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Abstract—In this paper, we use the notion of affordances,
proposed in cognitive science, as a framework to propose a
developmental method that would enable a robot to ground
symbolic planning mechanisms in the continuous sensory-motor
experiences of a robot. We propose a method that allows a robot
to learn the symbolic relations that pertain to its interactions with
the world and show that they can be used in planning. Specifically,
the robot interacts with the objects in its environment using a
pre-coded repertoire of behaviors and records its interactions in a
triple that consist of the initial percept of the object, the behavior
applied and its effect, defined as the difference between the initial
and the final percept. The method allows the robot to learn object
affordance relations which can be used to predict the change in
the percept of the object when a certain behavior is applied.
These relations can then be used to develop plans using forward
chaining. The method is implemented and evaluated on a mobile
robot system with limited object manipulation capabilities. We
have shown that the robot is able to learn the physical affordances
of objects from range images and use them to build symbols and
relations that can be used in making multi-step predictions about
the affordances of objects and achieve complex goals.

I. INTRODUCTION

There exists a representational gap between the continu-

ous sensory-motor experiences of a robot and the symbolic

planning operators of Artificial Intelligence. The mapping of

the symbols used in these operators onto the sensory-motor

readings of the robot’s continuous world is typically referred

as part of the symbol grounding problem[1] and has been

studied since the days of STRIPS. These studies[2] typically

assume that the relations that bind the pre-coded symbols

(such as pre-conditions and effects of an operator) are given,

and aim to learn the mapping from these symbols to the

continuous sensory-motor readings of the robot. Recently, it

has been argued that symbols “are not formed in isolation” and

that “they are formed in relation to the experience of agents,

through their perceptual/motor apparatuses, in their world and

linked to their goals and actions”[3].

In this paper we are interested in how symbolic planning

operators, as opposed to the symbols used in planning, can

be grounded in the continuous sensory-motor experiences of

a robot from a developmental point of view. Our view, which

takes its inspiration from the notion of affordances developed

in cognitive science, argues that the learning of relations that

encode the interactions of the robot with its world implicitly

encapsulates the learning of symbols. Moreover, we claim that

such relations enable the robot to make predictions about the

world state and build plans to achieve complex goals.

In the postnatal age of 7-10 months, the infant interacts

with the environment and observes the changes created via her

perceptual system building the knowledge of the relationships

between objects, actions and the effects [4]. This process

is effectively learning the affordances[5], action possibilities

provided by the objects in the environment of the infant.

The learning at this stage is largely performed in a goal-

free fashion through self-exploration and self-observation [6].

After approximately 9 months of age, the infants start using

the learned object-action-effect relations in a goal-directed to

generate simple plans that may involve multiple steps [7].

The proposed learning system shares crucial elements with

the development of infants of 7-10 months age.

A. Affordances and Robot Control

The theory of affordances that was introduced by Ecological

Psychologist J.J. Gibson [5] states that the organisms do not

need to recognize the action-free meanings of the objects

and make complex inferences over these meanings in order

to act on them. For example we do not identify the objects

with their action-free labels such as chairs, couches or stones

when we need to throw them or sit on them. Instead, we

look for a specific combination of the object properties taken

with reference to us and our actions in order to detect their

‘throwability’ or ‘sittability’ affordances. Since affordances

tightly couple the actions of the organism with its environment,

and emphasize the existence and necessity of an action-

oriented perception view, recently the concept has started to

be used in robot control.

Recently, we proposed a formalism for using affordances

as a framework at different levels of robot control [8]. The

proposed formalism agrees with the Gibsonian view that affor-

dances are relations within the agent-environment system, but

it also extends this view by arguing that these relationships can

also be represented in the agent (a.k.a. robot). Specifically, the

formalism defined affordances as general relations that pertain

to the robot-environment interaction and claimed that they can



Fig. 1. On the left, the robot and a spherical object shown. On the right, the
range image obtained from the 3D scan is given. The subtracted background
and other objects are blurred. Distance, relative position and shape related
features are shown.

be represented as a triple which consist of the initial percept

of the object, the behavior applied and the effect produced.

For instance, the lift-ability affordance is a relation between

the properties of an object, the behavioral capabilities of the

robot and the type of effect produced by the lift behavior. In

this paper, we used this framework to propose a developmental

method that enables a robot to learn the symbolic relations that

pertain to its interactions with the world and show that they

can be used in planning.

II. EXPERIMENTAL FRAMEWORK

A medium-sized (45cm× 33cm× 47cm), differential drive

mobile robot, equipped with a 3D laser range finder, and its

physics-based simulator, is used as the experimental platform.

The 3D laser scanner is based on a SICK LMS 200 2D laser

scanner, rotated vertically with an RC-servo motor. The 3D

laser scanner has a horizontal range of 180◦, and is able to

sweep a vertical range of ±82.8◦ to produce a 720 × 720
range image. A crane arm is mounted on top of the robot

with 3 degrees of freedom and an electromagnetic gripper to

manipulate magnetizable objects. The arm can rotate around

itself, move the gripper back-and-forth in a range of 55cm,

and lift its magnet up and down.

The robot is equipped with five move behaviors and a lift

behavior. The move behaviors (move-forward, move±30◦ , and

move±60◦ ) rotate the robot as specified by the type of the

behavior and drives it forward for 40cms. The robot is also

endowed with a closed-loop lift behavior, which is triggered

by an object region in the range image to lift the object whose

relative position can be computed from the range image.

The robot interacts with three types of objects; namely

boxes, cylinders and spheres, at different size and orientations.

During the execution of its move behaviors, the robot may

experience collisions with objects and face with different

consequences. For instance, when the robot collides with boxes

or upright cylinders, it would come to a stop as a result of

the physical interaction. However, when the robot collides

with a sphere, the sphere would roll away not blocking the

robot’s movement. The robot may or may not get blocked

when it collides with lying cylinders depending on the relative

orientation of the cylinder. The lift behavior would succeed

in lifting an object, if the object is within the arm length

of the crane and has a flat top (assuming that all objects

are magnetizable). In this sense, all boxes and cylinders are

liftable, whereas spheres and lying cylinders are not.

A. Perception

The robot perceives the world through its 3D range scanner.

First, the range image is down-scaled to 360 × 360 for noise

reduction and is subtracted from the background image that

was obtained from an empty environment. As a result, the

remaining pixels of the range image would belong to one or

more objects that are segmented by the Connected Component

Labeling algorithm [9]. For each object, o, a feature vector, po

is computed (see Fig. 1). The perception of the robot at time

t is denoted as [pt
o1

. . . pt
om

], where po is the feature vector

of object o, and m is the number of objects segmented. po is

a vector of size 44 and is represented as follows:

po = [dmin, davg, dmax, a, rt, rb, cl, cr, ϕ1 . . . ϕ18, θ1 . . . θ18]

where dmin, davg, dmax denotes the minimum, average and

maximum range values, a is the area measured in pixels,

rt, rb, cl, cr are the indexes of the top and bottom rows, and

the left and right columns of the bounding box, and ϕi and

θj represent the frequency histogram of normal vector angles

in latitude and longitude. Histogram encodes the distribution

of local surface normal vectors of the objects ([10]).

For each object, the effect created by a behavior is computed

as the difference between the final and initial features:

ξb
o = p′

o − po

where ξb
o, p′

o and po represents the effect, final and initial

feature vectors, and b represents the behavior executed. Each

interaction of the robot is used to create a relation instance of

the form (ξb
o,po, b).

III. THE LEARNING OF AFFORDANCE RELATIONS

During the interaction phase, the robot interacts with

the environment and creates relation instances of the form

(ξb
o,po, b). Then, for each behavior b the relation instances

are grouped into a set: I = {(ξb
o,po, b)}. The effects of each

behavior, that is {ξb
o}, are grouped using k-means clustering

and for each cluster an effect-id is assigned. The associated

effect prototype for the cluster is defined as the mean of the

cluster, denoted as Cb
i . Hence, for a given ξ, the corresponding

effect-id can be found as:

effect-idξ = argmin
1≤i≤k

‖ξ − Cb
i‖ (1)

where 1 ≤ i ≤ k is the cluster index.

The relationship between the objects and the effects created

by a given behavior is learned by a classifier using the data

set:

T
b = {(po, effect-idξb

o

)}

where po is given as the input, and the corresponding effect-id

as the target category. Specifically, in order to learn this

mapping for each behavior b using this training set, Support



Fig. 2. The Predict- operator that is trained to predict the next state of
an object based on the predicted effect of applying behavior bi.

Vector Machine (SVM) classifiers with Radial Basis Function

(RBF) kernels are used because they are robust in the face of

noisy input and able to deal non-linear relations.

The trained SVM classifiers allow the robot to predict the

type of effect a behavior is expected to generate when applied

on a given object perceived as po′ using:

effect-id
predicted
o′ = svmPredict(po′ , b).

The predicted percept of the object after the application of the

behavior can then be computed as (see Fig. 2):

pt+1

o′,{b} = pt
o′ + Cb

effect-id
predicted

o′

IV. PLANNING USING LEARNED AFFORDANCE

RELATIONS

The learned affordance relations can be used as operators

for planning.

a) States: A state is represented as the set of objects

perceived or expected to be perceived after execution a number

of behaviors in t steps:

St
{b1...bt−1} = [pt

o1,{b1...bt−1} . . . pt
om,{b1...bt−1}]

where om corresponds to the mth perceived object, and

pt
om,b1...bt−1 is the expected percept for object m after exe-

cution of the behavior sequence {b1 . . . bt−1}.

b) Actions: The pre-coded behaviors; namely the five

move behaviors and the lift behavior, constitute the actions.

Different from standard techniques, the actions do not have

any pre-conditions and their description does not include pre-

defined state transition rules. All actions are applicable in

all states, where the next state depends on the learned effect

prediction operators summarized in Fig. 2.

St
{b1...bt−1}

bt

−−−−→St+1

{b1...bt}

c) Goals: A goal is specified as a partial state, in terms

of values of some object features within states. The user can

define a goal based on feature values of any object, of a

particular object or the combination of both. For example, the

state that includes an object feature vector with dmin < 0.1m

will satisfy the goal of approach any object. As another

example, the goal of pick-up a particular object is satisfied

in a state, where the bottom-most row feature value of the

corresponding object is large (rb > 180) in the range image.

Fig. 3. The breadth-first construction of the plan tree. States include one or
more objects whose next states are predicted based on the operators in Fig. 2.

d) Plan generation: Forward chaining is used to generate

totally ordered plans starting from the initial state (see Fig. 3).

This process can be viewed as the breadth-first construction

of a plan tree where the branching factor is the number of

behaviors. The next states are computed using the prediction

operator in Fig. 2. If the state in any time step satisfies the

goal, the sequence of the behaviors which lead the initial state

to the goal is accepted as a potential plan.

V. EXPERIMENTS

The learning experiments are conducted in a physics based

simulator where the robot is verified against the real robot

in [10]. One random object o (among , , ,

) is placed in [−90◦,+90◦] of robot’s frontal area, in a

random orientation and size [20cm−40cm]. The robot makes

3D scans before and after executing one of its behaviors (b) to

compute the object (po) and effect ((ξb
o) feature vectors. For

the lifting behavior 1000 interactions are simulated, whereas

for the move behaviors 3000 interactions are simulated. The

resulting set of relation instances I are then used in training.

A. The learning of lift behavior

The set of effects (ξlift
o ) are split into two clusters using

k-means. After clustering phase completed, each object in the

training set is assigned to an effect-id, based on the class to

which the created effect ξlift
o belongs to (Eqn. 1). Fig. 4 shows

the effect classes of these entities together with the shape and

position information for 2-cluster case. The objects assigned

to class + are the ones with flat top and close proximity

to the robot. On the other hand, close objects with curved

tops (spheres and lying cylinders) and all distant objects are

assigned to a separate class (‘.’). Hence, we can conclude that

the robot learned to distinguish successful lift actions.

After assigning each object to an effect-class, in order to

learn the mapping between initial percept of the objects and

the corresponding effects, an SVM classifier is trained. The

parameters of SVM training with RBF kernel are optimized

in a grid search using LibSvm software package. c = 0.03
and γ = 32000 are found as optimum cost of SVM and

width of Gaussian respectively. After training is completed,

prediction accuracy of the SVM model is tested on a distinct
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Fig. 4. Interpretation of effect classes obtained with unsupervised clustering
for lift and move-forward behaviors. Each environment in interaction phase
includes only one object, and each marker correponds to the location of
the object in a different environment. Black markers represent boxes and
upright cylinders; gray markers represent spheres and lying cylinders. . and
+ illustrates clustering results of the corresponding objects.
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Fig. 5. Left: Performances of SVM classifiers trained with different number
of samples in predicting lift effect classes (liftability). Right: The accuracy of
liftability prediction in two-step planning. The boxes shows the distribution
of prediction accuracy obtained in testing. The box is bounded by lower and
upper quartile values, the line in the box refers to the median, and the whiskers
show the extent of the data.

set of relation instances, where the result of lift behavior is also

included as ground truth. Fig. 5-left plots the accuracy of the

liftability prediction for different number of training samples.

As results indicate, the SVM classifiers trained with more than

700 samples have performance over 90%. Additional training

does not increase the performance.

B. The learning of move behaviors

The same type of learning is also applied to the data

obtained from the five move behaviors. c = 512 and γ = 0.125
are found as optimum cost of SVM and width of Gaussian

respectively. However, for simplicity, we will only discuss the

results obtained from the move-forward behavior. Fig. 4 shows

the effect categories for different objects together with the

shape and position of those objects for 2 clusters. Independent

of their shapes, objects located within 0.3m are within class

+, and all distant objects are within class .. Additionally,
some . objects in front of the robot are closer than + objects.

These observations show that the clustering process makes a

distinction on effects based on whether the object disappears

from the view of the robot or not.

Using the same training data, we varied the number of

clusters being used to cluster the effect data, and measured the

prediction accuracy . As the number of clusters increase, the

clustering process also incorporates the differences in shapes

of the objects. The accuracy of prediction of effect classes

based on the objects are also examined and found to be over

90% for number of clusters upto 10.

C. Two-step planning

In this set of experiments, we evaluated the prediction

accuracy of the robot to perceive the liftability of an ob-

ject that are randomly placed within the 1m range of the

robot. The robot applied the Predict-move-forward and

Predict-lift operators (Fig. 2) to the initial percept of the

object and using the final predicted percept of the object

determine whether it’s liftable or not. The predicted effect is

then compared with the actual effect obtained by executing

move-forward and lift behaviors.

Fig. 5-right plots the accuracy of liftability prediction for

such two-step plans with respect to the number of effect

clusters being used in the training of the move-forward be-

havior. The training set contained 3000 relation instances. Two

points can be made. First, the average prediction accuracy of

two-step plans for liftability (around 85%) is lower than the

average prediction accuracy obtained from ‘1-step’ plans. This

is an expected result since as the objects get further away, the

resolution of their perception degrades reducing the accuracy.

Second, the number of effect clusters to be used in the training

of the move-forward behavior should be greater than 2 to

achieve a good prediction accuracy. This is probably due to

the fact that the use of only 2 prototypes does not provide the

necessary resolution to the move-forward behavior that can be

propagated for planning.

D. Case study: Bringing an object on top of another

In all the experiments reported so far, a single object is

presented to the robot during evaluation, as has been done

during the training phase. In this experiment, we put the robot

into an environment containing multiple objects and specify

the goal as the conjunction of two conditions..

In this experiment, the robot is asked to lift an object and

go towards a button (pre-defined object). The robot is free

to select the object to lift. The goal is defined over desired

future entities based on the predicted outcomes following the

execution of planned action sequence. The goal for lift is to

obtain an outcome for any object, where the bottom part of the

predicted outcome range image should be high, ie. r′b > 180
where r′b is the ‘bottom-row’ feature of final feature vector.

The goal for approach is defined as obtaining close proximity

to a pre-defined object. The mean distance of the predicted

final feature vector of that object, after the plan is executed

should be small, ie. dmean < 0.1m. Thus, the overall goal is

to obtain an outcome of any object which satisfies lift goal and

an outcome of the pre-defined object which satisfies approach

goal, respectively.

A plan for an environment that includes 5 objects is pre-

sented in Fig. 6, where the robot is required to lift an(y)

object and approach to another object (shown as a button).

As shown, the generated plan is composed of three steps:

< move30; lift(o3);move−60 >. We can make three observa-

tions. First, the robot is able to predict the liftability of object

3, before approaching. Moreover, the two cylindrical objects,



Fig. 6. The goal is to ‘bring an object on top of the button’. On the left, 5
objects (including the button) are placed in the environment. On the right, the
detected objects and the detected parts of the gripper arm in the range image
are shown together with the generated plan. The object numbers in the range
image are assigned automatically in the perception process, where button is
numbered as 4. The robot cannot lift any object except the cylindrical shaped
standing object on the right. However in order to lift it, the robot should
approach to it by executing move30◦ action. After the lift3 step, move

−60◦

behavior is predicted to drive the robot towards the goal object.

one of which is lying on its side, and the other with a non-flat

top, are correctly predicted to be non-liftable. Third, note that

although object 1 is a cylinder with a round top, a novel object

that was not used in training, the robot was able to predict that

is was not liftable.

E. Case study: Novel objects in real-world

The plan generation is also tested in real world for liftability.

The learned affordance relations and effect prediction methods

are directly transferred to the real robot and its plan generation

ability is tested. The environment contained six objects: A

desktop world globe with a base, a box shaped power supply,

an irregular hexagonal shaped metal piece, a triangular prism-

shaped desk calendar, a can lying on top of another upright can

(not visible), and an upside-down small pot as seen in Fig. 6.

The segmented range image and the shortest plans to lift each

of them (if there exists) is shown on the right hand side of the

figure. The following plans are made. The pan is within the

reach of the crane arm, and hence it can be directly lifted. The

robot is required to move in order to pick-up the power supply

or metallic piece. No plan is generated to lift the globe with

base and the triangular prism since they did not have flat tops.

However, it should be noted that the robot made an incorrect

plan to lift the lying cylinder on its left. This is probably due

to the fact that the robot predicted the effect of move−60◦

wrongly to achieve liftability1.

VI. RELATED WORK

Learning of object affordances have been studied in [11]

where the objects in the environment were differentiated using

1Due to a mechanical breakdown in our crane, we were not able to test these
plans on the real robot. Although this is unfortunate, we do not believe that it
undermines the validity of the results presented due to two reasons. First, the
learning of initial percepts as well as the effects being produced, takes place
on the range images, and that we used range images produced in real-world to
test the learned relations. Second, by their very definition (as described in the
last paragraph of the first page), the behaviors are assumed to be implemented
in a closed-loop manner. Any failure (or success) in their execution would be
due to their particular implementation and does not provide any implications
for the learning method proposed in this paper.

Fig. 7. On the left, photograph of the environment where six real world
objects are placed in front of the robot. On the right, the object regions
detected in the range image are shown together with different plans generated
for lifting. The bottom parts of the nearest two objects are not perceived and
not seen in the range image since the laser beams are blocked by the robot
base.

their colors only, and no learning was conducted to discover

the real distinctive features of the objects. In another work,

[12] proposed a general probabilistic model based on Bayesian

networks to learn the relationship between actions, objects, and

effects through interaction with environment. In [13] the robot

learned tool affordances by building an adaptive hierarchical

outcome model for each behavior based on the observed

outcome. Although all these studies investigated the problem

of predicting the future effects based on discovered affordance

relations, none of them used learned affordances in planning.

Traditional AI planners work on a symbolic domain, but

robot control and perception usually occurs on a much lower

level. In order to bridge this gap [14] used self-organizing

maps to cluster low-level perception data, and then mapped

one perceptual state to the next outcome state. Predicting

outcome (the next state) directly rather than predicting effect

have some drawbacks on flexibility of the system. While

there is no need to represent the non-changing features (for

example shape) where the robot predicts only the effect in the

environment, such features must also be taken into account

in a system predicting the outcome. In another study, [15]

proposed to learn and ground high-level domain structures

as precondition and effects of robot actions. But in this

study the high-level domain structures were pre-defined by the

human programmer, rather than being generated through the

experience of the robot. The concept of affordances have also

been used in relation to planning, although these studies do

not use an explicit formalism or representation for affordances.

[16] makes a robot learn the liftability of an object based on the

parameters of a pre-specified sequence of actions. But since

the plan in this case was fixed, the learned knowledge could

not be extended to generic sequence of actions. In [17], the

robot learned goal-free action structures, in relation with the

objects and the effects of these actions on the objects. Object

concepts and these structures were then used in generating a

sequence of actions in a goal-directed manner.

The studies summarized above can be grouped in two

categories. In one group, the transition rules were defined as

actions linked by logical precondition and postcondition predi-

cates. Their approach is different from ours since sensorimotor

experience of the robot was used to associate the predicates



of the transition rules. The other group learns the relation

between objects, actions and effects independent of symbolic

predicates, however these systems cannot predict more than

one step ahead, which prohibits complex planning.

VII. DISCUSSION

In this paper, we proposed a method that allows a robot to

learn symbolic relations that pertain to its interactions with

the world and showed that they can be used in planning.

Specifically, we used the notion of affordances, proposed in

cognitive science, to develop a mapping from the sensory-

motor experiences of the robot to symbols and relations that

can be used in planning. We have shown that a mobile robot

can learn the physical affordances of objects from range

images and use them to build symbols and relations that can

be used in making multi-step predictions about the affordances

of objects and achieve complex goals. We followed a similar

method to learn affordances provided by the objects to a robot

hand in [18], where the camera and robot body was fixed and

only manipulation related affordances were studied.

Although from its outset, one may feel that the work

presented in this paper is merely Good-Old-Fashioned-AI,

re inventing the STRIPS-like approach to planning, it’s not.

In STRIPS-like approaches, the operators appear in symbolic

form, and these symbols are assumed to be manually grounded

in the raw sensory data. This has been acknowledged as one

of the major shortcomings of the STRIPS-like approach. The

work presented in this paper, on the other hand, starts with raw

sensory data and builds relations that can be used in generating

plans. As discussed in the previous section, our approach is

different from other learning approaches on this topic, in that

it learns relations, as opposed to symbols, and also provides a

means to using them in making plans.

In spite of the non-trivial learning and planning ability that

our system exhibits, it has room for improvement. First, in

a general setting the effects should be associated with action

parameters. In case, for simplicity we defined multiple actions

(e.g. move−30◦ , move−30◦ ) for different instantiations of the

same action with different parameters. One other issues is

that the exploration in our system, is not guided by intrinsic

motivations (e.g. curiosity) which are thought to guide infant

exploration [19], [20]. Our earlier online learning study has

also showed that such a strategy cuts down the exploration

time [21]. Probably the most valuable improvement to our

work would be to integrate the stochastic nature of robot-object

interaction as bi-directional relations while being faithful to

developmental stages and not sacrificing the planning ability

demonstrated by our system. Lastly, the predictions on object

features created during plan generation can be used to monitor

the plan execution and to check whether the change in the state

is as the one that was predicted in the plan, to decide whether

execution was successful or not.
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