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Abstract—Inspired by infant development, intrinsic motivation
(IM) guides the robot with intelligent exploration strategies, en-
abling efficient and effective learning in high-dimensional search
spaces. A particular method in IM, namely Intelligent Adaptive
Curiosity (IAC), adaptively partitions agents sensorimotor space
(SM) into regions of exploration, and guides the agent to select
the regions that are in the moderate level of difficulty, and
learns separate experts for different regions. Therefore, the
means of partitioning the SM and the mechanisms behind region
generation is of utmost importance. In this study, we propose
a method for partitioning the space that allows maximizing
the performances of the experts that will be responsible for
learning skills. In brief, for each potential partitioning, the error
of the experts are calculated and the partitioning that would
generate the minimal error in the future is selected. Our method
is evaluated in a setting with a simulated robot that learns
predicting the next state given the current state and the action
taken in an environment composed of regions with different
properties. We verified the proposed method, SM is partitioned
into more semantically meaningful regions adapting environment
dynamics, the exploration of the robot in these regions can better
exploit IM mechanisms and the system learn more efficiently
and effectively i.e. with higher performance in a shorter time,
compared to a baseline method.

Index Terms—intrinsic motivation, autonomous mental devel-
opment, reinforcement learning, active learning, developmental
robotics

I. INTRODUCTION

For many years, scientists generally have followed three
main approaches to build intelligent systems. In the first one,
an intelligent system is directly programmed to perform a
given task. In the second, the computer is provided human-
edited sensory data and runs a learning program specific to
the task. Finally in the last, intelligent systems evolved by the
principle of “survival of the fittest”, i.e. the most competent
races left their survival skills to successive generations [1].

Survival depends on lifelong learning and application of
what has been learned. IM is regarded as a set of active
learning mechanisms for developmental robots, improving
learning in high-dimensional search spaces. Since IM demands
the development of broad competence rather than immediate
external goals [2], IM is a part of continuous and high-
quality learning [3]. Autonomous mental development concept
is defined as developing mental capabilities under the control
of a learning agent’s own developmental program, via the au-
tonomous real-time interactions with the external environment
with the agent’s own sensors and actuators as well as its own

internal environment with time [1]. Originated from the fact
that IM mechanisms generate learning signals by observing
the skills or knowledge level needed to be acquired by the
agent [4], autonomous mental development concept were tried
to be adapted to learning machines. Contrary to manual
development involving running a program for a specific task
with hand-engineered representations, autonomous develop-
ment consists of two main phases. The first one (construction
and programming phase), a developmental program is formed,
controlling the autonomous development of the agent and
not related a specific task and the agent’s body is designed
according to its operation environment. The beginning time
of the execution of this program is considered the time that
the agent was “born” and the second phase begins. In the
second one (autonomous development phase) the agent starts
interacting with the physical world and develops the skills
required in that environment. Skills acquired early are used
later by the robot to support the learning of new tasks [5].

Efficient and effective learning in high-dimensional spaces
is hard and can be simplified by splitting SM into smaller
regions. The regions with similar characteristics can be gen-
eralized effectively by an expert responsible only for these
regions. Distributing learning task across the experts of smaller
regions provides more accurate results and thus improves the
overall quality of the learning. In order to make these experts
proficient in their local regions, SM should be split wisely.
A particular method of IM, namely IAC, provides a smart
splitting scheme in such a high-dimensional SM and drives
the learning agent to explore the regions by considering the
competence level of the agent. The essential point that forms
the core of study is the decision of how to split SM into
specialized learning regions. Reflecting environment dynamics
to the learning space and formation of child regions should
be determined by the previously collected experience of to
be split region. Thus, to determine the regions to be formed
after the split, we are considering the potential success rates
of the candidate regions. Our study performed better than the
original study [6] (we will also briefly explain their idea in this
paper) doesn’t consider how the experts would perform in the
generated sub-regions, in an experimental setting simulating
the interaction of a robot with a simple environment. In this
study, we propose a novel method to split the learning space
into easy to learn regions and provide a more accurate way
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of calculating intrinsic reward that the agent gets. As a result,
our approach considers the future aspects of splitting process
and reflects a more distilled way of using IM for exploration.

II. RELATED WORK

The general structure of IM studies is composed of two main
modules. According to Oudeyer et al. [6], the first module is
defined as a learning machine M predicts the sensorimotor
consequences of the execution of a given action in a given
context and the second module is defined as a meta-learning
machine metaM predicts the errors that machine M makes in
its predictions. In [6] classify the existing methods according
to their action selection mechanisms:
• Error Maximization: In this type of systems, (e.g., [2]) the

action that metaM predicts the largest error in prediction
of M then the robot directly use this prediction to choose
which action to do.

• Progress Maximization: In this type of systems, (e.g., [7],
[8]), in addition to M and metaM there exists a third module
called Knowledge Gain Assessor (KGA). KGA predicts
and stores the mean error rate of M in the close future.
The action, leading to the greatest decrease of the difference
between the expected mean error rate of the predictions of
M in the close future and the mean error rate in the close
past, is selected.

• Similarity-Based Progress Maximization: In order to make
Progress Maximization method work well in the real-world,
the similarity between the situations should be considered. In
this approach, the agent should compare its current error rate
with the recent error rate of similar situations encountered
before. A robot that employs this approach should be able
to distinguish between the situations and relate them in their
contexts by itself. Such systems (e.g., [6], [9]) are able to
distinguish between various kind of activities and decide
which one of them to be explored next.
In Schmidhuber’s study [9] a curious model building system

is defined as a system that directs the agent to the situations
that it expected to learn some capabilities or knowledge from
that context. That model is developed based on Watkins’ Q-
Learning algorithm [10]. Curiosity is defined as the desire
for improvement of a system predicting the reactions of the
environment and realized by reinforcement learning. Since the
model is adaptive, predictions will be improved by the time.
As a result, the agent will stop discovering regions that it can
predict well and will move on to parts of the environment
which haven’t been explored yet.

Some of the studies in developmental robotics studies use
IM as a supporting module works along with their main
modules. For example, [4] incorporates Cognitive Sciences
and Computer Vision fields and aimed the development of
overt attention skills. In the experiment, they excepted the eye
gaze of the agent to be directed to the relevant areas in the
scene. In this study, they used artificial neural networks.

In Ugur’s study [11], it is aimed to hierarchically struc-
turing the affordances of the objects with different levels of
complexity. In the study, to learn object affordances, object

selection action was performed using a heuristic to increase
the object variety. Thus, in each iteration robot continues the
exploration by choosing the most “interesting” actions among
the candidates and improves the learning progress (LP). In [12]
they proposed a system that learns qualitative representations
of states and predictive models in a bottom-up manner by
discretizing the continuous variables. Konidaris et al. studied
construction of symbols that are directly used as preconditions
and effects of actions for generation of deterministic [13]
probabilistic [14] plans in simulated environments.

Recently, in Forestier’s [15] study, intrinsically motivated
goal exploration processes (IMGEP) introduce self-generation
of goals as parametrized problems and, allow the agent to
automatically build a learning curriculum. IMGEP is a pow-
erful framework that allows discovery of skills of increasing
complexity without explicitly defining a goal. From this study,
the idea of goal parametrization can be employed to our
approach and our way of splitting the learning space may
leverage the goal parametrization procedure.

While some of the related studies apply IAC to pre-split
sensorimotor regions, the others [11],[15] apply autonomous
split mechanisms by using similar approaches to the IAC. Our
method belongs to the latter category and differs from the ex-
isting methods by splitting SM according to the success of the
learning system and potential error rate. In particular, method
in [6] belongs to similarity-based progress maximization group
and is built upon the comparison of LP. Our proposed method
is built upon the comparison of LP too but it differs by the
discernment mechanism of the similar sensorimotor states.

III. METHOD

The proposed method is built on the IAC framework in
[6]. In III-A we give a brief introduction to IAC, in III-B we
formalize the input and the output of the system, in III-C we
explain the method given in [6] and explain our approach of
splitting SM, in III-D we describe learning machines M and
their contribution to splitting process, then in III-E we provide
the formal explanation of LP and finally in III-F we clarify
the action selection mechanism.
A. Summary

Intelligent adaptive curiosity (IAC) proposed by [6], adap-
tively splits SM into regions and uses LP of these regions for
deciding which region to explore and learn next. Regions with
large LP are primarily explored and learned. Since LP would
be low in problems which are too easy or too complex or
impossible to learn, it automatically works on problems that
have moderate complexity before dealing with simple and hard
learning problems. Thus, robot’s actions become more com-
plex gradually and developmental sequence organizes itself.

The flow of the IAC algorithm can be summarized as
follows: Each experience encountered by the robot is recorded
to the memory of the system as a vector (we’ll call them as
“exemplar” in order to be coherent with IAC [6]). An exemplar
is a couple of current sensorimotor state and its outcome in
sensory space 〈SM(t), S(t+ 1)〉. SM continuously split into
regions when any region met C criterion. Note that C can be
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any condition depending on the application, here we used a
threshold value for the number of exemplars that a region is
allowed to contain as in [6]. Each region has its own M and
this machine is responsible for predicting the next sensory
state given current sensorimotor state covered by that region.
Each M is trained with the corresponding region’s exemplars
and when a prediction should be made, the M covering that
exemplar is selected and used for the prediction. After the
execution of the action in the given sensorimotor context, the
difference between the actual outcome and the prediction is
calculated and recorded into the corresponding region’s error
list. Afterward, this list is used for the evaluation of LP of that
region. LP is the core of the IM in the system and used for
the determination of the action which contribute most to the
learning process.
B. Format

The input of each M is a vector SM(t), the concatenation
of current sensory state S(t) and motor parameters M(t) of
the robot. Based on the current sensorimotor state SM(t), M
learns to predict the next sensory state S(t+ 1).
C. Splitting the Sensorimotor Space

We aimed to improve the learning performance of the IAC
by splitting SM according to the predictability principle. IAC
splits SM and the mechanism behind this division is the
essential part of our study. In our method, before the actual
split performed, the regions are hypothetically split into two
parts a predefined number of times by considering each SM(t)
dimension (feature) and potential learning success of each
hypothetical region is calculated. This process clarifies our
idea of determining which feature dimension and value will
be used in that region’s splitting procedure.

Splitting procedure can be summarized as follows: At the
beginning, only one region (R0) exists and when it meets C
criterion, it’s split into two new regions. This way, each region
when it satisfies the C condition, is split into two child regions
and stores the feature dimension used for splitting along with
the corresponding cutting value in itself. Since the cutting
dimension of a region corresponds to a feature of SM vectors,
when a prediction is to be made, the corresponding region
can easily be found by using the cutting dimension and value
stored in regions. After splitting, exemplars contained by a
parent region distributed across its children by considering the
cutting information of the parent. For example: if the selected
cutting dimension is the motor command and the determined
cutting value is 0.5, all the exemplars inside the left child
region would have their motor command value below 0.5
while all the exemplars inside the right region would have
their motor command value above 0.5.

In the rest of this paper, we will refer our method based
on the potential error calculation as PE-IAC and the method
proposed in [6] based on variance as V-IAC.

V-IAC splits the set of exemplars into two sets so that the
sum of the variances of S(t+1) components of the exemplars
of each set, weighted by the number of exemplars of each set,
is minimal. Detailed explanation of it can be found in [6].

Our proposed method PE-IAC first hypothetically splits ex-
emplar set into two by each feature dimension of SM vector
predefined number (chosen arbitrarily) of times. From the
hypothetical pair of regions, the pair with the lowest total
potential error is selected. Thereby, instead of V-IAC, which
does the splitting according to feature distribution in exem-
plars, splitting in PE-IAC is done by taking potential successes
of candidate regions into account. Let each exemplar SM(t)
is a vector with length l and the decision how to split the
region is done by following steps:
• Each parent region’s exemplar set is sorted for each

dimension index j by considering only that dimension.
• The sorted set of exemplars are split into two from differ-

ent cutting values. Each hypothetical child region’s M is
trained with the set of exemplars contained by that region
and corresponding errors are calculated. This process is
executed incrementally. Sum of the errors of each child
region is divided into the length of the length of the ex-
emplar set and minimum of these two values is taken and
stored as pej,i (potential error by splitting jth dimension
from its ith cutting value). From all the calculated error
rates for that dimension PEj = {pej,1, pej,2 . . . pej,i},
the smallest value is selected pej = min(PEj) and
corresponding cut value is stored.

• Smallest potential error rate from all dimensions is se-
lected and corresponding cutting dimension and cutting
value is used for actual splitting.

D. Learning Machines (M)
Each region has a learning machine that is trained by

that region’s own exemplars. M of a region is responsible
for prediction of next sensory state given sensorimotor input
covered by the region. Any machine learning algorithm can
be used for implementing M. For the sake of the integrity of
the system, the same algorithm could be used for all M inside
it. In this paper, selection of the learning algorithm doesn’t
depend on the method and any algorithm that is compatible
with the given learning task could be used. In [6], K-Nearest
Neighbor(K-NN) [16] is used as the regression algorithm.
When a region is split, new regions’ M can’t use directly
their parent’s M. Thus, after each split, newly generated
child regions should train their own M with their own set
of exemplars.

The second main contribution of our proposed method
is that each new M is trained by the exemplars of the
corresponding region one-by-one and forms its own error list.
Therefore, different from V-IAC where each child inherits
parent’s exemplars, in our method each child region and its
corresponding expert considers only the errors made only by
itself.
E. Calculating Learning Progress (LP)

Calculation of LP of each region is computed from its error
list as in [6]. Let S′(t + 1) denote the prediction, S(t + 1)
denote the actual outcome of SM(t) vector and en(t + 1)
denote the error. Then the error is mathematically:

en(t+ 1) = ||S(t+ 1)− S′(t+ 1)||2 (1)
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Region Rn’s error list En will be consist of:

en(t+1−φ), en(t+1−φ+ω1), en(t+1−φ+ω2), . . . , en(t+1)

Here en(t + 1 − φ) denotes the error of first exemplar
covered by that region and inherited from the parent. Since the
exemplars inherited from the parent doesn’t follow a regular
time pattern, en(t + 1 − φ + ω1) denotes the next exemplar
covered by that region and en(t+ 1) denotes the most recent
prediction error.

LP of a region is calculated by taking the smoothed deriva-
tive of closest error curve and smoothed derivative of older
closest error curve. Let θ denote the smoothing parameter and
τ denote the time window parameter, mathematically :

〈en(t+ 1)〉 =
∑θ
i=0 en(t+ 1− i)

θ
(2)

〈en(t+ 1− τ)〉 =
∑θ
i=0 en(t+ 1− τ − i)

θ
(3)

〈en(t+1)〉 and 〈en(t+1−τ)〉 denote the smoothed derivative
of closest errors and older closest errors respectively. The
actual decrease in the prediction error rate is denoted by
D(t+ 1) and the LP calculated by:

L(t+ 1) = −D(t+ 1) = 〈en(t+ 1− τ)〉 − 〈en(t+ 1)〉 (4)

F. Action Selection

In IM systems, action selection is done by maximizing
the intrinsic reward that the agent gains from executing the
corresponding action. In our problem, since SM is continuous,
next candidate SM(t + 1) vector is selected by random
sampling inside this space. In a set consisting 100 sampled
exemplars, each sample’s corresponding region is found and
LP of these regions are compared. With ε-greedy action
selection mechanism, the sample covered by the region with
the largest LP is selected and used as the next sensorimotor
input of the system. Next, the input is executed, results are
observed and the system is updated. PE-IAC and V-IAC use
the same mechanism to calculate LP and to select the action.

IV. EXPERIMENT SETUP

A3

A
2 A1

◦x=1

◦ y=1

(8,8)

Robot

Fig. 1. Experiment environment is a 8×8 2-D environment consists of areas
with different characteristics. Area-1 (A1) is slippery, Area-2 (A2) is sticky
and Area-3 (A3) is completely random.

In the experiment setting, a robot that moves in an 8× 8 2-
D environment is simulated as shown in Figure 1. Experiment
environment consists of three sub-areas with each of them
has a different characteristic. Robot’s actions’ consequences
depend on the area it stands and frequency of the sound

emitted by the robot. The robot moves in vertical and hor-
izontal directions and motor commands of this movement,
namely h, v defined in h, v ∈ R | −1 < h, v < 1. Without
considering the effect of the area that the robot stands and
the frequency of the sound, if the robot’s horizontal motor
command h = 0.5 and its x position at time t is x = 1.2
then at time t+1 the robot would be in x = 1.7 by executing
the given action. Furthermore, it emits a sound with frequency
f ∈ R | 0 ≤ f < 1 and the frequency affects the interaction of
the robot with the environment. Without considering the effect
of the area that the robot stands, if the emitted sound frequency
value is f1 ∈ [0, 0.33), reverse of the motor commands are
executed (i.e., 〈h = 0.1, v = 0.4〉 7→ 〈h = −0.1, v = −0.4〉.
If it is f2 ∈ [0.33, 0.66) regardless of their value, executed as
h = 0, v = 0. If f3 ∈ [0.66, 1) then the commands executed
as they are.

After considering the effect of sound frequency on robot’s
interactions, h, v commands executed depending on the area
it stands, i.e. for A1, multiplying both with 3; for A2 dividing
both with 2 and for A3 movement of the robot will be com-
pletely random. Changes in the x, y position of the robot are
calculated by adding h, v commands to current x, y position
of the robot. In this setting M(t) = (h, v, f) consists of hori-
zontal speed, vertical speed and sound frequency respectively.
Sensory vector consists of robot’s x, y position: S(t) = (x, y).
In brief, robot maps the next sensory state to the current sen-
sorimotor input: SM(t) = (h, v, f, x, y) 7→ (x′, y′) = S(t+1)

A. Learning Flow

At time t, N possible SM vector is introduced by the
system. Except for the time before the first split and ε-greedy
action selection rule, next action is determined by IM namely,
LP of the regions. (N depends on the environment dynamics
and here we used N = 100.) Next, the robot makes a
prediction about S(t+1) with the given SM vector. To make
it, the system finds the responsible region of that exemplar and
the region’s M is used for the prediction of the execution of
this vector’s outcome. And finally, this SM vector is stored
in that region’s exemplar set.

B. Experiment Parameters

The system is trained with 5000 iterations and the required
number of exemplars for the splitting condition is 1000 (C
condition) i.e. when a region collects 1000 exemplars, it is
split into two new regions. For ε-greedy action selection rule,
ε = 0.3, for calculating LP smoothing parameter θ = 30 and
time window parameter τ = 5 is used. Furthermore, to deter-
mine splitting dimension and value, 10 different split locations
were used when computing the error rates of hypothetical
regions. Results are compared with V-IAC by using the same
parameters. V. RESULTS

We evaluated our method by analyzing the experimental
results according to following: how well the autonomously
generated sensorimotor regions reflect the underlying experi-
mental setup (Section V-A); and whether our system allowed
efficient and effective learning by analyzing the change in
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(a) (b)

(c) (d)
Fig. 3. SM region tree formed by PE-IAC (3(a),3(b)) and V-IAC (3(c),3(d)).
Here first, second and third line corresponds to the ID, cutting dimension
and cutting value of the region respectively. Arrows show the parent-child
relationship between the regions. Here, while the leaves with parameter values
correspond to the split regions, the others correspond to non-split regions.

LP (Section V-B), and the decrease in total error rate (Sec-
tion V-C). We compared our results with the baseline method,
V-IAC in our analysis.
A. Generated sensorimotor regions

Our aim in this method is splitting SM from the points
which split the space in a semantically sensible and useful
manner to improve the learning rate of the system. In order to
evaluate this, both PE-IAC and V-IAC were trained with 5000
iteration set. Due to the randomness, after a large number of
runs, various distinctively structured trees were formed. Two
representative trees formed during our experiments are shown
in Fig. 3. In Fig. 3, different trees produced by PE-IAC with
the same parameters are shown. In Fig. 3(a), the calculated
cutting dimension of the 4th region is compatible with the

environment dynamics. The 6th region covers A1 completely
and the following splits are based on the F parameter, i.e. the
system represents the effects of the F action parameter qual-
itatively. Another tree formed by PE-IAC method is shown
in Fig. 3(b). In this tree, first split occurred at X = 0.805.
In this case, the system prefers exploring the region with X
parameter larger than the cutting value 0.08, which is a value
close to the boundary (1.0) that separates A1 and A2. Next,
the 3rd region is split by Y = 1.147, which defines the other
border between A1 and A3; then there was no observation of
further exploration in region 5. This is because of the region
is a non-learnable region since involved randomness. As can
be seen in both two children of the 2nd region, the system was
successful in terms of splitting the region by F parameter from
the points which make difference. As shown in Fig. 3(c) and
3(d), V-IAC couldn’t split SM successfully taken into account
the environment dynamics i.e. there were no trees formed by
this method using F parameter as a cutting dimension.

We further analyzed how often which sound frequencies
were explored by the robot for training different experts. When
we compare plots in Fig. 4 , we observe that our method
prefers using certain sound frequencies as the time passes.
However, such distinction in V-IAC isn’t discovered within
5000 iterations. Furthermore, it is observed that after 10000
iteration phase, this parameter has still not been discovered in
V-IAC. Thus, V-IAC couldn’t explicitly identify and represent
the effect of sound frequencies on robot’s interaction with the
environment.

B. Comparison of Learning Progresses (LP) of Regions

Here, we analyze the LP in each region and compare the
LPs observed in PE-IAC and V-IAC. In Fig. 2(a), each child
region’s error curve is preceded by that region’s parent’s
error curve, thus the decrease in the error after the split can
be observed from the plot. First of all, as SM is split, the
coherency of predictions is improved in general. However, the
error rate of region 5 remains same (and high) as it corresponds
to A3 that is completely random and therefore not learnable.
The smoothed derivative error curves generated by V-IAC are
shown in Fig. 2(b). In this method, for each child region,
errors are completely inherited from the parent region and

(a) PE-IAC (b) V-IAC

Fig. 2. Smoothed derivative curves of errors. In V-IAC each child region completely inherits its parent’s error list. However, in PE-IAC, each child region
forms its own error list. For visualization, smoothed error curves are represented according to robot’s encountering time of the experiences.

58



error change can be observed by considering this case. When
the two methods are compared, it can be observed that with our
method error drops quickly in all regions except unlearnable
region and, with V-IAC while error drops in some regions,
it remains same in other regions since those regions include
parts from unlearnable A3.

(a) PE-IAC (b) V-IAC

Fig. 4. Preferred sound frequencies by the agent during one experiment. Here,
x-axis represents the number of exemplars collected by the agent and y-axis
represents the sound frequency values obtained by considering and smoothing
all the frequencies inside a small time window.

C. Comparison of Decrease in Total Error Rate

For both methods, error rates of the systems that involve
experiments with different training sizes are shown in Fig. 5.
For this plot, we have trained both methods with the number
of exemplars stated in the x-axis. Next, both methods were
tested with 10 different test sets each of them including 2000
exemplars. Initially, there is no difference in performance
between the two systems in the training set with 1000 training
examplars, because the first split hadn’t yet occurred, and the
system hasn’t made action selection by using its own IM. After
training the system with 2000 exemplars, the gap between the
performances of the methods becomes more clear.

VI. CONCLUSION

In this study, we have proposed a novel method for splitting
SM to improve the learning performance and compared with
an existing approach. Our contributions in this paper are: 1)
we have brought in a new splitting mechanism which considers
the successes a broad range of potential learning regions and
2) while evaluating the LPs that is used as the intrinsic reward
of the agent, we consider only the errors made by that learning
region. As a result, IM mechanism provided in our work
splits SM more accurately and considers the future aspects
of the splitting decisions. Also, our method is more memory
efficient due to the fact that the child regions don’t inherit
its parent’s error list. However, considering a broad range
of candidate regions and re-evaluating their performances
for each split decision, brings high computational overhead.
As a future work, we would like to optimize this issue.
Further, in this work, we set the total exemplar number that
the agent will encounter during its lifetime. However, this
mechanism should be autonomous as well. After some point,
the splitting mechanism should be stopped when the sufficient
level of competency is acquired by the agent. Aside from what
we’ve presented, as a future work different intrinsic reward
formulations can be employed to this algorithm.

We’ve evaluated our method in a simple experimental set-
ting, we have observed that proposed method performs better

than the existing method. As a future work, we are considering
testing this method in more complex robotic problems after
making improvements to the algorithm.

Fig. 5. Comparison of decrease in the mean error rates in PE-IAC and V-
IAC. Lines correspond to mean error values of the test sets and shaded areas
represent the variance. REFERENCES
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