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Abstract— The concept of affordances, as proposed by
J.J. Gibson, refers to the relationship between the organism
and its environment and has become popular in autonomous
robot control. The learning of affordances in autonomous
robots, however, typically requires a large set of trainingdata
obtained from the interactions of the robot with its environment.
Therefore, the learning process is not only time-consuming,
and costly but is also risky since some of the interactions
may inflict damage on the robot. In this paper, we study the
learning of traversability affordance on a mobile robot and
investigate how the number of interactions required can be
minimized with minimial degradation on the learning process.
Specifically, we propose a two step learning process which
consists of bootstrapping and curiosity-based learning phases.
In the bootstrapping phase, a small set of initial interaction
data are used to find the relevant perceptual features for the
affordance, and a Support Vector Machine (SVM) classifier is
trained. In the curiosity-driven learning phase, a curiosity band
around the decision hyperplane of the SVM is used to decide
whether a given interaction opportunity is worth exploring or
not. Specifically, if the output of the SVM for a given percept
lies within curiosity band, indicating that the classifier is not
so certain about the hypothesized effect of the interaction, the
robot goes ahead with the interaction, and skips if not. Our
studies within a physics-based robot simulator show that the
robot can achieve better learning with the proposed curiosity-
driven learning method for a fixed number of interactions.
The results also show that, for optimum performance, there
exists a minimum number of initial interactions to be used for
bootstrapping. Finally, the trained classifier with the proposed
learning method was also successfully tested on the real robot.

I. I NTRODUCTION

The concept of affordances was introduced by J.J. Gibson
to explain how inherent “values” and “meanings” of things in
the environment can be directly perceived and that how this
information can be linked to the action possibilities offered
to the organism by the environment [1]. In this sense, a
stone affords throwing, a flat rigid surface affords walking,
etc. Moreover, their affordances are directly perceived by
humans without creating object models with further “mental
calculation” of the otherwise meaningless perceptual data.
This point of view also entails economical usage of the
perceptual resources.

Although J.J. Gibson made a number of references to
the learning of affordances, his main interest was into the
perceptual aspect. However, the issue of learning of affor-
dances have attracted attention from both psychologists and
roboticists, and these studies will be briefly presented in the
next section. In the rest of the paper, we will present our
approach to learning of affordances.

A. Learning Affordances

E. Gibson studied the learning of affordances in humans
in a developmental framework. She argued that learning is
neither construction of representations from smaller pieces,
nor association of a response to a stimulus. Instead, she
claimed that learning is “discoveringdistinctive features and
invariant properties of things and events” [2], “discovering
the information that specifies an affordance” [3]. She pointed
out that babies use exploratory activities, such as mouthing,
listening, reaching, shaking, to bring about “information
about changes in the world that the action produces” [2].
She suggested that, as development proceeds, exploratory
activities become performatory and controlled, executed with
a goal.

The problem of learning affordances has recently been
studied also within autonomous robotics. These studies
which dealt with the learning of various types of affordances
mainly tackled two major aspects of the problem. In one
aspect[4], [5], [6] the invariant properties of the environ-
ment that afford a certain behavior is learned. In the other
studies,[7], [8], [9] the affordance learning is referred to as
the learning of consequence of a certain action in a given
situation. In [7], the robot learns what it can do with an object
(e.g. rolling) only by acting (e.g. tapping or pushing away)on
it, and observing the effects in the environment. In [8], [9],
Stoytchev et. al. studied the so-called ‘binding affordances’
and ‘tool affordances’, where learning binding affordances
corresponds to discovering the behavior sequences that result
in the robot arm binding to different kinds of objects,
whereas learning tool affordances corresponds to discovering
tool-behavior pairs that give the desired effects. Although
these studies are important in learning through exploration, in
both studies, the objects are differentiated using their colors
only, and no association between the visual features (that
affect the affordances) of the objects and the corresponding
affordances are established, giving no room for the general-
ization of the affordance knowledge for novel objects. Fritz et
al. [10] also demonstrated a system that learns to predict the
lift-ability affordance for different objects, where predictions
are made based upon features of object regions extracted
from camera images.

B. Curiosity-driven learning

In robotics, learning is a costly process. Ideally, the robot
should physically interact with its environment exploringits
environment and testing its behavioral abilities in different
situations. Even for simple tasks, such as avoiding objects,



a large number of interactions, some of which may result
in physical damage to the robot, need to be carried out to
drive the learning process. Hence, the learning process is
not only time-consuming and costly in terms of the physical
wearing out of the robot, but is also risky, since some of
the interactions may result in physical damage to the robot.
Therefore, it is essential that the interactions of the robot
during the learning phase be minimized with minimal or no
degradation of learning.

The problem of selection of the best training data to
increase the performance and speed of learning has been
studied in the field of Machine Learning (Active Learning)
and particularly in Developmental Robotics. In these studies,
as stated in [11], generally two modules are used: the
learner and themeta-learner. In these systems, thelearner
is responsible from the learning process, whereasthe meta-
learner is responsible from selection of the next sample,
which would increase the speed of the learning process. In
this paper we will not use ameta-learner but we will utilize
a curiosity-based scheme on thelearner itself to increase the
speed of the affordance learning and minimize the number
of interactions with minimal degradation in learning process.

II. T HE KURT3D ROBOT PLATFORM AND THE

TRAVERSABILITY PROBLEM

Kurt3D is a medium-sized (45cm × 33cm × 47cm), dif-
ferential drive mobile robot, equipped with a 3D laser range
finder. The 3D laser scanner is based on a SICK LMS 200
2D laser scanner, rotated vertically with an RC-servo motor.
The 3D laser scanner has a horizontal range of180◦, and
is able to sweep a vertical range of±82.8◦ generating a
720 × 720 range image in approximately 45 seconds.

Kurt3D is simulated in MACSim[12], a physics-based
simulator, built using ODE (Open Dynamics Engine),an
open-source physics engine. The sensor and actuator models
are calibrated against their real counterparts. The leftmost
part of Fig. 1 shows a scene from the simulator.

A. Traversability

In this paper, we study the learning of traversability affor-
dance for the KURT3D robot platform. The verb “traverse”
is defined as “to pass or move over, along, or through”. The
environment is said to be traversable in a certain direction,
if the robot (moving in that direction) is not enforced to stop
as a result of contact with an obstacle. Thus, if the robot
can push an object by rolling it away, that environment is
said to be traversable even if the object is on robot’s path,
and a collision occurs. Hence, the traversability affordance
for a robot highly depends on the location, orientation, and
shape of the objects in the environment. The robot should be
able to perceive the features of the environment related to the
traversability affordance, in order to learn these affordances
and use them in control.

The traversability problem has also recently been studied
in [13] for outdoor navigation problem, where low level
features, which are extracted from stereo-vision and tex-
ture based methods, are used in learning and predicting of

affordances of outdoor objects. The proposed architecture
supported on-line learning of the traversability affordances
in unknown environments, and enabled successful execution
of path plans while adapting to a completely unknown
environment.

In a previous work of ours [14], we studied the learning
of traversability affordance of KURT3D in simulated envi-
ronments that are cluttered with objects with different shapes
and arbitrary sizes, thus with different affordances:

• rectangular boxes ( ) that are non-traversable,
• spherical objects ( ) that are traversable since they

roll in all directions,
• cylindrical objects, either in upright position ( ) (non-

traversable), or lying on the ground ( ) (traversability
depends on their orientation with respect to the robot).

In that work, we had gathered the training data from 3000
interactions of the simulated KURT3D robot in MACSim.
This data was then used to learn the traversability affordance
for the robot in a batch mode, and the results were then
successfully transferred to the real robot.

III. ROBOT CONTROL SYSTEM

The robot is provided with seven simple hand-coded ac-
tions, which result in movement in seven different directions.
One of the actions makes the robot go forward, while the
others first rotate the robot around its own vertical axis for
a certain period and then drive it forward. Along with each
action, the expected displacement of the robot is provided as
its success criteria.

A. Perception

The robot makes a 3D scan of the environment to obtain
a range image. As shown in right part of Fig. 1, first, the
image is down-scaled to reduce the noise. Then, it is split
into uniform size rectangular grids and a number of distance
and shape related features are extracted for each grid.

The distance related features are chosen as the distances
of the closest, furthest, and mean distances of the grid. The
shape related features are computed from the normal vectors
of the surfaces that are computed from the range image. The
direction of each normal vector is represented using two
anglesϕ and θ, in latitude and longitude respectively and
two angular histograms are computed. The frequency values
of these histograms are used as the shape related features.

B. Learning

In the learning phase the robot learns a mapping between
environmental situations and the results of its actions, by
physically interacting with the environment. In each interac-
tion episode, the robot is placed at a random position and
orientation in a training room which includes a number of
randomly placed objects.

After the robot perceives its environment using the 3D
range scanner and computes a feature vector, thelearner
that is trained upto that point determines whether the current
situation is an interesting one or not, based on the computed
feature vector. If the learner is certain about the effect to



Fig. 1. The simulated robot in MACSim is shown on the left. Therange image obtained in this situation and the operations applied to this image are
shown on the right. The360 × 360 pixel range image is divided into30 × 30 = 900 grids of 12 × 12 pixels, and the angular histogram is divided into
18 intervals, so that total number of features computed over a downscaled range image is900× (3 + 2× 18) = 35100 where3 corresponds to the three
distance values (minimum, maximum, and mean) and the multiplication by 2 corresponds to the two angle channels.

be produced, the robot will choose not to interact with the
environment to test its hypothesis and will be “beamed” to
a different position in the room. However, ifthe learner is
not certain about the result of executing a particular action in
that situation, the robot will execute the action and observe
the result of that action using a pre-defined success metric
(displacement vector). Then,the learner is updated using the
feature vector and the result of the action.

The learning process consists of two phases:
1) Bootstrap phase: In this phase, a small set of training

samples (nbootstrap) are obtained by interacting with the
environment without any novelty check. Since time and space
requirements of learning from samples with 35100 features
would be huge, the learning is done using only a subset of
these features. This subset includes the features which are
relevant for a particular action, and affordance learning for
that action is performed using only that subset.

ReliefF algorithm[15], which estimates the relevance of
each feature based on its impact on the target category
(traversable/non-traversable) of the samples, is used forfea-
ture selection. After computing the relevances using ReliefF,
the most relevantn features are chosen. Although ReliefF
does not work optimally with such a small sample set and
high number of features, by settingn to a relatively large
number, most of the relevant features would be included in
the obtained subset. We setn to 2500 in our experiments.

The bootstrap period is also required to initiate the train-
ing. Thus, the set of training samples, obtained in this phase
are used to train a classifier in a batch manner. The details of
the classifier, which learns a relation that maps the (initially
perceived) relevant features to predict the success/fail result
of applying that action, will be given below.

2) Curiosity-driven learning phase: Different from the
approaches mentioned in Section I, we will usethe learner
both to select the next sample and to learn from experi-
ence. A training sample in our domain is obtained through
perceiving the environment, physically interacting with it,
and storing the perceptual data together with the result of
the robot’s interaction (afforded/not-afforded). Thus, if the
learner decides that a candidate sample is not interesting
enough, it will not be included in training. In this case, there

Fig. 2. The mechanism which selects interesting samples fortraining is
demonstrated. The continuous line demonstrates the separating plane that is
constructed so far, the square shaped samples demonstratessupport vectors,
and the circular shaped ones show the samples used in previous training
steps, but not serve as support vectors. The triangular shaped samples are
the candidates whose classes (traversable/non-traversable) are not known.
Current SVM is more certain about the class of the sample on the left, so
this candidate will not be included in the training set. However, the candidate
on the right is very close to the hyperplane and SVM is not certain about
its class, thus it will be included in training. A probable modification in
the hyperplane is shown with dashed line after SVM is updatedwith this
candidate sample.

is also no need to execute the action since only the perceptual
data are used bythe learner to determine whether that sample
is interesting or not. In [14], a batch learner was employed
which stores all training samples beforehand. In our case, a
batch learner would enforce execution of all actions, even
uninteresting ones during exploration phase. As a result,
we should use an online-learner, which first determines the
novelty of the perceptual data, and executes the action only
if the perceptual data are interesting enough for that action.

Support Vector Machines (SVMs) are used to learn the
mapping between perceptual data and affordance classes
(traversable/non-traversable). In SVMs, the optimal hyper-
plane that separates two classes is found, based on the most
informative samples (the support vectors) in the training set.
The new test sample’s class is predicted based on its relative
location with respect to this hyperplane in the feature space.
We made an assumption that SVMs are more certain in their



Fig. 3. Usage of the trained affordance classifiers.

class prediction of a new sample, if that sample is further
away from the hyperplane, and less certain if sample is closer
to the hyperplane. Thus, when the robot is in an environment,
where it is almost certain about the affordances provided, it
will bypass this environment without executing any action,
and look for more novel situations. On the contrary, when
the robot encounters a new situation, if the feature vector
computed in that situation is close to the hyperplane, SVM
will conclude that this situation is interesting enough to be
included in training. In this case, the robot executes the
action, and SVM is updated using the feature vector and
the result of that action. Thus, the novelty of the candidate
is determined based on its distance to the hyperplane that
is constructed so far. If the distance is smaller than a fixed
thresholdτ then the sample is considered as an interesting
one, if it is bigger thanτ , it is skipped. Fig. 2 provides a
simple and clear demonstration of the idea.

Although, SVMs are used as batch learning systems in
general, some online implementations, where the samples are
fed to the learning system in an incremental manner, are able
to produce similar results. We used the LASVM software
[16] for online updating of the SVM and making predictions
on the candidate and test samples. A linear kernel (with
tolerance parameter set as1) was used since more complex
kernels did not increase the performance in our case.

C. Control

The robot is driven using a simple control system (Fig. 3),
which utilizes learned relevant feature perception and af-
fordance classification schemes explained in the previous
sections. Whenever a new action is requested, the motivation
based control system sets a newpreferred action with highest
priority, among a set of actions with fixed priorities. The
features which are relevant to thepreferred action are then
requested from perception, and these features are suppliedto
the trained classifier (SVM) to predict whether this action is
afforded or not. If the immediate environment does not afford
this action, a lower priority action is requested from the
motivation module. Otherwise, it is executed (robot moves in
a certain direction for a certain duration), and a new action
is requested upon the completion of the action.
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Fig. 5. The bootstrap period, which is required to select therelevant
features and train an initial learner is adjusted, and the speed/performance
plot is demonstrated. Curiosity paramterτ is fixed to0.5.

IV. EXPERIMENTAL RESULTS

In summary, learning is conducted in an online-fashion,
where firstnbootstrap samples are collected for feature se-
lection and initiating the classifier. Then the learning contin-
ues in a curiosity-driven way by selecting most interesting
situations based on the distance thresholdτ . As a result,
two parameters,nbootstrap and τ determine the speed and
performance of learning.

Learning is performed in MACSim, where the robot is
placed in a 3×3 m2 square room, which includes 100
randomly scattered objects with dimensions in the range
[20cm − 40cm]. For each action, an online-SVM is trained
using 3000 different samples, which are obtained by making
3000 different interactions in this room. During this phase,
only the interesting samples are used in training the SVM
(Fig. 4).

After training, the robot is transferred into another virtual
room with similar characteristics and 2000 test samples are
collected in the second room. These 2000 samples are used
to evaluate and compare the performances of the controllers
trained with differing values ofnbootstrap andτ . In the next
section we examine the effect of these two parameters on the
speed and performance of the learning system, based on the
system’s prediction accuracy over the 2000 testing samples.

A. Effect of bootstrap period

The number of bootstrap samples,nbootstrap affects the
quality of the feature selection process and the classifier’s
performance. Ifnbootstrap is large, the relevant features
are more accurately selected, and more samples will be
included in initial training without any curiosity check.
In these experiments, in order to examine the effect of
bootstrap period, the prediction accuracies of the classifier
are computed fornbootstrap values of 10, 25, 50, and 100
on the testing set. In the box and whisker plot (Fig. 5), the
prediction accuracy of the classifier on the test set is plotted
against the bootstrap parameter, where each box represents
the accuracy distribution of 10 different classifiers obtained
from different orderings of the training samples. In this plot,
for each value of thenbootstrap, three successive boxes are
drawn, corresponding to the prediction accuracy values at



(a) (b) (c) (d)

Fig. 4. These snapshots show example situations encountered in the learning phase. Curiosity-based learner found the two left-most situations interesting,
executed go forward action and updated the the classifier based on the result of its actions. However the two right-most situations are found to be
uninteresting and were not included in training. (a) Corresponds to a situation where boundaries of the cylinder’s surface is similar to the sphere’s from
the robot’s point of view, and the learner is required to be fine-tuned. (b) Corresponds to a situation where the object locates in the boundaries of the
go-forward action. (c) The space in front of the robot is clear. (d) This situation seems to be similar to (b), however the (smaller) object in (d) is closer
than the object in (b).

the 100th, 250th, and 400th interactions. Whennbootstrap

is selected as 10, the performance of the classifier remains
below%90 since 10 samples are insufficient for selecting the
relevant features and bootstrapping an initial classifier with
the ability to select interesting samples. The values greater
than 25 does not further increase the performance, thus, 25
initial samples are found to be sufficient to bootstrap the
learning process.

B. Effect of the curiosity parameter

The curiosity parameterτ determines the width of the
band around the decision hyperplane of the SVM. As the
τ gets larger, more samples will be selected as interesting.
The effect ofτ is examined by training different classifiers
with different τ values (eg. 0.05, 0.10, 0.50, 1.00, and no
curiosity). In the box and whisker plot (Fig. 6), the prediction
accuracy of the classifier on the test set is plotted againstτ ,
where each box represents the accuracy distribution of 10
different classifiers corresponding to different orderings of
the training samples. Similar to the previous figure, for each
value of theτ , three successive boxes are drawn, correspond-
ing to the prediction accuracy values at the 100th, 250th, and
400th interactions. As shown, curiosity parameters that are
too small keeps the system away from interacting with inter-
esting situations. On the contrary, curiosity parameters that
are too large slows down learning by including uninteresting
samples in training. As a result, we selectedτ = 0.50 as the
curiosity parameter to be used in the next section.

C. Using traversability affordance

In order to demonstrate the overall behavior of the robot,
and its ability in perceiving the traversability affordance in
the environment, it is placed in a room cluttered with objects
of various shapes and size (Fig. 7). The controller used in this
experiment was trained withτ = 0.5 and nbootstrap = 50.
Here, the robot is additionally controlled by the motivation
system which favors driving forward. Whenever the move-
forward action is not afforded, a lower priority action is
executed if it is afforded. As shown in the Fig. 71, the
robot successfully wanders in the room. Note that the robot

1Url:http://www.kovan.ceng.metu.edu.tr/
traversability/movie.mpg
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Fig. 6. The change in the prediction accuracy of the affordance perception
during the learning phase. The thresholds which determine the curiosity
level of the robot are compared.nbootstrap is fixed to50.

Fig. 7. The robot wanders in the room.

does not only drive towards the open-spaces, but if a higher
priority action requires it, it chooses to drive over spherical
and cylindrical objects in appropriate orientations, since they
afford traversability. It also successfully avoids boxes and
upright cylindrical objects by not driving towards them.

The controller used in the simulator is also transferred
to the real Kurt3D robot. Various objects, including simple
geometrical ones, and office environment object like trash
bins and boxes are then placed on the way of Kurt3D to
test the controller. As shown in Figure 8, the robot is able
to correctly perceive the affordances of the box, cylindrical,
and spherical objects, and act without colliding with non-



Fig. 8. The initial position of the robot is shown in the left-most figure. The robot first goes forward, then turns left since trash-bin does not afford
traversability. Third snapshot shows the robot driving over the spherical object. The path of the robot is shown in the last figure.

traversable objects and driving over traversable ones.

V. CONCLUSIONS

In this paper, we studied the learning of traversability
affordance on a mobile robot and investigated how the
number of interactions required can be minimized with
minimal degradation on the learning process. Specifically,
we proposed a two step learning process which consists
of bootstrapping and curiosity-based learning phases. In the
bootstrapping phase, a small set of initial interaction data
were used to find the relevant perceptual features for the
affordance, and a Support Vector Machine (SVM) classifier
was trained. In the curiosity-driven learning phase, a curiosity
band around the decision hyperplane of the SVM was used
to decide whether a given interaction opportunity is worth
exploring or not.

The effects of two parameters of our learning system,τ

and nbootstrap, which serve as the curiosity threshold and
number of bootstrap samples respectively, are examined in
systematic experiments. Selectingτ small keeps the system
away from interacting with interesting situations, and select-
ing it large slows down learning since uninteresting samples
are used in training. As fornbootstrap, while small values
degrade the performance of the system, large values does
not improve the performance after a certain threshold.

The affordance perception system, trained using optimized
parameters, was tested in a room cluttered with objects
of varying shapes. In this environment the robot was able
to predict the traversability affordances of the objects, and
wander around the room. The trained controller was also
transferred to the real robot, which was also successful in
predicting the traversability affordance of real world objects.
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