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Abstract— In recent years, graph neural networks have been
successfully applied for learning the dynamics of complex and
partially observable physical systems. However, their use in the
robotics domain is, to date, still limited. In this paper, we intro-
duce Belief Regulated Dual Propagation Networks (BRDPN), a
general purpose learnable physics engine, which enables a robot
to predict the effects of its actions in scenes containing groups
of articulated multi-part objects. Specifically, our framework
extends the recently proposed propagation networks (PropNets)
and consists of two complementary components, a physics
predictor and a belief regulator. While the former predicts the
future states of the object(s) manipulated by the robot, the latter
constantly corrects the robots knowledge regarding the objects
and their relations. Our results showed that after trained in a
simulator, the robot could reliably predict the consequences
of its actions in object trajectory level and exploit its own
interaction experience to correct its belief about the state of
the world, enabling better predictions in partially observable
environments. Furthermore, the trained model was transferred
to the real world and its capabilities were verified in correctly
predicting trajectories of pushed interacting objects whose joint
relations were initially unknown. We compared our BRDPN
against the original PropNets and showed that BRDPN can
perform consistently well even if the relations between the
objects are not explicitly given but instead predicted from
observations.

I. INTRODUCTION

Predicting effects in complex robotic systems is a chal-
lenging problem, especially in the presence of varying num-
bers of objects and the rich and wide variety of interactions
among these objects. When objects are linked with physical
connections, this would also suggest some semantic con-
nections between them, such as the motion of one object
can propagate its motion onto another object, which might
lead to a chain effect. To be able to model such systems
accurately, data has to be represented in a way that it
appropriately handles the encoding of multiple objects and
their interactions with each other, and it should be robust to
noise.

Recently, a great amount of effort has put on the prediction
of the dynamics via graph networks (e.g. [1], [2]). These
works can deal with varying number of objects and learn
rich interaction dynamics among these objects. Some of
these works have focused on unsupervised learning, while
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others were aimed at developing learnable physics engines.
However, applying them to model robot-object interactions
is not very straightforward as the active involvement of the
robot was not taken into account and, moreover, uncertainty
in perception was not explicitly addressed.

In this work, we propose Belief Regulated Dual Propa-
gation Network (BRDPN) which takes the actions of the
robot into account in predicting the next states1. It further
continuously regulates its belief about the environment based
on its interaction history to correct its future predictions. For
belief regulation, extending the recently proposed propaga-
tion networks (PropNets) [3] that handle instantaneous effect
propagation, we propose a temporal propagation network
that takes history of the motion of each object to predict
unknown object or relation properties. Our system is verified
on a table-top push setup that has cylindrical objects and
joint relations between them. Our setup includes varying
number of objects that might be connected to each other
with rigid, revolute or prismatic joints. The model definitions
of these types of relations, including the PropNetn relation,
is not provided to the robot. Furthermore, the relations
between objects cannot be perceived by the robot. From its
interaction experience in the simulator, it learns to predict
relations between objects given observed object motions, and
exploits this information to predict future object trajectories.
Furthermore, it was transferred to and verified in real world
experiments that included around 100 interactions. Our sys-
tem was shown to outperform the original PropNets, both
in simulation and real-world, when the relations between
objects were not reliably provided to the system.

Our contribution to the state of the art is two-fold. First,
we introduced a deep neural network based method for
learning how to exploit the interaction experience of the robot
to extract values of otherwise unknown state variables in
partially observable environments. Second, we implemented
a learning based effect prediction robotic framework that can
handle multiple interacting objects that might have different
types of connections, and we verified this framework both
in simulated and real robot experiments.

II. RELATED WORK

The past years have seen considerable progress in mod-
elling physics with probabilistic approaches. For instance,
Battaglia et al. [4] proposed a Bayesian model called Intuitive
Physics Engine and showed that physics of stacked cuboids

1Our source code and experimental data are available in the web page
prepared for this paper: https://fzaero.github.io/BRDPN/.

ar
X

iv
:1

90
9.

03
78

5v
2 

 [
cs

.R
O

] 
 1

8 
Se

p 
20

19

https://fzaero.github.io/BRDPN/


can be modeled with this model. Deisenroth et al. [5]
suggested a probabilistic dynamic model that depends on
Gaussian Processes and that is capable of predicting the
next state of a robot given the current state and its actions.
Recently, some researchers extended these works by using
deep learning methods to model physics. Wu et al. [6]
proposed a deep approach for finding the parameters of a
simulation engine which predicts the future positions of the
objects that slide on various tilted surfaces. Lerer et al. [7]
trained a deep network to predict the stability of the block
towers given their raw images obtained from a simulator. A
specific topic of interest within modeling physics with deep
learning is motion prediction from images, which has gained
increasing attention over the last few years. The studies
presented for this task either employ convolutional neural
network (CNNs) or graph neural networks (GNNs).

Mottaghi et al. [8] trained a CNN for motion prediction
on static images by casting this problem as a classification
problem. Mottaghi et al. [9] employed CNNs to predict
movements of objects in a static image when some external
forces are applied to them. Fragkiadaki et al. [10] suggested
a deep architecture in which the outputs of a CNN are used
as inputs to Long Short Term Memory (LSTM) cells [11] to
predict movements of balls in simulated environments.

A number of studies have examined the action-effect
prediction in videos. Finn et al. [12] proposed a convolutional
recurrent neural network [13] to predict the future image
frames using only the current image frame and actions of
the robot. Byravan et al. [14] presented an encoder-decoder
like architecture to predict SE(3) motions of rigid bodies in
depth data. However, the output images get blurry over time
or their predictions tend to drift away from the actual data
due to the accumulated errors, making it not straightforward
to use for long-term predictions in robotics.

As deep structured models, GNNs allows learning use-
ful representations of entities and relations among them,
providing a reasoning tool for solving structured learning
problems. Hence, it has found particularly wide use in
physics prediction. Interaction network by Battaglia et al. [1]
and Neural Physics Engine by Chang et al. [2] are the earliest
examples to general purpose physic engines that depend
on GNNs. These models do object-centric and relation-
centric reasoning to predict movements of objects in a
scene. Though they were successful in modeling dynamics of
several systems such as n-body simulation and billiard balls,
their models had certain shortcomings, especially when an
object’s movement has chain effects on other objects (e.g.
a pushed object pushes other object(s) it is contacting with)
or when the objects in motion have complex shapes. These
shortcomings can be partly handled by including a message
passing structure within GNNs as done in the recent works
such as [3], [15], [16]. Watters et al. [17] and van Steenkiste
et al. [18] proposed hybrid network models which encode
object information directly from images via CNNs and which
predict the next states of the objects with the use of GNNs.
Our framework differs from these GNN approaches in that
it learns to predict the relations between objects from the

interaction history, consequences of the predicted relations
in estimating their future states. Additionally, different from
these approaches, our model is verified in a real robotic setup.

While the studies above focused on predicting the next
states of the objects given relations among them, researchers
[19], [20], [21], [22] also studied on estimating the joint re-
lations between objects for real-time tracking and prediction
of the articulated motions in challenging perceptual settings.
These works however assume expert knowledge about the
joint types and hard-code the corresponding transformation
matrices [20], candidate template models [19], specific mea-
surement models [21], [22] to detect kinematic structures.
Our system assumes no prior knowledge about joint dy-
namics and the robot learns the dynamics of categories
purely from observations. Therefore, learning dynamics of
completely novel relation types is possible with our system.
Exceptionally [19] learns articulation dynamics from data;
however it was only realized on a single-pair of objects
from a single articulation observation (garage door motion).
Furthermore, these studies do not learn or predict how the
pairs or chains of non-articulated touching objects would
propagate the applied forces along the cluster/chain, whereas
our system can predict the propagated effect on groups of
touching non-articulated objects.

III. PROPOSED MODEL

In this section, we introduce the Belief Regulated Dual
Propagation Networks (BRDPN) and explain how it extends
the propagation network framework for articulated multi-
part multi-object settings to allow the regulation of the
beliefs about environment state variables. Belief regulation
corresponds to regulating robot’s belief about environment
through extracting or updating the values of state variables.
Fig. 1 shows a graphical illustration of our framework,
which is composed of two main components: a physics
predictor and a belief regulator. The physics predictor is
based on propagation network and responsible for predicting
future states of the manipulated objects. The belief regulation
module is a propagation network with recurrent connections,
which we call temporal propagation network. Belief reg-
ulation module is responsible from extracting/updating the
knowledge of the robot about the environment through its
observations of own-interaction experience. In the following,
we give technical details of these models.

Preliminaries: Assume that the robot is operating in a
complex environment involving a set of multi-part objects
O, we express the scene with a graph structure G = 〈O,R〉
where the nodes O = {oi}i=1:No represent the set of objects
(of cardinality No) and the edges R = {rk}k=1:Nr represent
the set of relations between them (of cardinality Nr). More
formally, each node oi = 〈xi, a

o
i 〉 stores object related

information, where xi = 〈qi, q̇i〉 is the state of object i,
consisting of its position qi and velocity q̇i, and aoi denotes
physical attributes such as its radius or mass. Each edge
rk = 〈dk, sk, ark〉 encodes the relation between objects i and
j with dk = qi − qj representing the displacement vector,
sk = q̇i− q̇j denoting the velocity difference between them,



Fig. 1: Belief Regulated Dual Propagation Networks. System contains two parts: belief regulation module, and physics
prediction module. Given previous world state values and motor commands, the belief regulation module is used to update
the estimate of the state variables. Given the current estimate of the world state and planned motor commands, the physics
prediction module predicts the sequence of future states expected to be observed.

and ark representing attributes of relation k such as the type
of the joints connecting objects i and j.

Physics Prediction: Propagation networks encode the
states of the objects and the relations between them sepa-
rately. This encoding is carried out by two encoders, one for
the relations denoted by fenc

R and one for the objects denoted
by fenc

O , defined as follows:

crk,t = fenc
R (rk,t) , k = 1 . . . Nr (1)

coi,t = fenc
O (oi,t) , i = 1 . . . No (2)

where oi,t and rk,t represent the object i and the relation k
at time t, respectively.

To predict the next state of the system, these encoders are
used in the subsequent propagation steps within two different
propagator functions, f l

R for relations and f l
O for object, at

the propagation step l, as follows:

elk,t = f l
R

(
crk,t, p

l−1
i,t , pl−1j,t

)
, k = 1 . . . Nr (3)

pli,t = f l
O

(
coi,t, p

l−1
i,t ,

∑
k∈Ni

el−1k,t

)
, i = 1 . . . No (4)

where Ni denotes the set of relations where object i is being
a part of, and elk,t and pli,t represent the propagating effects
from relation k and object i at propagation step l at time
t, respectively. Here, the number of propagation steps can
be decided depending on complexity of task. Through using
the predicted states as inputs, it can chain the predictions and
estimate the state of the objects at t + T . See [3] for more
detailed description of this network.

Belief Regulation: The success of physics prediction
step highly depends on how accurate the environment is
encoded in the graph structure. Here we refer to the term
belief as the estimated world state and given previous states
and motor commands, the role of the belief regulation
module is to constant updates on this crucial part. As the
main theoretical contribution in this paper, we propose a
temporal propagation network architecture that augments a
propagation network with a recurrent neural network (RNN)
unit to regulate beliefs regarding object and relation infor-
mation over time. More formally, it takes a sequence of a
set of state variables during the action execution as input
and by means of a secondary, special-purpose propagation

network, it encodes these structured observations, which are
then fed into an RNN cell to update the current world state,
as follows:

r′k,t = f blf
O

(
eLk,t, r

′
k,t−1

)
, k = 1 . . . Nr (5)

o′i,t = f blf
R

(
pLi,t, o

′
i,t−1

)
, i = 1 . . . No) (6)

where L denotes the propagation step, and f blf
O and

f blf
R denote the RNN-based encoder functions for objects

and relations, respectively. Feeding these functions with the
sequence of encoding vectors r′k,t−1 and o′i,t−1 allows the
temporal propagation network to consider the overall history
of object and relation states from the previous time-steps.
Hence, it continuously updates its belief regarding objects
and relations states (oi,t and rk,t), and eventually minimize
the difference between the effect predicted by our physics
prediction module and reality.

IV. EXPERIMENTAL SETUP

We evaluate our model in simulation and on a real robot
through a set of experiments. In the following, we give the
details of the experimental setups designed to assess the
generalization performance to the changing number of ob-
jects and time steps, transferability of our model to different
object-relation distributions and to the real world setting.

A. Robotic Setup

Our simulation and real world experiments included a
6 degrees of freedom UR10 arm and a number of cylindrical
objects placed on a table as shown in Fig 2a-b. The table-top
settings were composed of objects of varying numbers and
sizes. The objects might move independent of each other (no-
joint) or connected to each other through three different joint
relation types, namely fixed, revolute and prismatic joints.
The robot learned effect prediction by self-exploration and
observation in the V-REP physics based simulator with Bullet
engine2. For this, the simulated robot exercised its push
action on a set of objects by moving a cylindrical object that
was attached to its end-effector. After training, the learned
prediction capabilities were tested both in the simulated and
the real world settings.

2www.coppeliarobotics.com/



(a) Simulation (b) Real World (c) Sparse (d) Dense

Fig. 2: Robotic setup. Table top scenes used in (a) simulation
and (b) real world experiments. (c)-(d) Initial configurations
used for training and testing.

In our simulation experiments, we considered two different
configurations for scene generation: a sparse configuration
(Fig.2c) where objects were initially scattered randomly
in the scene, and a dense one (Fig.2d) where the objects
were initially grouped together. Sparse configuration was
specifically designed to maximize the contact time between
the end-effector and the objects, and to allow rich set of
interactions. The robot chooses 8 different linear motions
of 30cm, maximizing contact time with most diverse set of
objects. While in the sparse configuration the objects were
randomly scattered in the scene, in the dense configuration
the objects were grouped together in a grid structure. Sparse
configuration was used for training, and dense configuration
for testing the generalization performance of the model on
novel environments, i.e. on instances drawn from a com-
pletely different distribution of objects and relations.

A total of 900 different 9-objects scenes were used for
training the model. Two different settings were used for
testing. The sparse test set was composed of 50 9-objects,
25 6-objects and 25 12-objects scenes. The dense test set
was composed of 50 6-objects, 50 8-objects and 50 9-objects
scenes. For each scene above, the robot arm approached from
four different random directions. Each object in these scenes
had radii between 8 cm to 16 cm. In the evaluations, separate
models were trained and tested on scenes where only fixed
joints and mixed type of joints exist.

B. Implementation Details

Our physic prediction module takes object position, ve-
locity and object radius as object features, and joint relation
type between objects as relation features. Specifically, object
encoder takes object radius and velocity, and is implemented
with a MLP with 3 hidden layers of 150 neurons. The relation
encoder takes position and velocity differences between
objects at the receiver and sender end of the edges, along
with their radius and joint relation type, and is implemented
with a MLP with 1 hidden layer of 100 neurons. While our
relation propagator is a MLP with 2 hidden layers of 150
neurons, our object propagator is a MLP with one hidden
layer of 100 neurons. During training, at each epoch, we
validated our physics prediction module on the validation
set containing instances from the sparse configuration, and
selected the model that has the lowest mean squared error
(MSE) over 200 time-step trajectory roll-outs.

Our belief regulation module uses the sequence of po-
sitions, velocities and radii of the objects, and predicts
joint types between each pairs of objects. Output of the
relation propagator is connected to LSTM with 100 hidden

(a) Sparse configuration (b) Dense configuration

Fig. 3: Error(cm) for object positions over (a) 200 time-step
trajectory roll-outs for sparse configuration, and (b) 50 time-
step trajectory roll-outs for dense configuration.

neurons. This LSTM is then connected to fully connected
layer to predict joint type between objects. This network was
trained using sequences with 100 time steps. During training,
we optimized this network with the loss coming from the
predicted joint types between the time steps 50 and 100 to
make sure that our model can generalize to the changing
number of time steps, while not over-fitting to the position
information coming from the single time steps.

V. RESULTS

For quantitative analysis, we compared our method with
PropNets with alternative (hard-coded) relation assignments:
As a strong baseline, PropNetgt uses ground-truth relations.
PropNetf assumes all pairs of contacting objects have
fixed relations between them. PropNetn assumes no joints
between objects. Furthermore, to analyze the influence of
temporal data in predicting relations within our model, we
also report results with 1-step BRDPN that predicts object
relations using only the observation from the previous step.

A. Quantitative Analysis of Separate Modules in Simulation

First, the physics prediction module is evaluated given
ground-truth relation information. Fig. 3 presents the per-
formance on the test set for different object configurations.
Each bar provides the mean error averaged over differences
between predicted and observed trajectories. We carry out
the evaluation for both the sparse and dense configuration
settings in fixed-joint and mixed-joint environments sepa-
rately. As shown, around 7 and 3 cm mean error is observed
in sparse and dense object configurations. Furthermore, we
observed that the error drops significantly (to 4 and 2 cm) in
case only fixed joints are included. Given the average motion
(including zero motion in many cases) in objects is 40cm
sparse and 18cm in dense configuration, these results show
that the model achieves high prediction performance if it uses
the ground-truth relations; and with increasing complexity of
object relations, learning becomes more challenging.

Next, the performance of our belief regulation prediction
module is evaluated on the sparse test set. As shown in Fig. 4,
the accuracy is already very high from the instant when
the robot makes its first contact in fixed-joint environments.
The accuracy increases in mixed-joint environments to over
98% as well, with the accumulated observations from the
interactions of the robot.

We performed a number of experiments in the dense
configuration as well. However, we observed that directly



Fig. 4: Relation prediction accuracies (sparse configuration).

(a) Initial Scene (b) Predicted
Relations

(c) Ground Truth
Relations

Fig. 5: (a) The end effector of the robot (shown in blue
color) moves towards the object group in the simulator.
The predicted joints are provided in (b) and the real ones
(not visible to the robot) are shown in (b) with the black
lines. Even though the joints were not correctly identified,
the inference on joint relations was a plausible one given
interaction experience of the robot.

comparing real and predicted relations in this configuration
might be misleading as different sets of joints that connect
the objects in the same grid might generate identical effects
in response to the robot interactions. The system might
suffer from ambiguities in predicting joint relations from
such interaction experience. For example, a group of objects
that form a rigid body through different set of connections
would behave same in response to the push action. Fig. 5
provides a snapshot of such a case where the robot started
interaction with 8 objects placed on a grid. In this case, even
if the joint relations were incorrectly predicted for the sub-
group of 5 objects, this was actually a plausible inference
that enabled the system to make correct prediction about the
object trajectories from that moment. While incorrect state
predictions might not affect the effect prediction performance
of the system in this particular extreme example, we might
need intelligent exploration strategies that enable the robot to
collect more reliable information in other ambiguous cases.

B. Quantitative Analysis of the BRDPN in Simulation

In this section, the complete system is evaluated at dif-
ferent time-points during interactions. The belief regulation
module predicts the relations between objects using the
observations upto the corresponding time-points. Given the
states of the objects, the robot actions, and the predicted
relations between pairs of objects, the physics prediction
module finds the trajectories of the objects that are expected

Fig. 6: Error of the BRDPN in sparse configuration.

Fig. 7: Error of the BRDPN in dense configuration.

to be observed for the rest of the motion. The results are
presented in Fig. 6 and Fig. 7 where the errors on the
remaining trajectories are computed with the predictions of
the system at the reported time steps. These results indicate
that even if the relations are unknown, the proposed belief
regulation improves the effect prediction performance of the
system with more interaction experience. While BRDPN per-
forms better for the sparse dataset, 1-step BRDPN performs
similar to or better than BRDPN in dense configurations
probably because the model was optimized for temporal
information coming from sparse environments. Note that
BRDPN outperforms the PropNets variants that do not utilize
the ground-truth relations.

C. Real World Experiments

In this section, we provide the results obtained in the real
world. For this, the prediction model trained in the simulator
was directly transferred to the real world. A mallet that was
grasped by the 3-finger gripper of the UR10 robot was used
to push objects The cylindrical objects on the setup can
be seen in the the Fig. 2. Only one type of joint, namely
fixed joint was used in this setup. Fixed joint relations are
accomplished by placing customized card-boards under the
specified objects, making all the group move together. A
top-down oriented RGB camera with 1920 × 1080 pixels
resolution was placed above the scene, ARTags were placed
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Fig. 8: The first real-world interaction example. The relation
assignments/predictions, the real and the predicted trajecto-
ries are shown with black, solid colored and dashed colored
lines, respectively.

t : 0 −−−−→ t : 50 −−−−→ t : 140 −−−−→ t : 150

Fig. 9: The second real-world interaction example.

on the objects for tracking.
First we present the results qualitatively over two example

scenes. In the first example scene, 6 objects were placed
as a group as shown in Fig. 8, where top left 3 objects
and the bottom right pair were connected to each other.
A straight push motion was executed by the robot and the
object positions at time steps 10 and 60 were provided. Solid
and dashed lines show the real and predicted trajectories. As
shown, given ground-truth joint information, the model made
almost perfect trajectory predictions. When the ground-truth
relations are not provided, as in PropNetn and PropNetf , the
model either predict that all objects are pushed aside or all
contacting ones move together. Finally, when the relations
are predicted, first the model predicts trajectories similar to
PropNetf case, but after seeing the independent motions of
upper three object group, it corrects the joint relations, and
predicts the correct trajectory successfully. In the second
example scene, a more challenging configuration was used,
where 7 objects were placed in two separate groups and
objects in each group are attached to each other (Fig. 9). The

Fig. 10: Average error (in cm) in the real world.

end-effector made a zigzag motion towards the objects. The
relation prediction on the first group (the one closer to the
robot) was correct at t : 50, since the robot had sufficient
interaction with these objects. The indirect contact to the
second group via the first group took place slightly before
t : 140 and the robot correctly inferred that not all the objects
in the second group had fixed relations. The prediction of the
first group remained correct, but the robot made incorrect
predictions in two cases: it incorrectly inferred that the first
and second group was connected, and that the the top-
right pair was also connected. With further interaction, these
incorrect inferences were corrected at t : 150.

Finally, we evaluate our model quantitatively with large
number of interactions. We generated 102 different setups
that include 2 to 5 objects with 1 to 3 connections. One
of the 5 different predefined straight motions of 30 to
60 cm was applied towards these objects that were placed in
different locations which results in objects moving 19.5 cm
on average. Our model achieved an average error of 6.6 cm
in predicting their final positions. Although in some cases
incorrect effect predictions caused failures in predicting
the movement direction of interacted objects, our model
performed well considering the average diameter of 12 cm
of the objects and our direct transfer strategy from the
simulation. Fig. 10 provides a more detailed analysis of
the results focusing to the time-point when the first contact
with the objects occur. As shown, the prediction error of
1-step BRDPN quickly drops compared to the model that
assigns fixed-joint to objects whose distances are smaller
than 2.5 cm. Probably after the objects physically separated
from each other, PropNetf does not consider those objects
to be attached to each other and also start making predic-
tions with similar accuracy. Note that PropNetn significantly
underperformed and was not included in the figure, and
ground-truth-relation model generated higher performance
consistently, obtaining around 4 cm error at the end.

VI. CONCLUSION

We presented Belief Regulated Dual Propagation Net-
works (BRDPN), a general purpose learnable physics engine
that also continuously updates the estimated world state
through observing the consequences of its own interactions.
We demonstrated our network in setups containing artic-
ulated multi-part multi-objects settings. In these settings,
we validated our network and its modules on several test
cases. While our system was validated in both simulation
and real world robotic experiments, we discussed that intel-
ligent exploration strategies that resolve inference problem
in ambiguous situations are necessary. In the future, we aim
to study on generating goal directed action trajectories that
balance the trade-off between exploration and exploitation.
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