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Abstract

In this paper we present the realization
of the formalism we have proposed for af-
fordance learning and its use for planning
(Şahin et al., 2007) on an anthropomorphic
robotic hand. In this realization, the robot
interacts with the objects in its environment
using the programmed push and grasp-and-
lift behaviors, and records its interactions in
triples that consists of the initial percept of
the object, the behavior applied and the ob-
served effect, defined as the difference between
the initial and the final percept. The interac-
tion with the environment allows the robot to
learn object affordance relations to predict the
change in the percept of the object when a cer-
tain behavior is applied. These relations can
then be used to develop multi-step plans us-
ing forward chaining. Our experiments have
shown that the robot is able to learn the phys-
ical affordances of objects from 3D range im-
ages and use them to build symbols and re-
lations that are used for making multi-step
plans to achieve a given goal.

1. Introduction

There exists a representational gap between discrete
symbols used in AI planning and the continuous
sensory-motor experiences of a robot and the means
to bridge this gap remains a long-standing problem in
autonomous robotics. Learning of the mapping be-
tween the sensory-motor readings and these symbols
is one approach that is a part of the so called sym-
bol grounding problem (Harnad, 1990) and has been
studied since the days of STRIPS. The learning stud-
ies in this context typically assume that the planning
symbols are pre-coded, and only the relation of con-
tinuous sensory-motor reading to these symbols are
learned(Klingspor et al., 1996).

On the other hand, (Sun, 2000) argued that sym-
bols “are not formed in isolation” and that “they

are formed in relation to the experience of agents,
through their perceptual/motor apparatuses, in their
world and linked to their goals and actions”. In
fact, these types of views are becoming common
place in robotics as indicated by the increasing
number studies with similar views. For example,
symbol formation in a robot interacting with its
world was studied in (Pisokas and Nehmzow, 2002),
where self-organizing maps were used to cluster low-
level sensory data and to form perceptual states.
The planning is performed by successively predict-
ing the next perceptual states. As will be de-
scribed later on, prediction is also central to our
approach although we believe that rather than
learning the state-to-state transitions, learning the
“change” in the current state could be more bene-
ficial. (Geib et al., 2006) focused on planning and
grounded the pre-defined high-level domain struc-
tures in the form of preconditions and effects. In
our approach, we too address planning; but in ad-
dition, importantly we require that the affordance
relations be learned bottom-up through interaction
with the environment. The affordance notion we
adopt has been adopted by other researchers as
well. For instance, (Fitzpatrick et al., 2003) imple-
mented a system where pushability affordances and
the roll directions of the objects after the application
of the push were learned. (Montesano et al., 2008)
proposed a general probabilistic model based on
Bayesian networks to learn the relationship between
actions, objects, and effects through interaction with
the environment. Given objects and actions (or
any pair of components), the system had the abil-
ity to predict the effect (or the third component).
In (Sinapov and Stoytchev, 2008) the affordances of
the tools attached to the robot arm are learned by
building a hierarchical models for behaviors and their
observed outcomes. In (Griffith et al., 2009), the ob-
ject affordances were learned through interaction for
a task that requires categorization of container and
non-container objects. Although these studies fo-
cused on affordance learning and prediction mech-



anisms through interaction with the environment,
the use of learned/acquired knowledge has not been
demonstrated for making multi-step plans.

In this paper we attempt to fill this gap by pre-
senting a robotic system that interacts with its en-
vironment for learning the effects of its actions and
representing affordance relations. After the learning
phase, we show that the robot can make non-trivial
multi-step plans involving push and grasp-and-lift
behaviors based on the learned affordance relations.
From a developmental point of view, this learning
phase can be related to development of infants be-
tween 7-11 months, who explore the environment and
learn the dynamics of the objects by hitting, grasp-
ing and dropping them and observing the results of
their actions (Asada et al., 2009).

1.1 Affordances and Robot Control

According to Ecological Psychologist J.J. Gibson
(Gibson, 1986) the organisms do not need to rec-
ognize the action-free meanings of the objects and
make complex inferences over these meanings in
order to act on them. For example we do not need
to identify the objects when we need to interact with
them. Instead, we look for a specific combination
of the object properties taken with reference to us
and our actions in order to detect their affordances.
This introspection is also supported by neurosci-
entific findings. It is known that primate brain
process visual information at in least two pathways:
dorsal and ventral pathways. The ventral pathway
appears to be responsible for object identification;
whereas the dorsal pathway is more involved in per-
ception for action (Culham and Valyear, 2006,
Goodale, 2008, Goodale and Milner, 1992,
Ungerleider and Mishkin, 1982). In particu-
lar, the anterior intraparietal area (AIP) ap-
pears to be the neural basis of manipulation
related affordances as it is involved in compu-
tation of object features relevant for grasping
(Sakata et al., 2005, Oztop et al., 2006).

Recently, we proposed a formalism
(Şahin et al., 2007) for using affordances as a
framework at different levels of robot control
ranging from perceptual learning to planning. The
formalism defines affordances as general relations
that pertain to the robot-environment interaction,
and represented them as triples of (1) the initial
percept of the object, (2) the behavior applied and
(3) the effect produced. For instance, the lift-ability
affordance is represented as a relation between the
(properties of an) object, the behavioral capabilities
of the robot and the effects produced by the lift
behavior.

In this paper we present the realization of this for-
malism on an anthropomorphic robotic hand and
show that the robot interacts with the objects in

its environment and records its interactions as af-
fordance relations and later use them to make multi-
step plans for achieving given goals.

2. Experimental framework

An anthropomorphic robotic system, equipped with
a range sensor, and its physics-based simulator is
used as the experimental platform (Fig. 1). The
robot platform is composed of a five fingered 16
DOF robot hand (Gifu Hand III, Dainichi Co. Ltd.,
Japan) and a 7 DOF robot arm (PA-10, Mitsubishi
Heavy Industries). As for the range sensor, Swiss-
Ranger SR-4000 infrared range finder, with 176x144
pixel array, 0.23◦ angular resolution and 1 cm dis-
tance accuracy was used. The simulator on the
other hand is developed using Open Dynamics En-
gine (ODE) and mainly utilized in training and inter-
action phase because it is not feasible to make large
number of exploratory interactions in the real robot.

The robot is equipped with three push behaviors
and one lift behavior. For all behaviors, the hand
is placed to a ‘reset’ position out of the view of the
camera before and after behavior execution except
for lift . The object position computed from the
range finder is used as parameter by the behaviors
to enable the robot interact with objects placed in
different positions. The hand is wide-open initially
for all behaviors, is clenched into a fist during push-

forward execution, and remains open for other push

behaviors. push-forward , push-left , and push-right

behaviors first place the robot hand at the back, right
and left of the object, respectively. Then, the hand
moves towards object center and pushes the object in
the appropriate direction. In lift behavior, the robot
hand is placed at the back-right diagonal of the ob-
ject first, then moved towards the object and while
this move the fingers are closed to grasp the object.
Afterwards, the closed hand is lifted vertically.

The robot interacts with three types of objects:
boxes, cylinders and spheres, with different size and
orientations. During the execution of push behav-
iors, the robot observes different consequences of its
actions. For instance, when the robot pushes a box
( ) or an upright cylinder ( ), the object is
dragged during the execution of the behavior and
stand still at the end of the action. However, when
the robot pushes a sphere ( ), the object would
roll away and fall down from the table, so at the
end of the action the object disappears. The effect
of a push behavior over lying cylinders ( ) on
the other hand depends on the relative orientation
of the cylinder and direction of the push . The lift

behavior would succeed in lifting an object, if the ob-
ject is within the arm length of the robot and small
enough to fit into the robot hand. However the con-
sequences of the lift behavior execution is not limited
to lifting the objects and can be complex. For exam-



Figure 1: On the left, the 23 DOF hand-arm robotic platform, infrared range camera and a spherical object placed on

the table are shown. On the right, the range image obtained from the 3D scan and a number of features computed

from this image are given. Note that the subtracted background is blurred.

ple, some spheres can roll-away out of the view after
an attempt to grasp and lift, and the large boxes
are pushed away but remains in the view after lift

behavior execution.

2.1 Perception

Pre-processing: The robot perceives the world
through its 3D infrared range finder which provides
the depth values in a range image and the 3D po-
sitions of the corresponding pixels. First, the range
image is subtracted from the background image that
was obtained from an object-free environment. The
resulting image is segmented and the remained re-
gion is assumed to belong to an object. In the ex-
periments reported in this paper only one object is
presented to the robot. In order to reduce the effect
of noise, the pixels at the boundary of the object are
removed and then median and Gaussian filters with
5x5 window sizes are applied. Finally, the object fea-
tures are computed using the depth values and 3D
positions corresponding to the object pixels.

Object feature vector computation: The per-
ception of the robot at time t is denoted as f t

o, where
o is the object label and f is a feature vector of
size 53. Height, width and depth are used as dimen-
sion related features of the object. Closest, furthest,
left-most and right-most points of the object are ex-
tracted and their 3D positions are included into the
feature vector. The average distance of the pixels are
used as the distance feature of the object. As shape
related features, distribution of the local surface nor-
mal vectors of the object pixels are used. Specifically
frequency histograms of normal vector angles in lati-
tude and longitude are computed and used as follows.

The normal vectors of the local surfaces for all pix-
els are computed using any two neighbors of the cor-
responding pixel:

Nr = (pr1
− pr) × (pr2

− pr)

where r, r1 and r2 represent indexes of the pixel, and
two neighbor pixels, and p corresponds to 3D posi-
tion. The direction of each normal vector is recorded
in two base-dimensions, latitude and longitude. Two
angular histograms are computed for each of these
dimensions and the histograms are sliced into 18 in-
tervals of 20◦ each. Frequency values of angular his-
tograms obtained from normal vectors of the surface
points in the region are used as 36 shape-related fea-
tures. This representation encodes the distribution
of the local surface normal vectors of the object.

In some situations (after execution of some behav-
iors) the object can move out of view. So we included
a boolean object visibility feature in the feature vec-
tor to represent this qualitatively different situation.

Effect feature vector computation: For each
object, the effect created by a behavior is computed
as the difference between the final and initial fea-
tures:

ξbi

o = f ′

o − fo

where ξbi

o , f ′

o and fo represents the effect, final and
initial feature vectors, and bi represents the behavior
executed.

3. Learning of affordance relations

During the interaction phase, the robot interacts
with the environment and in each interaction a rela-

tion instance of the form (ξbi

o ,fo, bi) is created. Af-
ter interaction phase is completed, by using effect
instances ({ξbi

o }) that are obtained from all different
objects, similar effects are grouped together to get
a more general description of the effects that each
behavior can create. This grouping is done using X-
means clustering algorithm and for each cluster an
effect-id is assigned. The associated effect prototype

for the cluster is defined as the mean of the cluster,

denoted as ξ̄
bi . Hence, for a given ξ, the correspond-



Figure 2: The Predict- operator that is trained to pre-

dict the next state of an object based on the predicted

effect of applying behavior bi.

ing effect-id (c) can be found as:

cξ = argmin
1≤i≤k

‖ξ − ξ̄i‖ (1)

where 1 ≤ i ≤ k is the cluster index.
Formally, the mapping between the object features

and the effects created by a particular behavior bi is
learned by a classifier (χbi) using the data set:

Tbi = {(fo, cξ
bi
o

)}

where fo is given as the input feature vector to the
classifier χbi , and c is the corresponding target ef-
fect category. Specifically, we used a Support Vector
Machine (SVM) classifier with linear kernel to learn
this mapping for each behavior bi using this training
set1. After training, predicted effect category can be
found without applying behavior bi to an object with
perceptual features fo by:

cpredicted(bi, o) = χbi(fo)

The predicted percept of the object after the ap-
plication of the behavior can then be computed as
(see Fig. 2):

f ′

o({bi}) = fo + ξ̄
bi

cpredicted(bi,o)

4. Planning

The learned affordance relations can be used as op-
erators for planning.

States A state is represented with the object fea-
ture vector that is perceived or expected to be per-
ceived after execution a number of behaviors in t

steps:
St
{bi

1...bi
t−1} = f t

o,{bi
1...bi

t−1}

where o corresponds to the perceived object, and
f t

o,{bi
1...bj

t−1} is the expected percept after execution

of the behavior sequence {bi
1 . . . bj

t−1}.

1For this study, the LibSVM software is used. In
(Uğur et al., 2007) we showed that the method is not con-
strained to batch learning and the training can be done in
an online manner. The number of samples were minimized in
online version by selecting the most interesting situations for
interaction instead of random exploration.

Actions The pre-coded behaviors; namely the
three push behaviors and the lift behavior, consti-
tute the actions. Different from standard techniques,
the actions do not have any pre-conditions and their
description does not include pre-defined state tran-
sition rules. All actions are applicable in all states,
where the next state depends on the learned effect
prediction operators summarized in Fig. 2.

St
{bi

1...bj
t−1}

bk
t

−−−−−→St+1
{bi

1...bk
t}

Goals A goal is specified as a partial state, in terms
of values of some object features within states. The
user can define a goal based on feature values of the
object. For example, the state that includes an ob-
ject feature vector with dmean = 0.8m will satisfy
the goal of move object to 0.8m distance. As another
example, the goal of pick-up a particular object is
satisfied in a state, where the closest-point z feature
value of the corresponding object is large (zc > 0.3m)
in the range image.

Plan generation Forward chaining is used to gen-
erate totally ordered plans starting from the initial
state. This process can be viewed as the breadth-
first construction of a plan tree where the branching
factor is the number of behaviors. The next states
are computed using the prediction operator in Fig. 2.
If the state in any time step satisfies the goal, the se-
quence of the behaviors which lead the initial state
to the goal is accepted as a potential plan.

5. Experiments

The learning experiments are conducted in the
physics based simulator and the results are tested in
the real robot. As shown in Fig. 1, a table is placed in
front of the robot both in simulation and real world.
In the beginning of interactions, one random object
o (among , , , ) is placed on the ta-
ble, in a random orientation and size [20cm−40cm].
The robot makes 3D scans before and after executing
one of its behaviors (bi) to compute the object (fo)
and effect (ξbi

o ) feature vectors. After the behavior
is applied, if the object is still visible and if there is
change in the object features, another random be-
havior is applied. Otherwise, the object should have
been fallen down the table or it is out of reach of
the arm, so the object is removed and a new random
object is placed. For all behaviors, approximately
1000 interactions are simulated. The resulting set of
relation instances are then used in training.

5.1 Discovered effect categories for push

After robot-environment interactions are completed
and affordance relations instances are collected, X-
means algorithm found 5 effect categories for each



Table 1: EC
p
i represents ith effect category of push-

forward behavior. In (a), selected feature values of the

corresponding effect prototypes are given. The magni-

tude of the arrow corresponds to the size of the change

in feature value, whereas whether the feature is increased

or decreased can be figured out by arrow’s direction. In

(b), in which situations such effect categories are formed

is explained. The number of the object types appear

during interactions are given in the first four column, the

average real width and distance of the objects in those

interactions are given in the last two columns.
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EC p
2

EC p
1

EC p
3

EC p
4

EC p
5

X
 P

o
s

Width Dist

EC
p
1

0 45 40 65 17.0 86.3

EC
p
2

0 0 0 55 23.1 90.8

EC
p
3

0 85 15 20 17.3 94.1

EC
p
4

125 10 175 15 17.5 88.8

EC
p
5

50 90 170 40 18.1 124.4

(a) Effect features (b) Info. on objects

push behavior. In this section, the effect categories
are interpreted by inspecting particular feature val-
ues of the corresponding effect prototypes and by
identifying the situations in which these categories
are generated. In all three push behaviors, similar
categories are formed so here we present only push-

forward behavior. Table. 1(a) gives selected fea-
ture values from effect prototypes formed for push-

forward , ξ̄
push−forward

i where 1 ≤ i ≤ 5. In other
words, the amount of change in different features is
provided. Table 1(b) summarizes the situations in
which effect categories are generated. The interpre-
tation of effect categories is as follows:

• As seen in the Table. 1(a), no effect in any fea-
ture is monitored in EC

p
5 . When initial average

distance of the objects is examined for EC
p
5 from

Table 1(b), it is found to be around 124.4 cm
which corresponds to out of the range points. So
the robot discovers interaction range of its push

behaviors and represent it in EC
p
5 .

• Visibility of objects drop from 1 to 0 in EC
p
4 ,

which means the objects fall off the table in these
situations. This can happen when the objects
are pushed and rolled away out of the table. In-
deed when the types of the object are inspected
in Table 1(b), it is seen that significant number
of spheres and lying cylinders create this effect
category. Small number of boxes (10) and up-

Table 2: EC
p
i represents ith effect category of lift behav-

ior. For further explanation please see Table 1.
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EC l
2

EC l
1

EC l
3

EC l
4

EC l
5

X
 P

o
s

Width Dist

EC
l
1 60 10 85 0 16.7 90.0

EC
l
2 0 30 5 45 11.5 88.7

EC
l
3 55 75 160 105 17.8 122.4

EC
l
4 0 90 5 40 20.6 94.3

EC
l
5 65 25 95 50 20.8 88.7

(a) Effect features (b) Info. on objects

right cylinders (15) are also included in the EC
p
4

because either they fall down from the edge of
the table when pushed or they were at the robot
hand as the result of previous lift behavior. When
push-forward is activated, all robot angles includ-
ing fingers are set to their initial positions, the
hand will be opened and the object will drop from
the hand and fall down to the ground. Note that
the later effect of object drop is an emergent one,
ie. the release behavior is not deliberatively in-
tended by the behavior designer. This emergent
effect category will play a major role during plan-
ning in Section 5.3.

• In EC
p
1 , EC

p
2 and EC

p
3 , the Z position of the

objects is increased as the result of push-forward

behavior and at the end of interaction the ob-
jects still remain visible as seen in the Table 1(a).
When the object types are inspected, it is seen
that these effect categories are produced mostly
by boxes and upright cylinders. Such effects are
not generated when the object is a sphere because
spheres always roll-away when pushed, but some
lying cylinders can lead to these effects because
different orientations of lying cylinders afford ei-
ther rollability or pushability.

5.2 Discovered effects categories for lift

Lift behavior, although not represented differently
in robot’s behavioral repertoire, is conceptually dif-
ferent from push behaviors, so the effect categories
for lift behavior are interpreted separately. The fea-
ture values of effect prototypes and the situations
in which effect categories are generated are given in
Table 2 and the interpretation is as follows:

• ECl
3 describes effects that do not change signif-

icantly at all and corresponds to not-reachable



objects. This effect category is similar to EC
p
5

for push-forward behavior.

• In ECl
5 , the objects become invisible during ex-

ecution of lift behavior. Disappearing from the
view was not expected and against our intention
in lift behavior. There are two different type of
situations for existence of such an effect. First,
the object may be already in robot hand before
execution of lift behavior so the initialization step
of lift can result in falling the object off to the
ground. Second, the rollable large objects can-
not be grasped by robot hand, but they will be
dragged and rolled down the table. The second
reason explains the existence of large number of
spheres and lying cylinders in ECl

5 .

• In ECl
4 , the height of the object (Y pos) does not

change, but its position with respect to the robot
changes. In other words, the object is not lifted,
but dragged over the table. This effect is created
by large ungraspable objects. Different from ECl

5

(previous item), they are not rollable. This claim
is supported by large number of boxes (90) and
lying cylinders (40) in ECl

4 , and relatively large
average width of the corresponding objects (20.6
cm).

• In ECl
1 and ECl

2 , the height of the objects (Y
Pos) are increased, so these effect categories cor-
respond to situations where objects were actually
lifted. One significant difference between two cat-
egories is on the change of perceived width of the
objects. The perceived width of the object is de-
creased more in ECl

2 probably because it is better
covered inside hand. Based on the actual average
widths of the objects for these effect categories,
smaller objects are seen to create ECl

2 . This
is consistent with the explanation in decrease of
perceived width because small objects are better
grasped and tend to disappear inside hand.

5.3 Learning affordances and planning

After effect categories are discovered, the mapping
from initial features to these categories are learned
by training SVM classifiers χbi for each behavior. 800
interactions are used in training and a separate set of
200 interactions are used in testing the classifiers. At
the end, in predicting correct effect categories around
90% accuracy is obtained for different behaviors.

The planning capability, which is based on the
learned affordance prediction system, is tested and
demonstrated in the real robot platform. The robot,
infrared range camera, and table are placed similar
to the simulated interaction environment. A system
with three main modules, namelyPerception, Plan-

ner and Execution Control, are used for online ver-
ification of the approach. The Perception Module

is connected to the infrared range camera and is re-
sponsible for computing the object features and send-
ing them to the Planner Module. Moreover, the Per-

ception Module informs the Execution Control Mod-

ule about the position of the objects for behavior
parameterization. The Execution Control Module on
the other hand receives a sequence of behaviors (a
multi-step plan) from the Planner Module and exe-
cutes the behaviors one by one using the positions
received from the Perception Module. The Execution

Control Module also informs the Planner when the
plan is completed. When the plan completed sig-
nal is received, the Planner Module is responsible for
sending a new multi-step plan to the Execution Con-

trol using the object features from the Perception.
In fact, the Planner Module generates plans continu-
ously but sends the plans only when plan completed
signal is received. Continuous plan generation en-
ables the Planner to monitor whether the execution
of the original plan proceeds as planned or not. This
system is tested with different objects and object
placements for two different goals.

Keep the table clean The motivation of the first
case study is to keep the table clean. In order to sat-
isfy this goal, the desired value for object-visibility

feature is set to be 0 (or false). So the planner needs
to find a sequence of behaviors which leads to an ob-
ject state with that particular feature value 0. The
snapshots taken from this experiment are provided in
Fig. 3. When a ball is placed in the middle of the ta-
ble, the Planner Module selects push-right behavior
and after the behavior is executed, the ball rolls away
and falls off the table. When an upright cylinder is
placed almost in the same place, the Planner Mod-

ule generates a two-step plan (lift and push-forward

). First lift behavior is executed and the object is
lifted. Later, push-forward is activated, so the arm
and hand joints need to move to their original (ini-
tial) position. During the initialization of the behav-
ior, the hand opens and the object falls down. As we
discussed earlier, this is rather an emergent behavior
that was not planned by behavior designer but dis-
covered by the learning system. In other situations
when the object is placed at the edge of the table,
push-right or push-left behaviors are selected and the
object is pushed off the table. This experiment ver-
ifies that affordances related to physical characteris-
tics of the objects (ball and upright cylinder). More-
over, the characteristics of the environment are also
learned through interaction and system makes differ-
ent plans based on different positions of the cylinder.

Bring the object to a target position The task
in this case study is to bring the object to a de-
sired position. The goal is defined over three feature
values, that correspond to the 3D position of the ob-



Figure 3: The table is kept clear by setting a desired state where object-visibility feature is 0.

The corresponding movies can be downloaded from
http://www.kovan.ceng.metu.edu.tr/~emre/epirob09.

Figure 5: A plan is executed for the task of bringing the

object to the target position represented by X.

ject’s closest perceived pixel. In the first experiment,
the target is set as a point on the table and is shown
with a cross (X) in Fig. 4. The object is placed at the
back and on the right side of the target from robot’s
view. In this case, the Planner Module generates a
4-step plan which is composed of push-left , push-left

, push-forward , push-forward . After the plan is ex-
ecuted successfully, the same object is placed on the
left side of the target from robot’s view, closer to the
robot when compared to previous case. The 4-step
plan that is composed of one push-right and three
push-forward behaviors is also executed successfully.
In both cases, the exact order of behaviors is not im-
portant and in fact many different 4-step plans are
generated with same behaviors arranged in different
orders.

A more complex task description is given in Fig-
ure 5 where also desired height of the object is pro-
vided in the goal state. In this case, the Planner gen-
erates a 3-step plan composed of two push-forward

and one lift behaviors. Different from previous case
where target position is on table, only one plan with
this particular order is generated because a push-

forward behavior executed after lift behavior has the
emergent effect of dropping the object from hand.

6. Conclusion

In this paper, we have shown that an anthropomor-
phic robotic hand can learn the physical affordances
of objects from range images and use them to build
symbols and relations that can be used in making
multi-step predictions about the affordances of ob-
jects and achieve complex goals.

First, the robot is shown to discover different ef-
fect categories that represent qualitatively different
set of situations in a completely unsupervised man-
ner. Furthermore, some effects were not intended
by the behavior designer but emerged during inter-
actions. For example, although no ‘release’ behav-
ior is implemented explicitly, the robot is shown to
drop the object from hand during initial stage of the
push-forward behavior if the the robot was holding
the object in its hand.

The mapping between object features and effect
categories are later learned by training classifiers
which are used to form basic prediction operators.
In two case studies, the knowledge that is acquired
through learning in the simulator is directly trans-
ferred to the real robot. The robot generated multi-
step plans for both table cleaning and object moving
tasks and executed successfully. Because the robot
formed the prediction operator based on its sensory-
motor experience, it was able to make grounded and
sometimes unexpected emergent plans for the same
goal in different situations. These experiments veri-
fied that physical properties of the objects and char-
acteristics of the environment are reflected in the
learned affordances and generated plans. In future,
the method will extended to multi-object environ-
ments and more complex non-discrete behaviors.



Figure 4: Different plans are executed in different situations for the task of bringing the object to the target position

represented by X.
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Şahin, E., Çakmak, M., Doğar, M. R., Uğur, E.,
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