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Abstract—The notion of affordances that was proposed by
J.J. Gibson, refers to the action possibilities offered to the
organism by its environment. In a previous formalization, affor-
dances are defined as general relations that pertain to the robot-
environment interaction and they are represented as triples which
consist of the initial percept of the environment, the behavior
applied and the effect produced. In this paper, we focus on the
object affordances and propose a developmental method that
enables the robot to ground symbolic object-based operators in
its own continuous sensory-motor experiences. The method allows
the robot to learn the object affordance relations which can be
used to predict the change in the percept of the object when a
certain behavior is executed.

I. INTRODUCTION

The notion of affordances was proposed by J.J. Gibson, to

refer to the action possibilities offered to the organism by its

environment[1]. A horizontal and rigid surface affords walk-

ability, a flat surface at a certain height affords sit-tability.

This notion emphasizes the complementarity of robot and its

environment and claims that affordances are determined by

both the properties of the objects and the properties (and

capabilities) of the organism. A small cobblestone may afford

hide-ability to a mouse, while affording throw-ability (but not

hide-ability) to a human.

Recently, in [2], a formalization for affordances was de-

veloped as a framework over which affordances can be uti-

lized at different levels of robot control. According to this

formalization, affordances are general relations that pertain

to the robot-environment interaction and can be represented

as a triple which consist of the initial percept of the object,

the behavior applied and the effect produced. For instance,

the lift-ability affordance is a relation between the properties

of an object, the behavioral capabilities of the robot and the

type of effect produced by the lift behavior. In this paper, we

use this framework to propose a developmental method that

enables a robot to learn the symbolic relations that pertain to

its interactions with the objects and show that they can be used

to predict the next perceptual state of the objects.

II. RELATED WORK

Learning of object affordances have been studied in [3]

where the objects in the environment were differentiated

using their colors only, and the real distinctive features of

the objects are not learned. In another work, [4] proposed a

general probabilistic model based on Bayesian networks to

learn the relationship between actions, objects, and effects

through interaction with the environment. In [5] the robot

learned tool affordances by building an adaptive hierarchical

outcome model for each behavior. These models were later

used to detect the functional similarities between the tools

and to predict the effect a tool-behavior pair is expected to

create. Although all these studies investigated the problem of

predicting the future effects based on discovered affordance

relations, none of them used learned affordances in planning.

Traditional AI planners work on a symbolic domain, but

robot control and perception usually occurs on a much lower

level. In order to bridge this gap [6] used self-organizing maps

to cluster low-level perception data, and then mapped one

perceptual state (cluster) to the next outcome state (cluster).

Direct prediction of the outcome state rather than the pre-

diction of the effect have some drawbacks on the flexibility

of the system. While there is no need to represent the non-

changing features (for example shape) when predicting the

effect, such features must also be taken into account in a

system predicting the outcome. In another study, [7] object-

action complexes are used as generalized relations between

objects, actions, the current and the next states of the world.

However, the effects and preconditions are not discovered

from scratch in a bottom-up manner, instead they are pre-

defined as high-level domain properties. In [8], the robot

learned liftability of an object based on the parameters of a

pre-specified sequence of actions. But since the plan in this

case was fixed, the learned knowledge could not be extended

to a generic sequence of actions. In [9], the robot learned

goal-free action structures, in relation with the objects and the

effects of these actions on the objects. Object concepts and

action structures were then used in generating a sequence of

actions in a goal-directed manner. However, as opposed to

the approach presented here, the objects were categorized in

an unsupervised manner independent of the effects of robot

actions.

A. Formalization of affordances

Our formalization [2] is based on relation instances of the

form (effect, (entity, behavior)), meaning that there exists a



potential to generate a certain effect when the behavior is

applied on the entity by the agent. The entity represents the

state of the environment (including the perceptual state of the

agent) as perceived by the agent. The behavior represents the

physical embodiment of the interaction of the agent with the

environment, and the effect is the result of such an interaction.

For instance, the lift-ability affordance implicitly assumes that,

when the lift behavior is applied on a stone entity, it produces

the effect lifted, meaning that the position of the stone, as

perceived by the agent, is elevated.

A single (effect, (entity, behavior)) relation instance is ac-

quired through a single interaction with the environment. But

this single instance does not constitute an affordance relation

by itself, since it does not have any predictive ability over

future interactions. Affordances should be generic relations

with predictive abilities. To achieve the prediction abilities,

the similar relation instances can be grouped in the same

classes so that the robot can generalize particular instances

to general relations. This grouping strategy will be described

in Section III.

B. Representation of affordance relations

Behavior: Robot interacts with the world through its

pre-coded behaviors. Although behaviors are pre-coded by

programmers, they can be in different complexity levels. The

affordances framework supports open-loop non-parametric be-

haviors like move robot forward for 1 meters, or open-loop

parametric behaviors like rotate robot θ degrees and move it

d meters, or closed-loop behaviors like move robot towards

the object in position (x,y). In general the behaviors are

represented by b(ν) where ν corresponds to the parameter

vector. In cases where non-parametric behaviors are used, b

notation is used.

Entity and Effect: In object-free representation, an entity

corresponds to the features that are perceived in the envi-

ronment. In this paper, entities are represented by the initial

feature vectors (fo) computed for the detected object o. The

effect observed on this object during execution of a behavior is

computed by taking the vectorial difference between the final

and initial features of the object:

ξb(ν)
o = f ′

o − fo

where ξb(ν)
o , f ′

o and fo represents the effect, final and initial

feature vectors, and b(ν) corresponds to the behavior executed.

Affordance Relation Instances: In the interaction phase,

in order to learn affordances and develop generic affordance

relations, a number of (effect, (entity, behavior)) relation

instances are acquired through interactions with the envi-

ronment. For different parameters of behaviors, the robot

interacts with the environment, and stores the entities and

effects together with the corresponding behavior parameters

in the set of relation instances (note that we misused the set

notation for brevity):

Γ = {(ξb(ν)
o , (fo, b(ν)))}

Fig. 1. (a) An affordance represents the general relationship among entities
(shown as objects here), behaviors and effects. (b) The objects shown with
the same type of lines are grouped in the same entity equivalence classes
which correspond to the same type of ‘moved-away’ effects. (c) The behaviors
with the same type of lines create similar effects and are grouped in the
same effect equivalence classes. (d) The (entity,behavior) pairs with all dashed
lines correspond to same affordance equivalence class with the common effect
of ‘moved-away’. Specifically, (upright-cylinder, kick), (lying-cylinder,kick),
(lying cylinder, tap) pairs generate the same move-away effect by rolling the
objects away. However, since tap behavior is not strong enough to overturn
the upright-cylinder, (upright cylinder, tap) pair does not afford rollability.
(The figure is adapted from [2])

Discovery of effect categories: After interaction is com-

pleted, by using effect instances ({ξb(ν)
o }) in Γ, similar effects

are grouped together to get a more general description of the

effects that the behavior repertoire of the robot can create.

This grouping can be achieved with unsupervised clustering

techniques like straight-forward k-means or Self-Organized

Maps if number of desired effect categories are known, or with

X-means if category number is unknown. If complete course

of the behavior is important, temporal effect trajectories are

clustered as in [5]. Since many clustering techniques are sen-

sitive to the number and shape of the clusters, more advanced

methods such as kernel-based ones can be used [10]. After

clustering is completed, prototypes for each effect category

(ξ̄c) are computed by taking the mean of the effects in that

category (c). Hence, for a given effect (ξ), the corresponding

category can be found as:

cξ = argmin
1≤i≤k

‖ξ − ξ̄i‖ (1)

where 1 ≤ i ≤ k is the category index.

III. EQUIVALENCE CLASSES

A robot can learn the mapping between the entities and

the effect categories or between the behaviors and the effect

categories in order to predict the effects it will create when it

applies a given behavior on a given entity. This learning entails

formation of entity, behavior or affordance equivalence classes.

Figure 1 gives illustrative examples for different equivalence

classes. When entity equivalence classes are formed, the robot

gains the ability to select the object to acquire a certain

effect when a certain behavior is applied. In [11], [12] entity

equivalence classes are formed for traversability affordance



using pre-defined and discovered effect categories, respec-

tively. Generation of behavior equivalence classes has not

been explicitly studied yet, since it requires either a very rich

discrete behavioral repertoire as in Figure 1 or the behaviors

that are parametric. Finally, affordance equivalence classes that

are more generic and complex than these two classes, can be

formed by learning the mapping from (entity-behavior) pairs

to effect categories. Using affordance equivalence the robot

gains the flexibility to predict the effect based on object feature

values and behavior parameters. In other words, the robot is

able to choose a behavior-object pair for obtaining a desired

effect. The realization details of these equivalence classes are

as follows:

Entity equivalence: The class of entities that generates

same effect when a certain behavior is applied forms entity

equivalence class. To acquire entity equivalence class, the

mapping between the entities and the anticipated effect cate-

gories are learned for the particular behavior. This is achieved

by training classifiers with the collected affordance relation

instances. Formally, the mapping between the object features

and the effects created by a particular behavior b is learned by

a classifier (χb) using the data set:

T
b = {(fo, cξb

o
)}

where fo is given as the input feature vector to the classifier

χb, and c is the corresponding target category. After train-

ing, predicted effect category can be found without applying

behavior b to an object with perceptual features fo by:

cpredicted(b, o) = χb(fo)

Formally, objects oi and oj are in the same entity equivalence

class for behavior b if and only if the same effect category is

predicted for the same behavior execution:

oi ∼ oj iff χb(foi
) = χb(foj

)

Behavior equivalence: The class of behaviors which sup-

port the generation of the same effect category when applied to

a certain entity is called behavior equivalence class. Similar to

entity equivalence classes, the mapping between behaviors and

the effect categories can also be found by training classifiers

with the collected set of behavior parameters. Formally, the

relationship between the behaviors and the effects created for

a given object is learned by a classifier using the data set:

T
o = {(ν, c

ξ
b(ν)
o

)}

where ν is given as the input feature vector to classifier, and c

is the corresponding target category. After training, predicted

effect can be found without applying behavior b(ν) to the

object o by:

cpredicted(b, o) = χo(ν)

Formally, behaviors b(ν1) and b(ν2) are in the same behavior

equivalence class for object o if and only if same effect

category is predicted when they are applied to the object o:

b(ν1) ∼ b(ν2) iff χo(ν1) = χo(ν2)

Affordance equivalence: This complex equivalence can

be achieved by finding the mapping from entity features and

behavior parameters to effect categories. That is, a desired

effect can be accomplished through different (entity, behavior)

relations. One approach for this can deal with entities and

behaviors independently, ie. by first linking entities to effect

categories and then linking behaviors to effect categories

and finally combining these two mappings in a third step.

This corresponds to finding affordance equivalence based on

computed entity and behavior equivalences. However, the

entities and behaviors are coupled in terms of generated

effects. For example, consider affordance equivalence classes

are learned for push behavior, where a rollable cylinder is

included in the environment. For simplicity, the entity has

only one feature, namely object orientation, and the behavior

has only one parameter, namely the direction of push. It is

impossible to learn the mapping between push direction and

effect category without considering the object orientation, or

learn the mapping between the object orientation and the

effect category without considering the direction of push.

Instead, the entity features and the behavior parameters can be

transfered to a joint input space using transformation function

Ψ(·). Then, the mapping between this space and the effect

categories can be learned. Formally, the relationship between

the (entity, behavior) pair and the effect categories is learned

by a classifier using the data set:

T = {(Ψ(ν,po), cξ
b(ν)
o

)}

After training, predicted effect can be found without applying

behavior b(ν) to the object o with features fo by:

cpredicted(b, o) = χ(Ψ(ν,po))

Formally, (object,behavior) pairs (o1, b(ν1)) and (o2, b(ν2))
are in the same affordance equivalence class if and only if the

same effect category is predicted when behaviors are applied

to the objects respectively:

(o1, b(ν1)) ∼ (o2, b(ν2)) iff χ(Ψ(ν1,po1
)) = χ(Ψ(ν2,po2

))

Input space transformation: The aim of Ψ(·) function is

two-fold. First, since the representation of behavior parameters

and object features are intrinsically in different levels, the two

corresponding vectors may not be combined in a straight-

forward way. Second, generally only a small fraction of the

features/parameters are used in affordance prediction. For

example although object color might be a very informative

feature in many applications, it is not relevant for physical

affordances such as pushing or rolling. In a similar vein,

object coordinates are used to guide manipulation behaviors

like grasping, but these coordinates do not determine whether

the object is graspable or not (if the object is in a reachable

distance). As a result, in order to provide perceptual economy

and minimize the input space for training the classifiers, the

irrelevant features and parameters are automatically excluded

using this space transformation function.



Fig. 2. The Predict- operator that is trained to predict the anticipated
perceptual features of an object when the behavior is applied to the object

IV. PREDICTION BASED ON LEARNED AFFORDANCES

The learned affordance equivalence classes can be used to

estimate the future perceptual states of the objects that the

robot will perceive after the execution of its behaviors. This

prediction is performed by adding the prototype of predicted

effect features to the currently perceived object features. The

basic prediction operator is demonstrated in Figure 2. Formally

the predicted features of an object upon application of a

behavior can be computed as:

f ′

o({b(ν)}) = fo + ξ̄
b

cpredicted(b,o)

Based on the prediction operator, it is possible to predict the

effects of behaviors over the estimated future object features,

again using the learned relations. The robot can estimate the

total effect that a sequence of behaviors will create and it can

predict the entity that it will perceive after the execution of the

sequence. As a simple example, assume that the robot learned

entity equivalence classes for different discrete behaviors

(turn-left and lift). It is then asked to predict the anticipated

feature vector of an object when these two behaviors are

applied in a sequence. Figure 3 shows a hypothetical 2-step

prediction scheme. Note that, although the prediction operator

in Figure 2 supports parametric behaviors, since entity (not

affordance) equivalence classes are learned in this example, a

separate classifier exists for each different discrete behavior.

V. DISCUSSION

In this paper, we focus on object affordances and pro-

pose a developmental method that would enable the robot to

ground symbolic object-based operators in its own continuous

sensory-motor experiences. The method allows the robot to

learn the object affordance relations. These relations are used

to predict the change in the percept of the object when a

certain behavior is applied. The effect prediction is achieved by

forming entity, behavior and affordance equivalence classes.

Entity equivalence class formation has been studied in

mobile robots [11], [12], [13]. Although mobility related af-

fordances have been well-studied, the outlined method should

be verified in more complex domains such as in manipulation

robots with richer behavioral repertoire. For this purpose, we

implemented several behaviors including grasping and pushing

the objects using an anthropomorphic Gifu hand mounted on

Fig. 3. A hypothetical situation that shows prediction process. The an-
ticipated perceptual states of an object is shown when the two behaviors,
namely turn-right and lift, are sequentially executed. Top figure shows the
schematic explanation of summing of object feature vectors and predicted
effect prototypes. Bottom figure shows how entity space is classified and how
entity equivalence classes are formed based on discovered effect categories.
Although effects are not represented in entity space, their prototypes are shown
on different corners of the classifier to demonstrate the mapping.

PA10 arm system with 23 degree of freedoms. Training is

being done in a physics based simulator where SR4000 range

camera is used as the main sensor unit.

In the cited studies, behaviors are pre-coded as discrete,

open-loop and unrelated controllers. When the behaviors are

designed as more complex parametric closed-loop controllers,

as it is the case in most of the robotic applications, learning

only entity equivalence classes will not be sufficient to learn

the affordances of the environment and to predict the effects

created. In an on-going study, we are currently working on a

specific but complex behavior, grasp behavior whose execution

is based on the joint angles parameters and time. Using a

fixed set of objects and human-guided correct grasp instances,

behavior equivalence classes are expected to be formed in joint

angle space for different objects.
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[7] C. Geib, K. Mourăo, R. Petrick, N. Pugeault, M. Steedman, N. Krueger,

and F. Wörgötter, “Object action complexes as an interface for planning
and robot control,” in Workshop: Towards Cognitive Humanoid Robots

at IEEE RAS Int Conf. Humanoid Robots, 2006.
[8] S. Hart, R. A. Grupen, and D. Jensen, “A relational representation for

procedural task knowledge,” in AAAI, 2005, pp. 1280–1285.
[9] J. Modayil and B. Kuipers, “Autonomous development of a grounded

object ontology by a learning robot,” in Proc. of AAAI, 2007, pp. 1095–
1101.

[10] A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, “Support vector
clustering,” Journal of Machine Learning Research, vol. 2, pp. 125–137,
2001.
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