Curiosity-driven learning of traversability affordance on a mobile robot
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Abstract— The concept of affordances, as proposed by
J.J. Gibson, refers to the relationship between the organim
and its environment and has become popular in autonomous
robot control. The learning of affordances in autonomous
robots, however, typically requires a large set of trainingdata
obtained from the interactions of the robot with its environment.
Therefore, the learning process is not only time-consuming
and costly but is also risky since some of the interactions
may inflict damage on the robot. In this paper, we study the
learning of traversability affordance on a mobile robot and
investigate how the number of interactions required can be
minimized with minimial degradation on the learning process.
Specifically, we propose a two step learning process which
consists of bootstrapping and curiosity-based learning pases.
In the bootstrapping phase, a small set of initial interacton
data are used to find the relevant perceptual features for the
affordance, and a Support Vector Machine (SVM) classifier is
trained. In the curiosity-driven learning phase, a curiosty band
around the decision hyperplane of the SVM is used to decide
whether a given interaction opportunity is worth exploring or
not. Specifically, if the output of the SVM for a given percept
lies within curiosity band, indicating that the classifier is not
so certain about the hypothesized effect of the interactionthe
robot goes ahead with the interaction, and skips if not. Our
studies within a physics-based robot simulator show that th
robot can achieve better learning with the proposed curiogy-
driven learning method for a fixed number of interactions.
The results also show that, for optimum performance, there
exists a minimum number of initial interactions to be used fo
bootstrapping. Finally, the trained classifier with the proposed
learning method was also successfully tested on the real rob
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A. Learning Affordances

E. Gibson studied the learning of affordances in humans
in a developmental framework. She argued that learning is
neither construction of representations from smaller ggec
nor association of a response to a stimulus. Instead, she
claimed that learning is “discoverirdistinctive features and
invariant properties of things and events” [2], “discovering
the information that specifies an affordance” [3]. She pant
out that babies use exploratory activities, such as mogthin
listening, reaching, shaking, to bring about “information
about changes in the world that the action produces” [2].
She suggested that, as development proceeds, exploratory
activities become performatory and controlled, executigd w
a goal.

The problem of learning affordances has recently been
studied also within autonomous robotics. These studies
which dealt with the learning of various types of affordasice
mainly tackled two major aspects of the problem. In one
aspect[4], [5], [6] the invariant properties of the environ
ment that afford a certain behavior is learned. In the other
studies,[7], [8], [9] the affordance learning is referredas
the learning of consequence of a certain action in a given
situation. In [7], the robot learns what it can do with an @bje
(e.g. rolling) only by acting (e.g. tapping or pushing away)
it, and observing the effects in the environment. In [8], [9]
Stoytchev et. al. studied the so-called ‘binding affordzs’ic
and ‘tool affordances’, where learning binding affordasce
corresponds to discovering the behavior sequences thadt res
in the robot arm binding to different kinds of objects,

The concept of affordances was introduced by J.J. Gibs@phereas learning tool affordances corresponds to distayer

to explain how inherent “values” and “meanings” of things i o|-pehavior pairs that give the desired effects. Althoug
the environment can be directly perceived and that how thifese studies are important in learning through explanatio
information can be linked to the action possibilities offér poth studies, the objects are differentiated using thelorso

to the organism by the environment [1]. In this sense, 8nly, and no association between the visual features (that
stone affords throwing, a flat rigid surface affords walkingaffect the affordances) of the objects and the correspgndin
etc. Moreover, their affordances are directly perceived bytordances are established, giving no room for the general
humans without creating object models with further “mental ation of the affordance knowledge for novel objects.Zeit
callculati_on” of t.he otherwise .meaningles_s perceptual .datg [10] also demonstrated a system that learns to predct th
This point of view also entails economical usage of thettapility affordance for different objects, where pietions

perceptual resources. are made based upon features of object regions extracted
Although J.J. Gibson made a number of references {gom camera images.

the learning of affordances, his main interest was into the o . )

perceptual aspect. However, the issue of learning of affoR- Curiosity-driven learning

dances have attracted attention from both psychologigts an In robotics, learning is a costly process. Ideally, the tobo
roboticists, and these studies will be briefly presentediin t should physically interact with its environment exploriitg)
next section. In the rest of the paper, we will present ougnvironment and testing its behavioral abilities in diffier
approach to learning of affordances. situations. Even for simple tasks, such as avoiding ohjects



a large number of interactions, some of which may resuéffordances of outdoor objects. The proposed architecture
in physical damage to the robot, need to be carried out supported on-line learning of the traversability affordes
drive the learning process. Hence, the learning processiisunknown environments, and enabled successful execution
not only time-consuming and costly in terms of the physicabf path plans while adapting to a completely unknown
wearing out of the robot, but is also risky, since some oénvironment.

the interactions may result in physical damage to the robot. In a previous work of ours [14], we studied the learning
Therefore, it is essential that the interactions of the tob@f traversability affordance of KURT3D in simulated envi-
during the learning phase be minimized with minimal or n@onments that are cluttered with objects with differentmsa
degradation of learning. and arbitrary sizes, thus with different affordances:

The problem of selection of the best training data to rectangu|ar boxesg) that are non-traversable,
increase the performance and speed of learning has beeR spherical objects (© ) that are traversable since they
studied in the field of Machine Learning (Active Learning) roll in all directions,
and particularly in Developmental Robotics. In these €sdi  , cylindrical objects, either in upright positioff{) (non-
as stated in [11], generally two modules are used: the traversable), or lying on the groun@) (traversability
learner and themeta-learner. In these systems, thearner depends on their orientation with respect to the robot).

is responsible from the learning process, whertbasmeta- In that work, we had gathered the training data from 3000
learner is responsible from selection of the next sampleperactions of the simulated KURT3D robot in MACSim.

which would increase the speed of the learning process. s gata was then used to learn the traversability affarean
this paper we will not use eneta-learner but we will utilize ¢, the robot in a batch mode, and the results were then
a curiosity-based scheme on tigarner itself to increase the successfully transferred to the real robot.

speed of the affordance learning and minimize the number
of interactions with minimal degradation in learning prese I1l. RoBOT CONTROL SYSTEM

The robot is provided with seven simple hand-coded ac-
tions, which result in movement in seven different direatio
One of the actions makes the robot go forward, while the

Kurt3D is a medium-sizeddbcm x 33cm x 47cm), dif-  others first rotate the robot around its own vertical axis for
ferential drive mobile robot, equipped with a 3D laser rangg certain period and then drive it forward. Along with each

finder. The 3D laser scanner is based on a SICK LMS 20&tion, the expected displacement of the robot is proviged a
2D laser scanner, rotated vertically with an RC-servo motojs syccess criteria.

The 3D laser scanner has a horizontal rangd &f°, and

is able to sweep a vertical range 6f32.8° generating a A. Perception

720 x 720 range image in approximately 45 seconds. The robot makes a 3D scan of the environment to obtain
Kurt3D is simulated in MACSIim[12], a physics-baseda range image. As shown in right part of Fig. 1, first, the

simulator, built using ODE (Open Dynamics Engine),anmage is down-scaled to reduce the noise. Then, it is split

open-source physics engine. The sensor and actuator modate uniform size rectangular grids and a number of distance

are calibrated against their real counterparts. The leftmoand shape related features are extracted for each grid.

part of Fig. 1 shows a scene from the simulator. The distance related features are chosen as the distances

of the closest, furthest, and mean distances of the grid. The

shape related features are computed from the normal vectors
In this paper, we study the learning of traversability afforof the surfaces that are computed from the range image. The

dance for the KURT3D robot platform. The verb “traverse’direction of each normal vector is represented using two

is defined as “to pass or move over, along, or through”. Thgnglesy and 6, in latitude and longitude respectively and

environment is said to be traversable in a certain directiofwo angular histograms are computed. The frequency values

if the robot (moving in that direction) is not enforced tofsto of these histograms are used as the shape related features.
as a result of contact with an obstacle. Thus, if the robot

can push an object by rolling it away, that environment i&- L€arning

said to be traversable even if the object is on robot’s path, In the learning phase the robot learns a mapping between

and a collision occurs. Hence, the traversability affom#an environmental situations and the results of its actions, by

for a robot highly depends on the location, orientation, anghysically interacting with the environment. In each iater

shape of the objects in the environment. The robot should ltien episode, the robot is placed at a random position and

able to perceive the features of the environment relateldgo torientation in a training room which includes a number of

traversability affordance, in order to learn these affots randomly placed objects.

and use them in control. After the robot perceives its environment using the 3D
The traversability problem has also recently been studiednge scanner and computes a feature vector, ehmer

in [13] for outdoor navigation problem, where low levelthat is trained upto that point determines whether the otirre

features, which are extracted from stereo-vision and tesituation is an interesting one or not, based on the computed

ture based methods, are used in learning and predicting fefature vector. If the learner is certain about the effect to

II. THE KURT3D ROBOT PLATFORM AND THE
TRAVERSABILITY PROBLEM

A. Traversability
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Fig. 1. The simulated robot in MACSim is shown on the left. Tlhege image obtained in this situation and the operatiopéiegpto this image are
shown on the right. Th860 x 360 pixel range image is divided int80 x 30 = 900 grids of 12 x 12 pixels, and the angular histogram is divided into
18 intervals, so that total number of features computed ovesvendcaled range image %0 x (3 4 2 x 18) = 35100 where3 corresponds to the three
distance values (minimum, maximum, and mean) and the rcdtiion by 2 corresponds to the two angle channels.

region of curiosity

be produced, the robot will choose not to interact with the

environment to test its hypothesis and will be “beamed” to

a different position in the room. However, tifie learner is

not certain about the result of executing a particular adtio

that situation, the robot will execute the action and observ

the result of that action using a pre-defined success metric o
(displacement vector). Thethe learner is updated using the
feature vector and the result of the action.

The learning process consists of two phases:

1) Bootstrap phase: In this phase, a small set of training
samples %pootstrap) @re obtained by interacting with the
environment without any novelty check. Since time and space
requirements of learning from samples with 35100 featurgdd. 2. The mechanism which selects interesting samplesrdaring is
would be huge, the learning is done using only a subset {Tonstated: The contiuous Ine demonstites the segspiene tat =
these features. This subset includes the features which Q@ffd the circular shaped ones show the samples used in psetraining

relevant for a particular action, and affordance learniog f Sﬁeps, b;_tjnot Sefr\]/e as Isupport(vectorS-be}e triang‘g;;ihwmf(les are
. . . the candidates whose classes (traversable/non-tra not known.
that action is performed using Only that subset. Current SVM is more certain about the class of the sample enéth, so

ReliefF algorithm[15], which estimates the relevance ohis candidate will not be included in the training set. Heerethe candidate
each feature based on its impact on the target categorythe right is very close to the hyperplane and SVM is notairerabout
(raversableinon-traversable) of the samples, is usefefor 1,255 s 1 Wl be nouded n tranng. A probabie afesater
ture selection. After computing the relevances using Relie candidate sample.
the most relevant: features are chosen. Although ReliefF
does not work optimally with such a small sample set and
high number of features, by settingto a relatively large
number, most of the relevant features would be included it§ also no need to execute the action since only the perdeptua
the obtained subset. We setto 2500 in our experiments. data are used byielearner to determine whether that sample

The bootstrap period is also required to initiate the train's interesting or not. In [14], a batch learner was employed
ing. Thus, the set of training samples, obtained in this ghagvhich stores all training samples beforehand. In our case, a
are used to train a classifier in a batch manner. The detailsltch learner would enforce execution of all actions, even
the classifier, which learns a relation that maps the (ihjtia Uninteresting ones during exploration phase. As a result,
perceived) relevant features to predict the success#aillr We should use an online-learner, which first determines the

of applying that action, will be given below. novelty of the perceptual data, and executes the action only
2) Curiosity-driven learning phase: Different from the Iif the perceptual data are interesting enough for that actio
approaches mentioned in Section I, we will uke learner Support Vector Machines (SVMs) are used to learn the

both to select the next sample and to learn from expenmmapping between perceptual data and affordance classes
ence. A training sample in our domain is obtained througttraversable/non-traversable). In SVMs, the optimal mype
perceiving the environment, physically interacting with i plane that separates two classes is found, based on the most
and storing the perceptual data together with the result @iformative samples (the support vectors) in the trainieg s

the robot’s interaction (afforded/not-afforded). Thusthe The new test sample’s class is predicted based on its relativ
learner decides that a candidate sample is not interestirigcation with respect to this hyperplane in the feature spac
enough, it will not be included in training. In this case,rthe We made an assumption that SVMs are more certain in their
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- Fig. 5. The bootstrap period, which is required to select risevant
features and train an initial learner is adjusted, and tleedfperformance
Fig. 3. Usage of the trained affordance classifiers. plot is demonstrated. Curiosity paramteiis fixed t00.5.
class prediction of a new sample, if that sample is further IV. EXPERIMENTAL RESULTS

away from the hyperplane, and less certain if sample is close In summary, learning is conducted in an online-fashion,
to the hyperplane. Thus, when the robot is in an environmenthere firstngoosirap Samples are collected for feature se-
where it is almost certain about the affordances provided, liection and initiating the classifier. Then the learning taon
will bypass this environment without executing any actionues in a curiosity-driven way by selecting most interesting
and look for more novel situations. On the contrary, whesituations based on the distance threshold As a result,
the robot encounters a new situation, if the feature vectdtwo parameterspyoosirap and = determine the speed and
computed in that situation is close to the hyperplane, SVMerformance of learning.
will conclude that this situation is interesting enough ® b Learning is performed in MACSim, where the robot is
included in training. In this case, the robot executes thglaced in a3x3 m? square room, which includes 100
action, and SVM is updated using the feature vector anéindomly scattered objects with dimensions in the range
the result of that action. Thus, the novelty of the candidat0cm — 40cm]. For each action, an online-SVM is trained
is determined based on its distance to the hyperplane thaing 3000 different samples, which are obtained by making
is constructed so far. If the distance is smaller than a fixeB000 different interactions in this room. During this phase
thresholdr then the sample is considered as an interestingnly the interesting samples are used in training the SVM
one, if it is bigger thanr, it is skipped. Fig. 2 provides a (Fig. 4).
simple and clear demonstration of the idea. After training, the robot is transferred into another véttu
Although, SVMs are used as batch learning systems imom with similar characteristics and 2000 test samples are
general, some online implementations, where the sampdes aollected in the second room. These 2000 samples are used
fed to the learning system in an incremental manner, are alite evaluate and compare the performances of the controllers
to produce similar results. We used the LASVM softwargrained with differing values ofiyoo1s1rqp andr. In the next
[16] for online updating of the SVM and making predictionssection we examine the effect of these two parameters on the
on the candidate and test samples. A linear kernel (wittpeed and performance of the learning system, based on the
tolerance parameter set &swas used since more complexsystem’s prediction accuracy over the 2000 testing samples
kernels did not increase the performance in our case. .
A. Effect of bootstrap period
C. Control The number of bootstrap sampleg,ootsirqp affects the
The robot is driven using a simple control system (Fig. 3)quality of the feature selection process and the classifier’
which utilizes learned relevant feature perception and aperformance. Ifny.otstrap IS large, the relevant features
fordance classification schemes explained in the previoase more accurately selected, and more samples will be
sections. Whenever a new action is requested, the motivatiocluded in initial training without any curiosity check.
based control system sets a ngneferred action with highest In these experiments, in order to examine the effect of
priority, among a set of actions with fixed priorities. Thebootstrap period, the prediction accuracies of the classifi
features which are relevant to tipeeferred action are then are computed foroorstrap Values of 10, 25, 50, and 100
requested from perception, and these features are suppliedn the testing set. In the box and whisker plot (Fig. 5), the
the trained classifier (SVM) to predict whether this actisn iprediction accuracy of the classifier on the test set is gdbtt
afforded or not. If the immediate environment does not afforagainst the bootstrap parameter, where each box represents
this action, a lower priority action is requested from the&he accuracy distribution of 10 different classifiers oéai
motivation module. Otherwise, it is executed (robot mowves ifrom different orderings of the training samples. In thistpl
a certain direction for a certain duration), and a new actiofor each value of theu,,.tstrap, three successive boxes are
is requested upon the completion of the action. drawn, corresponding to the prediction accuracy values at



(@) (b)

Fig. 4. These snapshots show example situations encodritetee learning phase. Curiosity-based learner foundwioeléft-most situations interesting,
executed go forward action and updated the the classifieedbaa the result of its actions. However the two right-mostiagions are found to be
uninteresting and were not included in training. (a) Cqroesls to a situation where boundaries of the cylinder'saserfis similar to the sphere’s from
the robot’s point of view, and the learner is required to be-fimed. (b) Corresponds to a situation where the objecttdscin the boundaries of the
go-forward action. (c) The space in front of the robot is cléd) This situation seems to be similar to (b), however tmdller) object in (d) is closer
than the object in (b).
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the 10(5h, 250th, and 40(91 interactions. Whemyootstrap
is selected as 10, the performance of the classifier remains
below %90 since 10 samples are insufficient for selecting the
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the ability to select interesting samples. The values great gab |7 T ot T D?
than 25 does not further increase the performance, thus, 25 5 ﬁ H i z L
initial samples are found to be sufficient to bootstrap the ';Eg | I B ﬁ

learning process. i

B. Effect of the curiosity parameter
0.05 0.10 0.50 1.00 No curiosity

The curiosity parameter determines the width of the Curiosity parameter:t
band around the decision hyperplane of the SVM. As thgg 6. The change in the prediction accuracy of the affordaperception
T gets larger, more samples will be selected as interestinggring the learning phase. The thresholds which deterntieectriosity
The effect ofr is examined by training different classifiers'eve! of the robot are comparedy,ootstrap is fixed 0 50.
with different 7 values (eg. 0.05, 0.10, 0.50, 1.00, and no
curiosity). In the box and whisker plot (Fig. 6), the preatiat
accuracy of the classifier on the test set is plotted against
where each box represents the accuracy distribution of 10
different classifiers corresponding to different ordesirgf
the training samples. Similar to the previous figure, forheac
value of ther, three successive boxes are drawn, correspond-
ing to the prediction accuracy values at the tPOQSOth, and
400" interactions. As shown, curiosity parameters that are
too small keeps the system away from interacting with inter-
esting situations. On the contrary, curiosity parameteas t
are too large slows down learning by including uninteregtin
samples in training. As a result, we selected 0.50 as the
curiosity parameter to be used in the next section. Fig. 7. The robot wanders in the room.

C. Using traversability affordance

In order to demonstrate the overall behavior of the roboly,es not only drive towards the open-spaces, but if a higher
and its ability in perceiving the traversability afford@nin o rivy action requires it, it chooses to drive over spbafi
the environment, it is placed in a room cluttered with olgect,, cylindrical objects in appropriate orientations, sitteey

of various shapes and size (Fig. 7). The controller usedsn thyg, 4 traversability. It also successfully avoids boxes a

experiment was trained with = 0.5 and nuoorstrap = 50-  ypright cylindrical objects by not driving towards them.
Here, the robot is additionally controlled by the motivatio "o controller used in the simulator is also transferred

system Wh'(.:h fa_lvors driving forward. When_ev_er the_mO\_’et'o the real Kurt3D robot. Various objects, including simple
forward action is not afforded, a lower priority action is

4 if it is afforded h i the Fial 7th geometrical ones, and office environment object like trash
exscute ! 'tf'S” atior de ’ Ashs own in the i'gr?]t € bbins and boxes are then placed on the way of Kurt3D to
robot successfully wanders in the room. Note that the robgig; the controller. As shown in Figure 8, the robot is able

1Urk:ht t p: / / www. kovan. ceng. met u. edu. tr/ to correctly perce_ive the affordanc_es of the _bc_)x, cy!inairic
traversability/ novie. npg and spherical objects, and act without colliding with non-



Fig. 8. The initial position of the robot is shown in the lefiest figure. The robot first goes forward, then turns left sitrash-bin does not afford
traversability. Third snapshot shows the robot drivingrae spherical object. The path of the robot is shown in tisé figure.

traversable objects and driving over traversable ones. [5] I. Cos-Aguilera, L. Canamero, and G. Hayes, “Motivatidriven
learning of object affordances: First experiments usingnaukated
V. CONCLUSIONS Khepera robot,” inn Proceedings of the 9th International Conference

. . . - in Cognitive Modelling (ICCM’03), (Bamberg, Germany), April 2003.
In this paper, we studied the learning of traversability g |. cos-Aguilera, L. Canamero, and G. M. Hayes, “Using aF80to

affordance on a mobile robot and investigated how the learn object affordances,” i Proceedings of the 5th Workshop of

; ; ; i ; Physical Agents, (Girona, Catalonia, Spain), March 2004.
number of interactions required can be minimized with 7] . Fitzpatrick, G. Metta, L. Natale, A. Rao, and G. Sandibearning

minimal degradation on the |ea_ming process. _SpeCiﬁca!l)’a about objects through action -initial steps towards afdificognition,”
we proposed a two step learning process which consists in IEEE Intl. Conf. on Robotics and Automation (ICRA 03), pp. 3140—

i Qi ; 3145, 2003.
of bootstrapplng and curiosity based leammg phaseshen t [8] A. Stoytchev, “Toward learning the binding affordanaafsobjects: A

bootstrapping phase, a small set of initial interactionadat " pehavior-grounded approach,” in Proceedings of AAAI Symposium
were used to find the relevant perceptual features for the on Developmental Robotics, pp. 21-23, March 2005.

affordance, and a Support Vector Machine (SVM) classifierl®] A- Stoytchev, “Behavior-grounded representation afi affordances,”
. o . . . in |IEEE Intl. Conf. on Robotics and Automation (ICRA 05),
was trained. In the curiosity-driven learning phase, aasity (Barcelona, Spain), pp. 18-22, April 2005. ( )

band around the decision hyperplane of the SVM was us¢tb] G. Fritz, L. Paletta, M. Kumar, G. Dorffner, R. Breitfaty and

i ; ; ; i i E. Rome, “Visual learning of affordance based cues.,Simulation
to decide whether a given interaction opportunity is worth of Adaptive Behavior (SAB). pp. 5264, 2006,

exploring or not. [11] P.-Y. Oudeyer, F. Kaplan, and V. V. Hafner, “Intrinsicotivation
The effects of two parameters of our learning system, systems for autonomous mental developmelEEE Transactions on

and noorstrap, Which serve as the curiosity threshold ang, E"OL'J%‘L‘?”%V ?gg‘ggﬁ"’g 25%(;/735 |t°,v"llpg‘;i;hak and E. 8afMAC-

number (?f boots';rap samples r.eSpeCtivelya are examined iN" sim: physics-based simulation of the KURT3D robot platfofon
systematic experiments. Selectingsmall keeps the system studying affordances,” 2006. MACS Project Deliverable.1.2

away from interacting with interesting situations, ancesel [13] D. Kim, J. Sun, S. M. Oh, J. M. Rehg, and A. Bobick, “Trasability
classification using unsupervised on-line visual learniogoutdoor

ing it Iarge_ 5|0W_5 .down learning since Un.interes'fing sasiple  ohot navigation,” inlEEE Intl. Conf. on Robotics and Automation
are used in training. As fonyeotstrap, While small values (ICRA 06), (Orlando, FL), May 2006.

degrade the performance of the system, large values dd&§ E: Ugur. M. R. Dogar, M. Cakmak, and E. Sahin, “The leagnand
use of traversability affordance using range images on alenaibot,

not improve the performance after a certain threshold. in to appear in Proceedings of IEEE Intl. Conf. on Robotics and
The affordance perception system, trained using optimized Automation (ICRA 07), April 2007.

; ; ; ] K. Kira and L. A. Rendell, “A practical approach to feetuselection,”
parame_ters, was teSted_ In-a _room cluttered with ObJeC&S in ML92: Proceedings of the ninth international workshop on Machine
of varying shapes. In this environment the robot was able |earning, pp. 249-256, Morgan Kaufmann Publishers Inc., 1992.

to predict the traversability affordances of the objects] a [16] A. Bordes, S. Ertekin, J. Weston, and L. Bottou, “Fastnke classi-
; fiers with online and active learningJournal of Machine Learning

wander around the room. The t_ralned controller was aIs_o Research, vol. 6, pp. 15791619, September 2005,

transferred to the real robot, which was also successful in

predicting the traversability affordance of real world edtis.
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