome to execute intentional ac-

tions [51]. Furthermore, according to this principle, these an-

ticipations are represented as action-effect relations which are

learned during the motor babbling phase through exploration of

the environment [52]. Our work, among others, captures this

basic observation, namely learning the effects of actions in the

environment and representation of these experiences to be used

in prediction and planning. In our study, the robot acquired such

prediction ability in Stage 1 and utilized it in the next stage.

However, by postulating stages 1 and 2 we do not claim that

there is a discrete switch in the human development phases; it

rather makes the analysis of learning and acting with the learned

knowledge convenient. One can also relate the stages we postu-

late with the bifurcations that happen throughout the evolution

of a dynamical system that might be representing development

[53] (e.g. the switch from quadruped walking to bipedal walk-

ing). Instead of simulating a dynamical system that exhibits

such bifurcation, we simulate the two modes of the dynamical

system as separate stages.

An unsettled discussion is whether the goals and predictions

are encoded in the perceptual space of the agent [54] or not.

This is an important issue both for a robot designer and a neu-

roscientist searching for neural correlates of intelligent behav-

ior. Although, most would agree that a hierarchy of predictive

mechanisms, ranging from sensory to abstract, is a prerequisite

for intelligent behavior, we further argue that this by itself is

not sufficient. The critical issue is that the goals and the predic-

tions can be expressed in the low level perceptual space when

needed. According to [14], this is supported by recent behav-

ioral and neuropsychological findings. In the experiments pre-

sented with our system, the goals were specified directly in the

perceptual state of the robot. However, this is not the only pos-

sibility as the prediction mechanisms we employed represent

the effects of actions in two levels: One is the affordance level

where discrete and abstract items are predicted (i.e. effect cat-

egories). The second is the sensory level where the prediction

takes place in the perceptual space (i.e. current perceptual state

+ effect category prototype). If we were to consider our robot

as a ‘high-level agent’ and ask it to bring about the ‘lifted effect’
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it would be able to tell whether there is, any object that affords

this high level (non-perceptually specified) goal, and if, indeed,

there is such an object, it would be able to execute a behavior

to bring about the desired effect.

In spite the ongoing debate on whether these anticipations are

represented in the sensory-motor space or in a more abstract

level, it is widely accepted that these mechanisms are used in

planning [55]. According to Piaget (1952), human infants start

to distinguish means-ends relation at 4-8 months, and start to

use these relations until around 12 months for one step goal sat-

isfaction. It is not implausible that a limited amount of anticipa-

tion skill be hardwired through evolution in humans and other

animals; however, the majority of this skill must be acquired

by the organisms through interaction with the environment. El-

sner and Hommel [15] and Hommel [56] argue that this ability

cannot be innate and the human infant learns to use anticipa-

tion for goal-directed action execution in his/her early months

of infancy. Infants use the learned action-effect relations to an-

ticipate the results of their actions in a goal-directed way start-

ing from 9 months [10, 11, 12]. Piaget argued that planning

is only possible after development of symbolic representation

at 18-24 months, although there is evidence that younger chil-

dren are able to make multi-step plans. For example, 9-month

olds are shown to generate a multi-step plan to reach a toy, by

first removing the obstacle, then pulling the towel and grab-

bing the object placed on it [13, 57]. In our system, the predic-

tion ability was demonstrated for multi-step planning without

going through a gradual development. This, however, could

be easily emulated by restricting the planner to plans of depth

one and gradually increasing the allowed depth in the search

for plans to achieve the desired progression. One can specu-

late that the inability of early infants to make complex plans is

due to an immature working memory needed for planning. As

the infant grows, the increasing memory that is available to the

planning may allow complex plans. This argument regards the

planning mechanism as fixed but requiring more memory as the

sought plans become more complex; however this may not be

the case as different planning mechanisms may coexists and de-

velop along with the infant’s cognitive development [58]. It is

largely unknown whether symbolic manipulation ability is nec-

essary for complex planning, as Piaget argued. Our stance is

that, computationally, there is no such necessity; even though

a symbol manipulation machinery would be an invaluable tool

for planning and other cognitive skills. Especially this would

be more advantageous as the plans shift from physical to social

domain. In the presented system, the plans are performed in the

perceptual domain which allow the robot to naturally interact

with objects it did not experience before. For example it would

be able to make a bottle disappear from the table, even though

it has no idea what a bottle is and has never seen it before.

One feature we introduced for specifying the goals automat-

ically in our system has interesting relations to the so called

‘goal emulation’ in cognitive psychology. The term can be

defined as an observer’s learning that a particular goal can be

achieved and setting about achieving it by its own [9]. Goal em-

ulation is different from other social learning mechanisms such

as mimicry and imitation and somewhat puzzling. Most ani-

mal mimicry is restricted to goal emulation, which is generally

regarded as a simpler task than imitation. However, human in-

fants who can imitate are unable to use goal emulation to learn

new skills: Children show mimicry before 12 months of age

but only start to pay attention to goals of the demonstrator only

after that period [6, 7, 9]. 17-month-olds can use observed ac-

tions or their own action repertoire to achieve the observed goal

depending on the context [59], 18-month-olds can understand

‘intended’ goals of a demonstrator trying but failing to achieve

his goal [60], and 18-month-olds can learn tool use by obser-

vation. However, goal-emulation, i.e. executing a sequence of

behaviors after observing only the goal state, develops rather

late [61, 6] and only after 18-months-old infants are able to

emulate action sequences for novel goals [62, 63]. For exam-

ple, in [64, 63], 27-month-old infants were able to execute a

3-step plan to construct a rattle from two cups and a ball but

21-months-olds were not. The puzzling findings for human in-

fant goal emulation could be due to the lack of motivation or the

insufficient affordance experience with the toys used in the ex-

periments. Many animals are known to make multi-step plans

involving different types of objects. For example in [65], chim-

panzees stack four boxes on top of each other to reach a banana

that was hung out of their reach. They were also able to climb

on a long stick instead of stacking the boxes when that stick was

available in the environment. However, the same chimpanzees

were not able to generate plans with those objects when the ob-

jects resided in another (accessible) room even if chimpanzees

had explored that room recently. This observation led [66] to

conclude that non-linguistic animals use object affordances to

make plans; and they start reasoning from the immediate envi-

ronment (initial state) to reach the goals, i.e. they use forward-

chaining. Furthermore, the plan generation can be successful if

they have learned the affordances of the objects before [67].

Within the light of above discussion, we can argue that our

robot system when run in automatic goal setting mode is more

similar to a chimpanzees rather than a human infant, as the goal

is more important than the means for a chimpanzee. Although,

chimpanzees utilize social learning mechanisms to develop var-

ious tool use skills, unlike humans, they are less sensitive to

demonstrator’s body movements and tend to emulate the goal

more than to imitate the demonstrator [68]. In fact movements

that do not have apparent targets such as another object or a

body part has little imitation potential for chimpanzees [69].

Having said this, one should not that in the current implementa-

tion, unlike infants and chimpanzees, robot’s development was

not completely autonomous. The robot did not have a pro-

grammed will to do actions (say to feed itself). Instead we sub-

stituted such ecologically meaningful goals with the designer’s

goal setting, say, the goal of ‘cleaning the table’. If one wishes,

this can be equated to say, fulfilling the hunger of a robot.

One final similarity of our system’s working with a chim-

panzee’s cognitive abilities is that chimpanzees have difficulties

when manipulating objects in different multiplicities. It may be

speculated that this could be due the lack of symbolic planning

ability of chimpanzees. This is analogous to the case in our

system: our system benefits from having the planning done in

perceptual space in terms of generalization and robustness; but
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it faces difficulty in encoding goals in the same representation

for different number of objects. In the current implementation,

we overcame this by introducing a special goal setting mecha-

nism inspired from the observation (unpublished video related

to [69]) that when chimpanzees are asked to imitate an action

involving two objects (put an object in a bowl), they appear to

reproduce the spatial relation of the objects rather than the abso-

lute spatial configuration shown to them (by holding the object

and the bowl in both hands and bring them together in the air

instead of on table).

Although our affordance-based robot control system learned

affordances that allowed the robot to make plans to fulfill a

given goal, the relation of these affordances to other higher-

level cognitive processes, such as recognition is an open ques-

tion. For example when one wishes to augment the robot with

object recognition capability, would the acquired affordances

be of any help? Neisser [70, 71] tried to place affordances and

direct perception into a complete cognitive system model and

tried to link them with other cognitive processes. According to

him, J. J. Gibson was right in stating that the meanings of the

environment are directly available. Invariance attuned detec-

tors are used for this purpose. However, he claimed, the Gib-

sonian view of affordances of perception is inadequate, since

“it says so little about perceiver’s contribution to the percep-

tion act” [70, p. 9]. Instead, he suggested a perceptual system

where a cyclic activity, continuous over time and space, oc-

curs. This cycle “prepares the perceiver to accept certain kinds

of information... At each moment the perceiver is constructing

anticipations of certain kinds of information, that enable him to

accept it (information) as it becomes available” [70, p. 9]. Since

every natural object has an infinite number of affordances, this

cycle could also be employed to prepare the perceiver to search

for particular affordances at each moment, and attune specific

detectors to perceive these affordances.

In this study, we simplified the development by keeping the

body of the robot and its motor skills fixed and focusing on the

adaptation of the perception and visuomotor learning. How-

ever, the perceptual and motor development is tightly coupled

in biological systems. Thelen’s dynamical systems view takes

Gibsonian perception-action concept and places it in a more bi-

ologically plausible developmental perspective [53, 72]. She

proposed a machinery derived from dynamical systems theory,

and attempted to explain development, perception, and action

(and to some extent decision making) in a single framework.

In this framework, multiple physical and biological variables

such as muscle power and body mass are fundamental fac-

tors for movement development that significantly affects per-

ception since they are inseparable and reciprocally developed.

The learning and shifts between developmental phases can be

modulated in a more natural way if such variables are included

in robot’s behavior and skill development.

We close this section by noting that although Piaget’s re-

quirement for symbolic manipulation ability for complex plan-

ning might be too strict, higher cognitive abilities, including

multi-object and memory based planning requires the develop-

ment of symbolic planning mechanisms irrespective of whether

the symbols manifest themselves as linguistic constructs or not.

7.2. Potential Improvements

Discrete pre-coded behavior repertoire. In this work, we as-

sumed that the robot has a basic behavior repertoire that was

assumed to be learned before 9. Furthermore, these fixed robot

behaviors were encoded as discrete and non-parametric actions

for simplicity. For example, push-left and push-right behav-

iors were regarded as independent primitives whose affordances

were learned independent of each other. Thus, a rolling effect

experience created on a ball by push-left behavior cannot be

generalized to the other push directions. One improvement

on our system would be to group similar behaviors such as

push-left and push-right under a generic parametric behavior;

for example a push behavior with approach-direction parame-

ter would encapsulate the desired repertoire. Then, accordingly,

the affordance learning framework needs to be modified such

that learning establishes the mapping from (object features, be-

havior parameters) to effect categories. In [73], a more low level

and integrative approach was adopted where the behaviors were

represented as learned dynamical systems with adjustable pa-

rameters. At the core of this approach is a recurrent neural net-

work that allows sensorimotor prediction as well as producing

next state information driving the joints of the robot. This sys-

tem, by experiencing multiple push actions on different objects,

could learn multiple sequences of robot and object motions and

encode this visuo-motor experience in the same model. The

different object-robot dynamics are captured in, so called, Para-

metric Bias variables. The robot could reconstruct and generate

novel sequences through adjusting these variables. After defin-

ing a goodness measure the robot could find the most suitable

parametric bias values to obtain the desired performance mea-

sure. With this approach the robot could generate robust action

executions by finding parametric bias values that would lead to

reliably predictable movements and effects. In particular, [73]

showed that after training, the robot could choose motions that

would result in consistent and reliable object rolling motions

depending on the orientation of the objects.

Perceptual features. The perceptual features used in this study,

were inspired from the properties of primate visual processing

pathway that are relevant for affordance detection [74]. In par-

ticular, edge detection (visual area V1), depth processing (vi-

sual area V3) and surface and axis representations (CIP - Cau-

dal Intraparietal Area) are critical subprocesses of the dorsal

visual pathway of the primate cortex leading to the affordance

representation in AIP -the anterior intraparietal area [74]. As

not all of these features may be necessary for a given spe-

cific action, a selective feature processing mechanism (percep-

tual economy) is a parsimonious solution for evolution and the

robot designer. For example, the surface shape feature that de-

termines the rollability affordance of an object may not be im-

portant for grasping as long as the object is not too big to pro-

hibit proper grasping. Although, our system exhibits perceptual

9For computational convenience we sidestepped the early learning phase

of an infant. Ideally, one would like to simulate development from birth, and

probably even before that [1].
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economy as shown in Section 4.3, manual design of the fea-

tures -albeit inspired from biology- might not capture the ideal

information for the robot and the learning environment as the

robot is inevitably different from a biological entity. Thus, it

may be worthwhile to pursue the development of a robot that

will take the incoming raw image, and automatically discover

object features while simultaneously learning affordances rela-

tions. Indeed [75, 76] studied automatic discovery of object

features using a dynamical systems approach, where the robot

self-organized motion and shape related features observing the

incoming raw image from its camera. For example, concerning

shape features, the robot discovered stability and roundness of

the objects by observing the effect of its push actions.

Multi-object affordances. The manipulation affordances were

learned by interacting with one object at a time. In the early

stages of development, infants also appear to have a similar

strategy [77]. When they are engaged in playing with an ob-

ject, they often show no interest to other objects. However in

the later phases of development, they start playing with mul-

tiple objects and are very much interested in their interaction.

We can speculate that for human infants, learning the object-

object affordance relations is the subsequent stage after single

object affordance learning. Our robot could generate and exe-

cute plans with multiple objects under the assumption that only

one object is affected by the behavior execution. This assump-

tion is too strict in real life and should be relaxed in the future.

However, this will invoke more complex perceptual processing

that need to be addressed in a developmental setting such as

object consistency, and object continuity (e.g. early age infants

fail to perceive two objects stacked together as two separate en-

tities).

Environment. In this study, the robot learned the affordances

of three different types of objects, namely boxes, cylinders, and

spheres. The feature representation used in perception has, nat-

urally, significant effect on the scalability of the proposed pre-

diction mechanism to novel real-world objects. One of the fea-

tures we used, namely the normal histograms of object surfaces

provides a decent level of generalization as we showed in the

mobile robot traversability study [22]. With this feature, the

robot was able to generalize the learned prediction ability to

objects that were not experience before. For example, after in-

teracting with only cylinders lying on the ground, it was able

to predict that boxes and upright cylinders are not rollable, and

spheres are rollable. Furthermore, with this prediction capabil-

ity the robot was able to navigate in a room cluttered with real-

world office objects. Nevertheless, we think that the utilized

feature representation provides limited generalization capabil-

ity when objects are non-convex and consist of multiple parts

(e.g. a mug). To address this limitation, an attention system

that focuses on affordance bearing sub-parts of objects could be

developed.

Deterministic prediction. Our system uses deterministic learn-

ing algorithms, which have limited power in capturing uncer-

tainty of the environment and the robot state. Thus, probably

the most valuable improvement to our work would be to in-

tegrate the stochastic nature of robot-object interaction as bi-

directional relations while being faithful to the developmental

stages of human infants and not sacrificing the planning ability

demonstrated by our system.

8. Conclusion

In this paper, we have shown that through self-interaction and

self-obser-vation an anthropomorphic robot and a range cam-

era system can learn the object affordances in an unsupervised

way. The proposed learning system share crucial elements such

as goal-free exploration and self-observation with infant devel-

opment. After learning the robot can make plans to achieve

desired goals and also emulate end state of demonstrated ac-

tions. The plans are based on affordance prediction capability

and may involve multiple objects. Furthermore, the system can

monitor the plan execution and take corrective actions using the

perceptual structures employed in learning.

In the first step of learning, the robot discovers common-

alities in action-effect experiences by finding effect categories

caused by its actions. For this purpose, the robot uses a novel

hierarchical clustering algorithm that was developed for deal-

ing with non-homogeneous feature spaces. This algorithm, first

clusters effects into channel specific categories and then takes

their Cartesian product to obtain all-channel effect categories.

Predictors for each behavior are then trained to map object fea-

tures into effect categories using non linear classifiers. Using

the category prototypes, the robot can make predictions about

the next perceptual state of the object acted upon enabling it to

make multi-step plans for achieving goals represented as con-

straints defined over the object features.

The key aspect of our approach is that, the agent learns

about its environment by discovering the effects it can generate

through its actions, and forms forward models [78] that enable

it to predict the changes in the environment in terms of discrete

effect categories as well as low level sensory changes. Predict-

ing the ‘change in state’ rather then the ‘next state’ provides

better generalization, and, at the same time, allows ‘next state’

prediction so that multiple steps into the future can be predicted

facilitating multi-step planning. Finally, by representing the en-

vironment in relation to the effects, our agent ‘understands’ the

world in regards to its own action capabilities, fully adhering to

the action based perception view.
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