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Abstract— We are interested in how the concept of affor-
dances can affect our view to autonomous robot control, and
how the results obtained from autonomous robotics can be
reflected back upon the discussion and studies on the concept
of affordances. In this paper, we studied how a mobile robot,
equipped with a 3D laser scanner, can learn to perceive the
traversability affordance and use it to wander in a room filled
with spheres, cylinders and boxes. The results showed that after
learning, the robot can wander around avoiding contact with
non-traversable objects (i.e. boxes, upright cylinders, or lying
cylinders in certain orientation), but moving over traversable
objects (such as spheres, and lying cylinders in a rollable
orientation with respect to the robot) rolling them out of its
way. We have shown that for each action approximately 1% of
the perceptual features were relevant to determine whether it is
afforded or not and that these relevant features are positioned
in certain regions of the range image. The experiments are
conducted both using a physics-based simulator and on a real
robot.

I. INTRODUCTION

Do we perceive all the qualities of the environment to
accomplish a simple task like wandering around? Do we
detect the objects on our path, distinguish all their properties,
and only then infer whether the path is traversable or not?
Do we think “this circular gray object towards my right is
a small yellow cobblestone, and I know that the stones that
are smaller than my leg length can be walked over, therefore
I can safely walk over it”?

J.J. Gibson, one of the most influential figures in the field
of psychology, objected such a view to perceptual processing,
and its link to action. Instead, he set out to develop a “theory
of information pick-up” in which he conceived the concept
of affordance as: “The affordances of the environment are
what it offers the animal, what it provides or furnishes,
either for good or ill. The verb to afford is found in the
dictionary, but the noun affordance is not. I have made it up.
I mean by it something that refers to both the environment
and the animal in a way that no existing term does. It implies
the complementarity of the animal and the environment.”
(J.J. Gibson, [1], 1979/1986, p. 127)

J.J. Gibson claimed that:

• The ‘meaning of objects’ in the environment, for tasks
such as wandering around, are directly apparent to the
agent acting in it. This was different from the con-
temporary view of J.J. Gibson’s time, that the meaning
of objects were created internally with further “mental

calculation” of the otherwise meaningless perceptual
data. Hence affordances support direct perception.

• Each action needs only the relevant perceptual infor-
mation for its execution, and this can be supplied by
using specialized and concurrent perceptual modules or
filters dedicated to extract certain, but not all, cues from
the environment. Hence the use of affordances provides
perceptual economy for the organism.

• “an affordance points both ways, to the environment
and to the observer”. Therefore, a human’s judgment of
whether he can climb a stair step is not determined by
the height of the step, but rather by its ratio to his/her
leg-length [2]. Hence, affordances are relative to the
organism.

In his writings, J.J. Gibson did not explicitly state how
affordance perception is attained in animals. Later E. Gibson
claimed that affordances are learned through exploratory
activities, like mouthing in infants, and she asserted that
humans learn to “discover distinctive features and invariant
properties of things and events”[3], instead of constructing
representations from smaller pieces.

Although J.J. Gibson introduced the term to clarify his
ideas in psychology, it turned out to be one of the most
elusive concepts that influenced studies ranging from human-
computer interaction to robotics. In the MACS project,
we are interested in how the concept of affordances can
affect our view to autonomous robot control, and how the
results obtained from autonomous robotics can be reflected
back upon the discussion and studies on the concept of
affordances.

Physical characteristics of the environment, such as size
and shape of objects it contains, are good indicators of the
affordances that the environment offers to a robot, and we
are interested in how these characteristics can be perceived,
learned, and used on a mobile robot. In this paper, we studied
how a mobile robot, equipped with 3D range sensing ability,
can perceive, learn and use the traversability affordance
to wander in an environment filled with different types of
objects that change the traversability of the environment
depending upon their shape, size, and relative position and
orientation with respect to the robot.

II. AFFORDANCE-RELATED RESEARCH IN ROBOTICS

The concept of affordances is highly related to au-
tonomous robot control and influenced many studies in this



field. The parallelism between the theory of affordances and
reactive/behavior-based robotics has already been pointed
out(pp 244,[4];[5]). A similar parallelism also exists with
studies carried under the heading of action-oriented percep-
tion(pp. 267, [4]). These studies suggested a “qualitative”
representation of the environment based on the task/intention
at hand, and criticized the classical approach to perception
(particularly computer vision) which aimed to recover a
metric model of the environment [6].

Recently, the relation between the concept of affordances
and robotics has started to be explicitly discussed. Develop-
mental robotics (or the closely related epigenetic robotics)
[7] treats affordances as a higher level concept, which a
developing cognitive agent learns about by interacting with
the objects in its environment [8]. There are also other studies
that look at how affordances reflect to high-level processes
such as learning [9], [10], tool-use [11], or decision-making
[12]. The studies that focus on learning mainly tackles two
major aspects. In one aspect, affordance learning is referred
to as the learning of consequences of a certain action in
a given situation [8], [10], [11]. In the other, studies focus
on the learning of invariant properties of environments that
afford a certain action [9] . Studies in this latter group also
relate these properties to the consequences of applying an
action, but these consequences are in terms of internal values
of the agent, rather than changes in the physical environment.

Stoytchev [10], [11] studied learning, for the so-called
‘binding affordances’ and ‘tool affordances’, where learning
binding affordances corresponds to discovering the behavior
sequences that result in the robot arm binding to different
kinds of objects, whereas learning tool affordances cor-
responds to discovering tool-behavior pairs that give the
desired effects. In [8], Fitzpatrick et al. also studied learning
of object affordances in a developmental framework, where
a robot can learn what it can do with an object (e.g. rolling)
only by acting (e.g. tapping or pushing away) on it, and
observing the effects in the environment. In both Stoytchev’s
and Fitzpatrick et. al.’s studies, the objects are differentiated
using their colors only, and no association between the visual
features (that affect the affordances) of the objects and the
corresponding affordances are established, giving no room
for the generalization of the affordance knowledge for novel
objects.

In [13], it was proposed that an affordance can be rep-
resented as a (entity, action, outcome) triple, where entity
stands for the perceptual representation of the environment. It
was proposed that, the learning of affordances corresponds to
the learning of bilateral relations between three components
of this representation. Fritz et al. [14] demonstrated a system
that learns to predict the lift-ability affordance for different
objects, where predictions are made based upon features of
object regions extracted from camera images.

Traversability problem in outdoor navigation has recently
been studied in [15], where low level features, which are
extracted from stereo-vision and texture based methods, are
used in learning and predicting of affordances of outdoor
objects. The proposed architecture supports on-line learning

Fig. 1. Left: A snapshot from MACSim showing the KURT3D robot facing
two objects. Right: The resulting range image resembles a fish-eye image,
where the range value of each laser beam is coded as gray-scale values.

of the traversability affordances in unknown environments,
and enables successful execution of path plans while adapt-
ing to a completely unknown environment. Although our
point of view is similar, we gave special emphasis on the
learning of relevant features for different actions, and we
used range images and a different perceptual representation
that is suitable for acquiring the physical affordances of the
environment.

III. TRAVERSABILITY FOR MOBILE ROBOTS

The verb “traverse” is defined as “to pass or move over,
along, or through”. Since most actions depend on mobility,
traversability is a fundamental affordance for autonomous
robots. Traversability also becomes a very interesting prob-
lem when one does not limit himself/herself with classic
obstacle avoidance where the robot tries to avoid making
any physical contact with the environment, and only heading
open-spaces to traverse. When such approaches are used, the
robot’s response would be the same whether it encounters an
unpenetrable wall or a balloon that can be just pushed aside
without any damage. Thus, a method that can automatically
learn the traversability affordance from the robot’s interac-
tions with the world would be a solution to this problem.

In this work, we studied how physical affordances of the
environment, such as traversability for a mobile robot, can be
learned. In particular, we studied how the physical properties
of the environment, as acquired from range images obtained
from a 3D laser scanner mounted on a mobile robot platform,
can specify the traversability affordance.

A. The Kurt3D robot platform

Kurt3D is a medium-sized (45cm × 33cm × 47cm), dif-
ferential drive mobile robot, equipped with a 3D laser range
finder1. The 3D laser scanner is based on a SICK LMS 200
2D laser scanner, rotated vertically with an RC-servo motor.
The 3D laser scanner has a horizontal range of 180◦, with a
maximum resolution of 0.25◦, and is able to sweep a vertical
range of ±82.8◦ with a resolution of 0.23◦. The scanner is
capable of taking full resolution (720× 720) range image in
approximately 45 seconds.

• rectangular boxes ( ) that are non-traversable,

1URL: http://www.ais.fraunhofer.de/ARC/kurt3D/



Fig. 2. Phases of perception.

• spherical objects ( ) that are traversable since they
roll in all directions,

• cylindrical objects, either in upright position ( ) (non-
traversable), or lying on the ground ( ) (traversability
depends on their orientation with respect to the robot).

Kurt3D is simulated in MACSim[16], a physics-based
simulator, built using ODE (Open Dynamics Engine)2, an
open-source physics engine. The sensor and actuator models
are calibrated against their real counterparts. Fig. 1 shows a
scene from the simulator and the range image generated by
the simulated 3D laser scanner.

B. Traversability for Kurt3D

The environment is said to be traversable in a certain
direction, if the robot (moving in that direction) is not
enforced to stop as a result of contact with an obstacle.
Thus, if the robot can push an object by rolling it away,
that environment is said to be traversable even if the object
is on robot’s path, and a collision occurs. Since in this new
view of traversability, the physical properties of the objects
are important, a set of simple objects, with different shapes
and arbitrary sizes are included into the environment:

IV. AFFORDANCE-BASED PERCEPTION, LEARNING AND

CONTROL

The traversability affordance for a robot highly depends
on the location, orientation, and shape of the objects in
the environment. The robot should be able to perceive the
features related to the traversability affordance, in order to
learn these affordances and use them in control. Sensing
capabilities of the robot have a determining role in perceiving
certain affordances and the laser range scanner suits well to
the traversability problem.

In this study, learning the affordances and using the
learned affordances in the control of the robot are separated
into two phases. In the learning phase, the robot moves in
an environment containing one or more objects, and tries
to learn the traversability of the environment. The robot is
provided with seven simple hand-coded actions, which drives
the robot in seven different directions. For each action the
wheel speeds are set to certain values for a certain duration.

2URL: http://ode.org/

One of the actions makes the robot go forward, while the
others makes it turn to either side with different angles.
Along with each action, the expected displacement of the
robot is provided as its success criteria. In the execution
phase, the robot uses the learned affordances to navigate in
different environments.

A. Perception

The robot makes a 3D scan of the environment to obtain
a range image. As shown in Fig. 2, first, the image is down-
scaled to a resolution of 360×360 pixels, reducing the noise.
Then, it is split into uniform size rectangular grids. Finally,
for each grid, a number of distance and shape related features
are extracted.

The distance related features are chosen as the distances
of the closest, furthest, and mean distances of the grid. The
shape related features are computed from the normal vectors
of the surfaces that are computed from the range image. The
direction of each normal vector is represented using two
angles ϕ and θ, in latitude and longitude respectively and
two angular histograms are computed. The frequency values
of these histograms are used as the shape related features.

In this study, the 360 × 360 pixel range image is divided
into 30× 30 = 900 grids of 12× 12 pixels, and the angular
histogram is divided into 18 intervals, so that total number of
features computed over a downscaled range image is 900 ×
(3 + 2 × 18) = 35100 where 3 corresponds to the three
distance values (minimum, maximum, and mean) and the
multiplication by 2 corresponds to the two angle channels.

B. Learning

In the learning phase the robot learns a mapping between
environmental situations and the results of its actions, by
physically interacting with the environment. It perceives the
environment, executes an action, and records the result of
applying the action (success or failure) and the feature vector
that was perceived before the execution of the action. This
interaction occurs in episodes, in which all seven actions
are performed in the same configuration of the environment.
After a number of episodes, learning is conducted as a batch
process.

Learning is performed for each different action separately
and consists of two steps. In the first step, relevant features



Fig. 3. The robot control system in the execution phase.

of the feature vector for each action are selected. Next, a
classifier is trained to learn a relation that maps the (initially
perceived) relevant features to predict the success/fail result
of applying that action.

Selection of relevant features is done using the ReliefF
algorithm, originally proposed by Kira and Rendell [17]. This
method aims to estimate the weight of each feature in a
feature set, based on its impact on the target category of the
samples. In ReliefF, the weight of any feature is increased,
if it has similar values for the samples in the same category,
and if it has different values for the samples in different
categories. After finding the weights of all features, most
relevant features are selected based on a threshold. In our
case, the threshold is also optimized to select the features that
give the best performance on the classifier that is described
below.

Support Vector Machines (SVMs)3 are used to
classify (relevant) features into affordance categories
(traversable/non-traversable). Introduced by Vladimir and
Vapnik as supervised learning tools for classification
problems, they are very robust in the face of noisy input,
and able to deal with large datasets and input spaces. We
used a linear kernel (with tolerance parameter set as 1) since
more complex kernels did not increase the performance in
our case.

C. Control

The robot is driven using a simple control system (Fig. 3),
which utilizes learned relevant feature perception and af-
fordance classification schemes explained in the previous
sections. Whenever a new action is requested, the motivation
based control system sets a new preferred action with highest
priority, among a set of actions with fixed priorities. The
features which are relevant to the preferred action are then
requested from perception, and these features are supplied to
the trained classifier (SVM) to predict whether this action is
afforded or not. If the immediate environment does not afford
this action, a lower priority action is requested from the

3The LibSVM software that is used in this study, is available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm

Fig. 4. The relevant grids in the range image for each action.

motivation module. Otherwise, it is executed (robot moves in
a certain direction for a certain duration), and a new action
is requested upon the completion of the action.

V. EXPERIMENTAL RESULTS

A. Learning to predict traversability

The motivation behind these experiments is to analyze the
discovered relevant features for different actions in detail,
and evaluate the performance of the trained classifier. A
total of 3000 episodes are executed on the simulator for
each action. In each episode, 10 randomly selected objects
(among , , , ) are scattered in [−90◦,+90◦]
of robot’s frontal area. They are placed within a certain
distance in various orientations and sizes (20-40 cm.). In
each episode the features that are perceived and the result of
the executed action (success or failure) are recorded. 2000 of
these training data are then used to learn the traversability
affordance for each action, and the prediction accuracy of
the trained model is tested using the other 1000 independent
test data. After training, the prediction accuracy of the trained
SVM for all different actions is found to be within the range
of [93.0%, 95.1%].

Among the 2000 training data, 1000 are used for finding
the relevancy weights of the features using ReliefF. A subset
of the features are then selected by thresholding according
to these relevancy weights. This threshold is optimized by
selecting the value that results in the best performance of
the SVM on the remaining 1000 data (see Section IV-B).
With the optimized threshold, 100 − 400 features among
35100 are automatically selected to be relevant to perceive
the traversability affordance for each different action. In other
words, at most, 1.1% of the whole feature set is found to be
relevant to determine if an action is afforded or not.

The discovered relevant features are analyzed as to under-
stand to which grids and to which features in these grids they
correspond to. The grids, which include relevant features are
marked as relevant. In Fig. 4, the relevant grids for all actions
are shown, where dark areas correspond to relevant, and gray
areas correspond to irrelevant grids. Note that, only certain
regions of the whole image are found to be relevant, and
they shift from left to right with the direction of movement.
Since the number of features is very large compared to the
number of training samples, resulting distributions of the
relevant grids are not compact, and they are not symmetrical
for (different) symmetrical actions. Additionally, when the
individual features in grids are examined, it is found out that
the features that are related to the shape in vertical axis are
found to be more important than the features related to the
shape in horizontal axis.



Fig. 5. The course of the robot resulting from the execution of the
controller described in Fig. 3 in a virtual room cluttered with 40 objects.
The motivation module tries to make the robot to go forward as much as
possible. In (a), a turn to the left is afforded, and the robot drove towards the
spherical object. In (b), although the robot made a contact with the box on
its right, it selected forward move. Small contacts were expected to occur
because they were tagged as successful actions in the training phase (if the
robot continued to move on its present course). In (c), the only action that is
afforded was turning left sharply. In (d), none of the actions were afforded,
so the robot made a random turn.

B. Wandering using traversability

The relevant feature knowledge and the trained classifier
from the previous section are used to test the control system
presented in Fig. 3. The simulated robot is placed in a
virtual room cluttered with objects of different sizes and
types. The trajectory of the robot in such a room, with 40
objects included, is shown in Fig. 5. In this experiment the
motivation module tries to drive the robot forward as much
as possible, because the highest priority is given to the action
which moves the robot forward (Fig. 3). So, the robot makes
a 3D scan of the environment and predicts if the forward
action is afforded or not. If the action is afforded according
to the learned model, the robot executes the action, if not, it
asks from the motivation module for a lower priority action
and repeats the process until it finds an afforded action. If
none of the actions are afforded according to the learned
model it makes a random turn. After the execution of the
afforded action the whole cycle starts again. Note that the
robot does not only drive towards the open-spaces, but if
a higher priority action requires it, the robot chooses to
drive towards spherical and cylindrical objects (which are
in appropriate orientations).

C. Generalization of traversability for novel objects

In this section, the generalization capability of the system
when encountered with novel objects is analyzed. Since such
a training should be done in the lack of some object types,
the training setup is constrained to include only a subset of
object types. Testing, on the other hand, is performed with all
types of objects, so that the affordance prediction for novel

TABLE I

GENERALIZATION PERFORMANCE OF THE LEARNED MODEL.

The left-most two columns show case number and the set of objects in the
environment where the corresponding model is trained. The second row
shows which object types are included into the test sample set, where each
set contains only one object type. For each of the given training set, and
test object, the accuracy of the learned model’s predictions are given in the
rest of the table.

Case Training object types Accuracy in prediction (%)

1 100 0 100 53.4
2 0 100 0 46.6
3 100 0 100 53.3
4 100 83.8 100 94.7
5 100 100 100 86.4
6 100 0 100 53.4
7 100 83.8 100 95.6
8 99.2 100 100 85.9
9 100 100 100 93.8
10 100 83.8 100 94.7
11 100 100 100 86.4
12 100 100 100 95.6
13 100 83.8 100 95.6
14 100 100 100 94.7
15 100 100 100 94.7

situations can be evaluated. In both training and testing, only
one object is placed in front of the robot, and the forward
action is executed.

After being trained in the constrained learning space, each
model is tested with all object types one by one, and the
prediction accuracy regarding the traversability affordances
for that object type is computed (Table I).

As shown in cases 1, 2, 3, and 6, when the training set
includes only traversable or non-traversable objects, but not
both, the model predicts same affordance on all objects. In
case 4, the robot is trained with only , yet it is able to
predict the affordances of all other object types that are not
included in training set with high accuracy. We obtained such
a good generalization performance, since the robot made
interactions with different sides of , and the affordances
of various surfaces are learned and later generalized for novel
objects. In case 5, since the training set contains samples
for both success and fail, the affordances of novel objects
( and ) are also correctly predicted. As a result, we
can say that our method successfully predicts the affordances
of the novel objects that were never before.

D. Traversability on the real robot

The controller that was trained in the first set of ex-
periments was also transferred to Kurt3D. Various objects,
including simple geometrical ones and office environment
objects like trash bins and PC cases, are then placed in front
of Kurt3D to test the performance of the controller. Two sets
of experiments are then conducted, using boxes in the first
set and cylinders in the second one. As shown in Fig. 6, the
robot was able to correctly perceive the affordances of these
objects, which are placed in different distances and angles.



Fig. 6. Based on the bearing and proximity of the box and cylinder, Kurt3D was able to eliminate the non-afforded actions.

VI. CONCLUSIONS

In this study, the traversability affordances of the environ-
ment for a mobile robot is learned through physical interac-
tions in a physics based simulation environment. Since the
traversability depends on the location of the objects and their
geometrical properties, range images are used to perceive the
physical affordances of the immediate environment. A simple
perceptual representation is proposed, where intermediate
high-level processes like object detection or world modeling
are not utilized, thus favoring Gibsonian direct perception
view. Based on the low-level features that are perceived and
the results of the interactions with the world, the robot is
able to learn i) relevant features for different actions, and
ii) the affordances provided. The prediction accuracy in
perceiving the traversability affordances of the environment,
which includes several boxes, cylinders, and spheres is found
to be around 95%. Furthermore, it is presented that the robot
uses only 1.1% of the extracted features while perceiving the
affordances. This in turn saves the time 76.6% in scanning
and 81% in feature processing, and J.J. Gibson’s perceptual
economy is obtained through learning to use relevant fea-
tures.

After learning the affordances of the environment, the
robot, which is controlled by a simple motivation system,
was able to successfully traverse a virtual room cluttered
with objects. Additionally, the experiments showed that the
robot was able to perceive the traversability affordances of
the novel objects that it has never seen before. Finally, the
affordance-based action selection scheme that is learned in
simulator is successfully transfered to the real robot without
any further modification. Although only objects with basic
geometries are used in our experiments, we expect that the
performance of our affordance prediction scheme will not
degrade in environments that include everyday office objects
or outdoor environments. Thus, we plan to train and test the
robot in more realistic environments in the future.

The work presented in this paper is novel from prior
studies on multiple fronts. First, in our work range images,
which are more informative about the physical affordances
of the environment, are used for sensing. Second, we pro-
posed a perceptual representation which represents the shape
and orientation information in a proper way for learning.
Third, we performed a more complete and comprehensive
testing of the learned affordances, and that showed that the
proposed system can successfully predict the affordances of
completely novel object types.
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