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Abstract— The problem of dispersion in multi-robot systems
could be loosely defined as maximizing the sensor coverage area
while preserving the connectivity within the swarm. Dispersion
of robotic swarms appears to be applicable and useful in
missions such as planetary exploration, hurricane surveillance,
or nuclear decontamination, where the robots with maximal
coverage collect samples from the unknown surface, detect the
victims, or collect nuclear waste, respectively. In this paper, a
simple dispersion algorithm based on wireless signal intensities
is proposed and tested in a physics based simulator of a robotic
platform which is particularly designed to serve as a test-bed
for swarm-robotic studies. The signal intensities are realistically
modeled using sampling technique, taking both the distance
and relative orientations of the wireless sensors into account.
The only parameter of the algorithm, a threshold parameter,
is optimized in order to maximize the sensor coverage and
minimize the number of disconnected robots.

I. INTRODUCTION

In recent years, the research on collective and swarm
robotics has attracted significant attention of the roboticists
who work on unstructured, unknown, and unpredictable envi-
ronments. Originally inspired by the observation of socialin-
sects (ants, termites, wasps, etc.), swarm robotics deals with
building collectively intelligent systems that are composed
of large number of relatively simple physically embodied
agents. The individual robots in the swarm are generally
very simple in terms of computational, actuation, perception,
and communication capabilities, however the overall and
emergent behavior is complex.

Swarm-robotic systems are successful in environments
where the prior-knowledge about the world is minimal and it
is hard to build the model of the unstructured, dynamic, and
unpredictable environment. Moreover, robotic swarms could
be utilized in the environments where human intervention
and robot-robot communication is very difficult if not impos-
sible. Since the robots are usually identical, control of the
swarm is distributed, and robots’ behavior mostly depend on
the local interactions with the environment, swarms could
be utilized in risky and dangerous environments, exhibiting
robust performance.

The objective of dispersion is to cover maximum area
while maintaining the connectivity within the swarm. Dis-
persion of robotic swarms appears to be applicable and
useful in domains such as planetary exploration, urban
surveillance after a hurricane, and decontamination aftera
nuclear disaster, where the robots with maximal coverage
collect samples from the unknown surface, detect the victims

and collect the nuclear waste, respectively. The problem of
dispersion could be related to the area coverage problem
which is studied in individual [1] and collective level [2],[3]
in depth. A large body of literature exists on the algorithms
to maximize the covered area and find optimal placement
of the robots. However, most of these algorithms require
the global information and involve complex computations.
Since the global information is not provided in our case
and the robots are extremely simple (even cannot localize
themselves), these solutions have little relevance withinour
framework.

In our framework, the robots with minimal communi-
cation and computational abilities are required to cover
the maximum sensed area. Initially placed close to each
other, the individuals in the swarm disperse based on local
information gathered from surrounding robots and obstacles.
In [4], robots in a virtual world are spread out by differ-
ent movement algorithms such as random movement, wall-
following, and driving towards open areas. Howard et.al. [5]
applied a potential-field-based approach to the area coverage
problem, where the robots (sensor nodes) are treated as
virtual particles, and driven by virtual forces. The obstacles
and other robots create a repulsion force if they are close
and a viscous friction force is utilized to reach a state of
static equilibrium. In [6], the simulated robots, which are
equipped with two 2D laser range finders positioned back-
to-back, also select a direction opposite to the dominant
gathering of the other nearby robots and/or obstacles. All
three studies mentioned above rely on the strong assumption
that the robots are able to obtain the bearing and distance
of the neighboring robots through their sensors. Since the
robots are small, it is impossible to embed laser scanners in
todays technology, as proposed in [5]. Although it is possible
to used infrared sensors for this purpose, they have a very
limited range. Moreover, in order to obtain a good estimate,
one should place large number of infrared sensors on the
robot, which corresponds to high power consumption.

Another alternative solution to estimate the distance from
other robots is using intensity signals obtained from wireless
communication and sensors. From a practical point of view,
since wireless modules are small and power-effective, they
are generally embedded in small-size robots. In [7], the range
measurements obtained from wireless sensors are used in
dispersion problem. Although, these sensors do not provide
relative positions of the other robots, the swarm is able
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Fig. 1. (a) The exploded view of Kobot, equipped with the optional omni-
directional vision system. (b) The positioning of the IR sensors, and their
numbering. (c) The basic version of Kobot. The cap of the robot is removed,
exposing the short-range sensing board and the main controller and the
wireless communication boards stacked on top.

to disperse in different virtual environments based only
on range information. Their work is based on the strong
assumption that signal intensity decreases proportional with
the square of the distance it travels. The intensity does
not only depend on the distance between robots, but also
depends on the structure of the antenna that is used and the
surrounding environment.

In this paper, we will show that the signal intensity does
not only depend on the distance between robots, but also
is affected by the orientation of both robots. Moreover,
the readings are very noisy and they largely depend on
the environment characteristics. As a result, we employed
a sampling technique [8] and a look-up table to model
the sensor readings. Based on these readings, we utilized
a very simple and flexible dispersion algorithm to disperse
the robots in a simulated environment, while maintaining the
connectivity.

The rest of the paper is as follows. First the robotic plat-
form and its physics based simulator will be described giving
a detailed overview of the wireless module. The control of
the robot, which is designed based on the characteristics of
the wireless sensor will be provided in Section III. Next,
the results of the simulation experiments in which various
numbers of robots are dispersed in different environments
are provided. In the last section, the possible future directions
are discussed.

II. ROBOT PLATFORM

Kobot [9] is a circular differential-drive robot which is
specifically designed to serve as a test-bed for swarm-robotic
studies. Kobot (Figure 1) with a diameter of120mm (the
size of a CD) and a weight of 350 grams with batteries, is
designed to be a light, small, yet extendable, power-efficient
and relatively cheap robot platform for swarm robotics
research.

Fig. 2. Setup for experiments to measure the wireless intensity signals of
the real robots in different distances and relative orientations. The robot in
the center rotates around its own axis. The other robot is placed in different
positions on the contours. In summary, (1) the orientation of the robot in
the center, (2) the bearing of the other robot, and (3) the distance between
them are changed in the experiments.

The overall system design of Kobot is shown in Fig-
ure 1(a). At the heart of the Kobot, there is the control
sub-system in which all of the information are fed from
the other sub-systems, that is short-range sensing, commu-
nication, vision and power. Kobot comes with a novel IR-
based short-range sensing sub-system shown in Figure 1(b)
and 1(c). 8 infrared sensors are distributed around the robot,
each of which is able to detect the objects in a half cone
angle of 25◦ and0.15m range. Kobot additionally provides
wireless support using the IEEE802.15.4/ZigBee protocol.
This protocol provides a low-power networking capability
that can support point-to-point, point-to-multipoint andpeer-
to-peer communication.

The basic version of Kobot is planned to be extendable
by a general-purpose omnidirectional vision sub-system as
seen in Figure 1(a). This system is composed of a camera
facing an omnidirectional mirror placed on top of the Kobot.
It can view a region of0.9m radius, shrinking the view with
a constant proportion independent of the distance.

A physics-based simulator which is built on top of Open
Dynamics Engine (ODE) is used in the experiments. The
main body and wheels are modeled using basic cylindrical
collision geometries. The actuators are simulated using vir-
tual motorized hinge joints of ODE. Both the actuators and
sensors are calibrated against the physical robot using the
results of systematic experiments. For example, the virtual
friction coefficients between wheels and ground, and virtual
weights of the components are adjusted to obtain a similar
movement pattern with similar motor torques. Infrared sen-
sors are also calibrated using the data obtained from real
sensor, and utilizing ray collision technique in the simulator.

A. Modeling of intensity signals

Since the dispersion method is based on the intensity
signals obtained from wireless sensors, modeling of these
sensors has crucial importance. The antennas of the wireless
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Fig. 4. The distribution of the intensity measurements are shown in detail. Each plot gives readings for different distances. Each box corresponds to a
specificθ − r − α triple, and represents the distribution of200 intensity readings for a particular placement of the robots.
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Fig. 3. The box-and-whisker plot shows the distribution of the intensities
read from the wireless sensors for different distances between robots, each
of which corresponds to a contour. The ends of the boxes and the horizontal
line in it corresponds to second and third quartiles and the median points
respectively. The outliers in the data are shown as circles in the plot.

modules do not have symmetric sensing characteristics, thus
the relative orientations of the robots have unpredictableef-
fects on the readings. We used two robots in our experiments,
as depicted in Figure 2, one is in stationary position and
rotating around its own axis, and the other is in different
distances and relative positions with respect to the stationary
one. The self-orientation angle of the stationary robot will
be represented asθ, the distance and angle of the other robot
will be represented asr andα respectively. In summary, the
measurements are taken by changing 3 parameters,θ, r, and
α.

In the experiments, the stationary robot is placed in
4 different orientationsθ = {0, π/2, π, 3π/2}. For each
of the θ values, the other robot is placed in 5 different
distancesr = {15cm, 25cm, 55cm, 100cm, 200cm} and in
4 different orientationsα = {0, π/2, π, 3π/2}. In each of
these placements,200 measurements are done. As a result,
(4 × 5 × 4) × 200 = 16000 wireless signal intensities
are read in total. The box-and-whisker plot in Figure 3
shows the intensities obtained for different distances. Each
box corresponds to the distribution of the measurements
read in 4 × 4 = 16 different orientations. Although the
intensity value decreases statistically with increasing distance
between robots, the variances in the readings are very large.
For example, the intensity value read in15cm can also be
obtained in100cm.

Figure 4 shows the distribution of the intensity readings
in detail. As shown, the noise in intensity readings become
smaller when the robots are closer, and higher when robots

are further. One important observation is that although the
intensity does not decrease solely based on distance, it
usually decreases with increasing distance for fixedα-θ
values.

It appears to be difficult to model the characteristics of the
sensor and the noise by fitting a function. As a result, the
wireless sensor is modeled using the sampling data obtained
from the real robots. Since it is possible to obtain the exact
positions and orientations of the robots in the simulator;θ,
r and α values are computed for each robot pair.θ and α
are then rounded to one of the discrete values whose real
samples exist. At the last step, an average intensity value is
found for correspondingθ-α pair and closest twor discrete
indexes.

III. ROBOT CONTROL ALGORITHM

A subsumption like architecture is designed for the disper-
sion task. In the lower level, an obstacle avoidance behavior
is executed when a close object is sensed by the infrared
sensors which are located in front of the robot. If there is no
close object in the frontal area, the robot executes dispersion
behavior.

A. Obstacle Avoidance

The robot while avoiding from obstacles and other robots,
is controlled by setting speed of its left and right wheels (ml

andmr), which are calculated as [10]:

ml = (1 − |r̄|) ∗ 0.25 − r̄

mr = (1 − |r̄|) ∗ 0.25 + r̄.

wherer̄ denotes the tendency to turn. Whenr̄ = 0, the robot
moves forward. It turns left when̄r = 1, and right when
r̄ = −1. Here, r̄ is defined assign(wr − wl) ∗ n̄, wheren
is a random number between−0.4 and 0.4, n̄ is a random
number between0.3 and1.0, wl, wr represent the ‘perceived
presence’ of the wall on the right and left side respectively,
r is defined as the value of the ‘rotational activation’. In this
formulation, the robot would make a turn of random size in
its current turning direction.

The change inr is calculated as

∆r = −0.9r
+0.3(1 − r)(wl + 1.5I1 + 1.2I0)
−0.3(1 + r)(wr + 1.5I1 + 1.2I7)

.



(a) Initial (b) 100 steps (c) 250 steps (d) 500 steps (e) 1000 steps

Fig. 5. A swarm of robots of size 25 are dispersing in a100m
2 square shaped room in the physics based simulator. The blacksmall points show the

positions of the individual robots, and red circles represent the sensor coverage for each robot. The snapshots are taken in different timesteps. (a) shows
the initial placements and initial sensor coverage of the robots. In (e) after 1000 simulation time steps, approximately half of the room is covered by the
sensors of the robots.

The first term on the right of the equation guarantees that
when no wall is perceived and the infrared readings are all
zero, then any rotational activation will decay to zero in time.
The second term raises the rotational activation towards1 in
proportion to the amount of wall perceived on the left side
and the infrared readings from the right side. The third term
tries to pull down the rotational activation to−1 in a similar
way. Ii denotes the infrared readings, with a value between
0 (no object) and 1 (very close object), where0 < i < 8 is
the index (Figure 1(b)).

The variables,wl and wr , indicate the presence of the
peripheral wall on the left and right side of the robot
respectively, and the change in them are defined as

∆wl = −0.1wl − 0.7wl(I7 + I1)

∆wr = −0.1wr − 0.7wr(I7 + I0).

The first term on the left side causes the perceived presence
of a wall to decay to zero when no objects are sensed. The
second term diminishes the perceived presence of any wall
if the front sensors become active, to raise the priority of
avoidance. Even with obstacle avoidance in place, the robot
can get stuck, particularly when it is moving straight towards
the wall. The first condition of̄r allows robot to escape
from such situations by making steep turns away from the
obstacles blocking its course of movement.

B. Dispersion

Similar to the potential-field based methods, the robot
is repelled by other robots when they are closer than a
threshold, and is attracted by them when they are further
than that threshold. While the first “force” applied to the
robot make the dispersion possible, the latter one ensures
the connectivity of the swarm.

Two characteristics of the readings obtained from wireless
sensors make the utilization of the attraction-repulsion idea
difficult. First, in potential-field-like methods the bearing
information of the surrounding robots are required to find
the direction of each of them, and compute an average
direction vector towards or away from them. Since the
wireless sensors do not provide the bearing information, the
vectorial approach could not be applied directly. The other
problem with wireless sensors is that they are very noisy

as discussed in the previous section. A method, that is very
robust to the noise should be utilized.

Our method is designed based on the following idea:
Assume that the robot moves in a certain direction. If
the wireless intensity decreases during its move, it can be
deduced that the robot is moving away from other robots.
If it increases, the robot is most probably approaching to
other robots. Although the intensity readings differ in large
magnitude for robots in same distances but in different
relative orientations, they are observed to decrease for same
orientations and increasing distances. Thus, if it is assumed
that the change in relative orientations is very small during
the motion of the robots, the inverse proportional relationbe-
tween wireless signal intensity and distance between robots
would hold.

The speeds of the left and right wheels are set as:

ml =















Vf + r : W < τ ∧ ∆W > 0
Vl + r : W < τ ∧ ∆W < 0
Vl + r : W > τ ∧ ∆W > 0
Vf + r : W > τ ∧ ∆W < 0

wherer is a random real number,W is the intensity of
the wireless signal,∆W is the difference between current
and previous intensity readings, andτ is the threshold to
determine whether escape from robots and enable swarm
dispersion or move towards robots and maintain connectivity.
The formula ofmr is same asml exceptVr replacedVl. Vf is
used for forward movement, andVl < Vr enables the rotation
of the robot. Since the wireless readings are highly noisy, the
intensity value is computed using the previous readings, ie.
W = 0.8 × Wt + 0.2 × (0.8 × Wt−1 + 0.2 × ..).

When the current intensity is bigger than the threshold
τ = 0.4 and the intensity value is decreasing, it means that
the robot is moving away from other robots. In this case, both
wheels are set to approximately to the same speeds, enabling
the robot to go forward and continue escaping from others.
However when the intensity value is increasing, it means that
the robot moves towards others and it should change its route
to enable dispersion. If the current intensity is smaller than
0.4, the robot should return back instead of escaping from
others in order not to lose the connectivity.
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Fig. 6. The change of the sensor area coverage in a50m
2 room for various

swarm sizes.

IV. EXPERIMENTS

The experiments are conducted in the physics based
simulator described in Section II. In all experiments, the
robots are placed at the center of the room with random
orientations, and the dispersion algorithm is run for 2000
simulation steps. Figure 5 shows a sample run for 10 robots
and a100m2 room. Around each robot, a red circle is drawn,
which demonstrates the robot’s sensor coverage range. The
range of the omni-directional camera (Figure 1(a)), which is
0.9m, is set as the radius of this circle.

The effect of the number of robots in the swarm is
examined in another experiment. 5, 15, 25, and 50 robots are
placed in a50m2 room, and the algorithm is run for 2000
simulation steps. The areas covered by the robot sensors are
measured in each time step and demonstrated in Figure 6.
As shown, the covered area increases with increasing number
of robots. Although the room is shown to be covered with
sufficient number of robots, two problems appear in the plots.
First, while optimally dispersed 20-30 robots can cover the
room completely, even 50 robots are not able to cover the
room in our experiments. Second, oscillations are identified
in the plots, which are the result of slowly dispersing swarm
behavior where the group periodically expands and shrinks.
In summary, our method could not reach optimal solution
and has a slow convergence rate.

The snapshots of the swarms after 2000 steps are shown in
Figure 7. As shown, the swarm generally remains connected,
despite no global criteria is set to ensure this constraint.
Although during dispersion, some of the robots are discon-
nected from the swarm, the circular movement paths of the
robots enable them to find and reconnect to the others.

A. The effect of thresholdτ parameter

The parameterτ determines the distance threshold where
the state transition from robot repulsion to robot attraction
occurs. For bigτ values, the swarm should be able to
cover larger areas, but have a larger disconnection probability
at the same time. On the contrary, ifτ is smaller, the

(a) 5 robots (b) 15 robots

(c) 25 robots (d) 50 robots

Fig. 7. The sensor area coverage is shown for various swarm sizes. The
snapshots are taken at the200

th steps.
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Fig. 8. The change of the sensor area coverage in a200m2 room for
different τ values.

swarm remain connected but could not disperse effectively.
In this experiment, we examined the effect ofτ parameter
by changingτ between[0−1] in 5 discrete steps. In order to
allow situations where robots could be disconnected from the
swarm, a big room (200m2) and 15 robots are used. Figure 8
shows the change in covered area based on the threshold
parameter. The largest covered area is obtained forτ = 1.0
which corresponds no attraction force. Since the robots do
not preserve the connectivity, the area that is sensed by the
whole swarm is maximized. Figure 9 shows the snapshots of
the robots and sensor coverage at the step 2000. While the
robots with smallτ values are almost compact, the robots
with big τ values are completely disconnected. The optimum
value ofτ is around0.5.



(a) τ = 0 (b) τ = 0.25 (c) τ = 0.50 (d) τ = 0.75 (e) τ = 1.00

Fig. 9. The sensor area coverage is shown for differentτ values. 25 robots are deployed in a virtual room of area200m2 . All snapshots are taken at
2000th simulation step. While small threshold values result in compact swarms, big threshold values result in unconnected dispersed swarms.

V. CONCLUSION

In this paper, a method for the dispersion of a robotic
swarm is proposed, where the intensity readings obtained
from wireless sensors are used as range estimates of the
surrounding robots. Since the experiments are conducted in
a physics based simulator of the particular robot platform,
the modeling of the wireless sensors has crucial impor-
tance. In the experiments performed with real robots, it is
observed that the signal strength is highly affected from
the orientations of both communicating robots. As a result,
systematic experiments on real robots are performed to
sample the intensity signals based on distance between robots
and relative orientations. The readings that are obtained in
these experiments are then transferred to the simulator and
a look-up table is utilized in calculating the virtual intensity
values.

A simple algorithm, which is similar to the potential-
field based approaches is proposed in the paper. Although
the bearing of other robots could not be obtained from
wireless sensor readings, and the noise is very high (and
unpredictable most of the time), this algorithm successfully
disperses the robots in environments surrounded by walls.
The only parameter of the algorithm, a threshold parameter,
is optimized in order to maximize the sensor coverage and
minimize the number of disconnected robots. When the
threshold is adjusted as a small value, connected but compact
swarms are obtained. On the contrary for big threshold
values, the swarm is able to disperse in the environment,
however connections between the robots loosen up.

This study could be extended in many different ways. The
antenna used in the wireless sensor is not symmetric and this
structure makes the modeling of the readings very difficult.
Changing the antenna with a symmetric one would ease and
speed up the sampling process because the readings become
independent of the relative orientations of the robots. Better
controllers which depend on the simpler wireless models
could be designed in this way.

The main aim of this paper was to study wireless intensity
signals and dispersion problem in a realistic framework. The
next steps are to improve the dispersion algorithm, test it in
more realistic environments such as office environments, and
then transfer it to the real robots.
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