
Conditional Neural Movement Primitives
M. Yunus Seker∗, Mert Imre∗, Justus Piater† and Emre Ugur∗

∗Computer Engineering Department Bogazici University, Istanbul, Turkey
Email: {yunus.seker1, mert.imre, emre.ugur}@boun.edu.tr

†Department of Computer Science, Universität Innsbruck, Austria
Email: justus.piater@uibk.ac.at

Abstract—Conditional Neural Movement Primitives (CNMPs)
is a learning from demonstration framework that is designed as
a robotic movement learning and generation system built on top
of a recent deep neural architecture, namely Conditional Neural
Processes (CNPs). Based on CNPs, CNMPs extract the prior
knowledge directly from the training data by sampling observa-
tions from it, and uses it to predict a conditional distribution
over any other target points. CNMPs specifically learns complex
temporal multi-modal sensorimotor relations in connection with
external parameters and goals; produces movement trajectories
in joint or task space; and executes these trajectories through a
high-level feedback control loop. Conditioned with an external
goal that is encoded in the sensorimotor space of the robot,
predicted sensorimotor trajectory that is expected to be observed
during the successful execution of the task is generated by the
CNMP, and the corresponding motor commands are executed.
In order to detect and react to unexpected events during
action execution, CNMP is further conditioned with the actual
sensor readings in each time-step. Through simulations and real
robot experiments, we showed that CNMPs can learn the non-
linear relations between low-dimensional parameter spaces and
complex movement trajectories from few demonstrations; and
they can also model the associations between high-dimensional
sensorimotor spaces and complex motions using large number of
demonstrations. The experiments further showed that even the
task parameters were not explicitly provided to the system, the
robot could learn their influence by associating the learned sen-
sorimotor representations with the movement trajectories. The
robot, for example, learned the influence of object weights and
shapes through exploiting its sensorimotor space that includes
proprioception and force measurements; and be able to change
the movement trajectory on the fly when one of these factors
were changed through external intervention.

I. INTRODUCTION

Acquiring an advanced robotic skill set requires a robot
to learn complex temporal multi-modal sensorimotor relations
in connection with external parameters and goals. Learning
from demonstration (LfD) framework [1] has been proposed
in robotics as an efficient and intuitive way to teach such skills
to the robots, in which the robot observes, learns and repro-
duces the observed demonstrations. During teaching the skills,
how the task is influenced by different factors is generally
obvious to humans, yet this knowledge is mostly hidden in
the experienced sensorimotor data of the robot and difficult to
extract autonomously. Development of feature extraction and
learning methods that are sufficiently general and flexible for
a broad range of robotic tasks still stands as an important
challenge in robotics. In order to deal with large variety
of tasks that are influenced by factors defined in different

levels of abstractions, we require a single framework that can
learn feature-movement and raw-data-movement associations
from small and large number of demonstrations, respectively,
automatically filtering out the irrelevant information.

Another challenge in LfD is to deal with multiple trajec-
tories: Multiple demonstrations might be required to teach a
skill either because different action trajectories are required in
different situations or simply because there are multiple means
to achieve the same task even in the same settings. The robot,
in return, needs to capture the important characteristics in these
observations coming from several demonstrations, and be able
to reproduce the learned skill in new configurations reacting to
unexpected events, such as external perturbations, on the fly.
For this, the robot needs to develop an understanding on if and
how the sensorimotor data and externally provided parameters
are related to each other and to the motor commands.

While one or more of the above properties were addressed
by the existing movement frameworks [14, 15, 6, 2, 16, 4, 13],
none of these approaches can handle all these requirements in
one framework. In this paper, we propose Conditional Neural
Movement Primitives (CNMP), a robotic framework that is
built on top a recent neural network architecture, namely
conditional neural processes (CNP), to encode movement
primitives with the identified functionalities. Given multiple
demonstrations, CNMP encodes the statistical regularities by
learning about the distributions of the observations from
reasonably few input data. Conditioning mechanism is used
to predict a sensorimotor trajectory given external goals and
the current sensorimotor information. Conditioning can be
applied over the learned sensorimotor distribution using any
set of variables such as joint positions, visual features or haptic
feedback at any time point. For example for a learned grasp
skill, the system might be queried to predict and generate hand
and finger motion trajectory with a conditioning on the color
of the object, weight measured in the wrist joint, and target
aperture width for the finger. Given low- or high-dimensional
input, CNMP can utilize simple MLPs or convolution opera-
tion, respectively, to encode the correlations. Such networks
allow the system to automatically extract the features that
are relevant to the task. Finally, the predicted trajectory is
realized by generating the corresponding actuator commands.
CNMP can also learn multiple modes of operations from
multiple demonstrations of a movement primitive. Importantly,
CNMP specifically produces movement trajectories in joint or
task space, and generates the corresponding motor commands



to achieve these trajectories through a high-level feedback
control loop. The encoded sensorimotor representations are
continuously conditioned through the feedback coming from
the sensory readings, enabling the system to ensure match
between predicted and actual trajectories and to respond to
unexpected events in its sensorimotor space.

II. RELATED WORK

LfD [1] has been applied to various robotic learning prob-
lems including object grasping and manipulation [6, 2, 16,
4, 13]. Among others, learning methods that are based on
dynamic systems [19] and statistical modeling [5] have been
popular in the recent years. Dynamic Movement Primitives
(DMPs)[19] encode the demonstrated trajectory as a set of
differential equations, and offers advantages such as one-
shot learning of non-linear movements, real-time stability and
robustness under perturbations with guarantees in reaching
the goal state, generalization of the movement for different
goals, and linear combination of parameters. The parameters of
the system can be learned with different advanced algorithms
such as Locally Weighted Regression (LWR) [3] and Locally
Weighted Projection Regression [22]. Statistical modeling
techniques, on the other hand, use probabilistic models such
as Gaussian Mixture Models[6] or Hidden Markov Models[12]
to encode the motion from multiple demonstrations where the
statistical regularities are learned in the spatiatemporal data.

Zhou et al.[23] used a simple 2D obstacle avoidance task
to show that standard DMP approach is not designed to learn
from multiple trajectories and therefore cannot encode the
important parts of multiple demonstrations. They developed a
method that performs LWR by defining a new objective func-
tion dependent on the environment restrictions and parameters,
and that uses a model-switching algorithm to be able to train
over all the parametric space. Ude et al.[20] used LWR and
GPR methods to compute new DMP based trajectories given
parameters that describe the characteristics of the action, such
as the goal point. Their method could be generalized with
complex trajectories for both periodic and discrete movements.
Pervez et al. [18] learned a separate GMM for each demon-
stration and mixed the separately learned GMMs to generate
trajectories for new task parameter values.

In order to enable physical collaboration, the robot is
required to learn haptic feedback models that encodes the
default predicted force feedback measured during execution of
the corresponding skill. Memorized force and tactile profiles
have already been successfully utilized in modulating learned
DMPs in difficult manipulation tasks that contain high degrees
of noise in perception such as grasping and in-hand manip-
ulation of objects from incorrect positions or flipping boxes
using chopsticks [17]. HMMs were used to learn multi-modal
models from temperature, pressure and fingertip information
for exploratory object classification tasks [7]; and PHMMs
were used to learn haptic feedback trajectory models to adapt
actions in response to external perturbations [10, 21]. Deep
networks [8] were used to learn multi-modal models from
different sensory information such as temperature, pressure,

fingertip, contacts, proprioception, and speech; however these
models were used only to categorize the sensory data without
any effect on action execution. More recently, the same prob-
lem generalization of force/torque profiles was investigated
for contact tasks [11] where these profiles were modeled by
Locally Weighted Regression (LWR) which has local general-
ization capabilities, hence successful at the intermediate query
points.

III. METHOD

Fig. 1: Structure of the CNP adapted from [9].
A. Background

Until recently, most of the neural networks in deep learning
were trained to approximate a single output function. However,
when the data is a distribution which can be represented by
statistical models such as Gaussian distributions, networks
that approximates to the single functions cannot represent the
underlying model. Instead the network can be modelled as
a probabilistic approximator that can predict the distribution
parameters, namely mean and variance, instead of producing
one single output value. Garnelo et al. [9] proposed a new
family of neural models that processes the training data based
on Bayesian Inference principles by combining the advantages
of the neural networks with Gaussian Processes. The proposed
method is able to extract prior knowledge directly from the
training data by sampling observations from it, and use this
information to predict a conditional distribution over any other
target points. The general structure of the model is shown
in the Figure 1. The model consists of three parts: (1) A
parameter-sharing Encoder Network E is used to encode all
sampled observations into fixed size representations ri in a
latent space. Notice that the numbers and orders of the coming
observations can change during both training and test time
because empirical observations can change dynamically. (2)
The individual representations are aggregated into one general
representation r that covers all the observations sampled at the
beginning. Therefore, according to the prior knowledge r, the
model can predict a distribution over the target input/inputs by
conditioning on the observations. (3) Finally, a Query Network
Q produces distribution parameters (µq, σq) over the query
input xq by using the general representation r as a prior. As
a summary, the CNP model can be formulated as

µq, σq = Qθ

(
xq ⊕

∑n
i Eφ((xi, yi))

n

)
where {(xi, yi)}ni=0 are observation pairs sampled from data,
Eφ is the encoder network with parameters φ, xq is the target



Fig. 2: Training and test procedures of Conditional Neural Movement Primitives. Refer to Section III for more details.

input, i.e., the query over which we want the model to predict
a Gaussian distribution, ⊕ is the concatenation operator, and
Qθ is the query network with parameters θ that outputs the
Gaussian distribution parameters (µq, σq). The whole model is
trained together as a stochastic process where at each training
iteration, n random observation pairs (xi, yi)

n∈[1,nmax]
i=0 and

one query point (xq, yq) are sampled from the training data.
nmax is the hyperparameter giving the maximum number of
observations that can be used during the training process. At
the end of each iteration, neural network parameters (θ and φ)
of both Encoder and Query network are optimized according
to the following loss function:

L(θ, φ) = − logP (yq | µq, softmax(σq)) (1)

where µq and σq are the outputs of the CNP, yq is the
corresponding output of the xq for this training iteration, and P
is the Gaussian probability function that returns the conditional
probability of the yq for given mean and variance parameters.

B. Proposed Method: Conditional Neural Movement Primi-
tives

Conditional Neural Movement Primitives (CNMP) is a
learning from demonstration framework that is designed as
a robotic movement learning and generation system built on
top of CNPs. It specifically produces movement trajectories in
joint or task space, and executes these trajectories through a
high-level feedback control loop. The encoded sensorimotor
representations are conditioned externally to constrain the
movement and set goals. Additionally, as detailed later, CNMP
is also continuously conditioned by the current sensory read-
ings, predicting the desired sensorimotor values based on these
readings. This allows to detect unexpected events and respond
to these events by changing the movement trajectory on the
fly.

A CNMP is trained for each skill that is taught to the
robot using one or more demonstrations in possibly different
configurations. In each demonstration, the robot stores the ac-
tuator positions, the perceptual features, and the corresponding
time points. Therefore each demonstration Dj is stored as a
trajectory of sensorimotor features and the corresponding time
points, i.e. {(t, SM(t))}t=τt=0 where SM(t) corresponds to the
observed sensorimotor data at time t. SM can encode any in-
formation including task and joint space positions of the robot
arm and gripper, force/torque measurements, low-dimensional
environment properties such as size of manipulated objects
or high-dimensional world state such as top-down 2D raw
image mask of the environment. In the rest of this section,
SM is described as a one dimensional vector which might be
flexibly referred as sensory or motor data in different times
for simplicity and clarity.

CNMP training and trajectory reproduction steps are ex-
plained in Fig. 2 and detailed in the next subsections. Recall
that although SM is displayed as a one dimensional vector,
it is normally a multi-dimensional vector that includes any
sensory or motor information. Therefore, CNMP is designed to
enable learning from and constraining in any set of dimensions
in the SM space.

Learning from Demonstrations using CNMP: For each
demonstration, first, time invariance is ensured by scaling the
time values into [0,1]. In each training iteration, a demon-
stration Dj is selected randomly from a uniform distribu-
tion. From the chosen demonstration, n observation tuples
{(ti, SM(ti))}ni=0 ∈ Dj and one target query (tq, SM(tq)) ∈
Dj are sampled uniformly. n is a random number between
[0, nmax] where nmax is a hyper-parameter that sets the
maximum number of samples collected from the chosen
demonstration by CNMP. This allows our framework to be
flexible over changing numbers of observations at the test
time. Fig. 2.1c illustrates the neural network operations for



Fig. 3: CNMP execution loop with feedback

an example of four observation points. Each observation tuple
goes through the parameter sharing Encoder Network (E) and
produces the representation for the corresponding observations
in a fixed sized latent space. Using a mean operator, individual
representations are merged into one general representation r.
The general representation r and target query time tq are
concatenated and given to the Query Network (Q) as input. As
the final step of the neural network, Query Network predicts
the distribution parameters (µq, σq) of SM for target time tq .
Figure 2.1d shows the predicted Gaussian distribution and the
actual SM(tq) of the robot at the queried time. The error
between the predicted and actual SM values is calculated
using the loss function in Eq. 1 for each query. The computed
errors are back-propagated to train the weights of the network.
Task specific external parameters (γ) can also be included in
encoding the movement primitive by directly concatenating
with the observation and query data and providing to the En-
coder and Query Networks directly. Such external parameters
can be regarded as part of sensory data, therefore for simplicity
we will not provide separate explanation for handling these
parameters in the rest of this section.

Reproducing movement primitives: After learning from
demonstrations, the CNMP is used to generate the SM
trajectory that is predicted to satisfy the externally provided
goals given the current sensorimotor information, where both
goals and sensorimotor information are represented with a
set of observation tuples. The external goals are set to
the desired sensorimotor values at the desired time points
({(ti, SM(ti))}). The means of identifying and querying the
goals is extremely flexible (2.2e). For example, the goals can
refer to the starting, intermediate or final positions of the
movement trajectory, and set once to generate and execute
the desired trajectory. As another example, the goals can
be set as the desired force/torque readings expected to be
observed during movement generation. The current sensori-
motor information, on the other hand, corresponds to the SM
at the current time point (tc): ({(tc, SM(tc))}). Continuous
querying with the current SM enables the system to detect and
respond to unpredicted events such as external perturbations
that generates discrepancy between the actual and predicted
sensorimotor values. In case such prediction error is detected,
the movement trajectory changes on the fly, and executed as
detailed in the next subsection. This effectively corresponds

to autonomously reacting to external perturbations exploiting
the encoded multi-modal distributions1.

Figure 2.2f illustrates an example case where the goal
is set as two test time observations that correspond to the
desired start and end positions of the movement. These goal
observations are given to the trained CNMP model and the
general representation r is produced after the Encoding and
Averaging operations in the neural network (Fig 2.2.g). This
general representation r holds the compact information for all
the given goal observations, thus, guides the Query network
to produce movement primitive distributions that satisfy all
the desired goals/constraints at the once. To extract the whole
movement trajectory, all time steps ti

1
i=0 are concatenated

with the pre-computed general representation r, and the set
of mean and variance values for the whole trajectory is
predicted by using the Query network. Figure 2.2h shows the
predicted trajectory distribution that satisfies the given goals.
The predicted trajectory is sent to the controller of the robot
to be executed as detailed next.

Execution and Online Adaptation of the generated move-
ment: The CNMP-driven control loop that aims to bring the
robot to the sensorimotor state predicted by the CNMP in
each time step is provided in Fig. 3. In each time step,
the environment is perceived through sensors of the robot,
and the current SM is provided along with the externally
defined goals to the CNMP for generation of the sensorimotor
values that are expected to be observed to achieve the task.
In an online control loop, CNMP predicts the SM(t)tnt=tc+1

configurations of the next time step and continuously produces
motor commands to achieve the predictions. In case the
predicted SM and the current SM does not match, i.e. the
current SM does not match with the SM that is predicted
to match with the corresponding skill, time stops advancing
until the error drops below a threshold. With this constantly
changing online observation loop, our system can react to the
perturbations of the sensor measurements, because of the the
low computation complexity of the CNMP at the test time.

Note that the structure of the CNMP does not need any
strict requirements on the controller side. In its current form,
the motor variables in the generated SM are set as the desired
motor commands in each time step, and executed using a PD
controller. The fact that the output of the CNMP is constructed
as a distribution allows the robot to move freely within
the boundaries of the predicted distribution. This flexibility
can potentially be exploited to achieve the given task with
alternative trajectories. Another option is to use variance in-
formation to reason about which segments of trajectory should
be followed stiffly and accurately, automatically adjusting the
compliance based on the variance in the distribution.

1The complexity of the trajectory generation is O(no+nq) where no and
nq are the numbers of the observations and queried time points respectively.
Single query takes 0.9 msec. with Inter Core i7 processor and GeForce GTX
1050 gpu, the robot can quickly adapt to the changes in the environment at
the test time.



Fig. 4: 2d object avoidance experiment and the results. The
demonstrations are given with colored trajectories. The con-
ditions and generated movement distributions are shown with
the black dots and gray areas, respectively.

IV. EXPERIMENTAL RESULTS

The performance, capabilities, and limitations of the CNMP
were studied in two simulated and two real robot exper-
iments. In Section IV.A, the CNMP and another widely
used method that encodes distribution of the demonstrations,
namely ProMP[15], was compared in learning of a 2d sim-
ulated obstacle avoidance task where different modes of the
avoidance were demonstrated. In Section IV.B, the capacity of
the CNMP to learn in high-dimensional SM was investigated
in a 2d obstacle avoidance task where the system learns
planning movement trajectory avoiding two obstacles with
different using top-down image masks of the environment.
In Section IV.C, the performance of the CNMP in learning
non-linear environment-trajectory relations in a real robot
manipulator was investigated through analyzing generalization
capability to environment configurations inside and outside the
range of demonstrations. In Section IV.D, the capability of the
CNMP model to react to external perturbations detected in the
proprioception and force data was verified in the real robot
exploiting the learned multi-modal information.

A. Learning of different modes of operations of the same skill

The aim of this experiment is to investigate if and in
which conditions the models can automatically discover the
categories inherent to the demonstrated primitive; and re-
produce new avoidance trajectories taking into account this
knowledge. For this purpose, the capabilities of the CNMP
and ProMP models were studied in a 2d object avoidance
task where demonstrated trajectories passed around either
one side or the other side of the obstacle and from which
side it passes was not explicitly provided to the system. The
task and the demonstrated trajectories are provided in Fig. 4.
Each trajectories started from the left side (t=0,(x=0,y=y0)), it
passed around the upper or lower side of the obstacle at time
point t=0.5, and ended up on the right side at a symmetric
position (t=1,(x=1,y=y0)). The 6 trajectories shown in the

Fig. 5: Left: The 2d obstacle avoidance setup used in learning
experiments from top-down images. An example environment
and demonstration trajectory were presented. Right: The struc-
ture of Convolutional CNMP

figure with 300 time steps were used to train both models. The
ProMP model2 was trained with 31 basis functions, setting the
σ value to 0.05. The CNMP, on the other hand, was trained by
sampling a number of observations {(ti, (xi, yi))}n∈[1,5]

i=0 from
a randomly selected demonstration in each iteration. Encoder
and Query networks were structured in 2 fully connected
layers with 128 neurons each. The neural network was trained
by using Adam optimizer with an empirically found learning
rate of 0.0001.

After training, new avoidance trajectories were generated
by setting goals, i.e. by conditioning the models at different
points. The obtained results are presented in Fig. 4. The
upper and lower rows in this figure correspond to the results
obtained by ProMP and CNMP, respectively. In each plot in
the figure, the black dot shows the conditioned position. The
black line and the shaded area correspond to the mean and
variance of the predicted movement distribution computed for
the corresponding conditioning. As shown in the first column,
when the models were conditioned at a position that ensures
avoidance, both models generated distributions and trajectories
that enabled the system to avoid the obstacle. On the other
hand, when the conditioning was set to other positions such as
to an intermediate point (t=0.2,(x=0.2,y=-0.37)) or to an end
point (t=1,(x=1,y=0.13)), the ProMP started failing whereas
CNMP continued generating movement trajectories that avoid
the invisible obstacle. These results show that CNMP learned
to produce multiple distributions by observing different cate-
gories of the same primitive from the data itself without any
explicit parameterization. With this, we conclude that CNMP
allows learning and encoding different modes of operation
of the same movement primitive, and reliable and flexible
reproduction of the trajectories automatically following one
of the distinct modes.

B. Movement primitive learning in high-dimensional sensori-
motor space from top-down raw image masks

In this section, the capability of CNMPs in learning directly
from top-down raw image masks in a simulated experiment

2Our implementation and training data for the experiments can be found in
https://github.com/rssCNMP/CNMP. To compare our framework with ProMP,
ProMp library of the Flowers INRIA Laboratory in learning and generating
the movement primitives is used. See https://github.com/flowersteam/promplib



(a) C-CNMP conditioned with start and final positions

(b) C-CNMP conditioned with intermediate and final position

(c) C-CNMP conditioned with one intermediate position

Fig. 6: CNMP was conditioned by (a) start and final positions,
(b) intermediate and final positions, and (c) one intermediate
position.

setting is studied. Two obstacles of varying sizes were attached
to the opposite sides of a 2d room at different positions
as shown in Fig. 5. For each room configuration, a motion
trajectory that moves the robot from the left to the right
side of the room was generated with a simple heuristic. The
motion trajectories were presented as demonstrations along
with the raw images to train the CNMP model. Convolution
operation was included into the model (Fig. 5) to deal with the
raw images. Convolution was achieved with a neural network
that consists of 4 convolution layers followed by maxpooling
operation with channel numbers 8, 16, 32 and 64. At the
end, SM vector was composed of 2d position, image mask
encoding (m), and the corresponding time-point.

The CNMP model, after trained with 1000 trajectories (in
configurations with random start/end positions and randomly
placed and sized obstacles) was queried to generate trajectories
with different conditions. The conditions were encoded in
SM vectors that include time, position and image informa-
tion. Fig. 6 shows the trajectories generated by the CNMP
conditioned with (a) start and end positions, (b) intermediate
and end positions, and (c) an intermediate position for a
number of test configurations that were not experienced before.
As shown, the trained CNMP could successfully generate
movement trajectories avoiding the red walls in all config-
urations. Interestingly, when the CNMP was provided only
an intermediate pose at a specified time, it changed the
start and end positions, shifting the movement if necessary
(Fig. 6c). These results indicate that the CNMP framework was
successful in movement primitive learning in high-dimensional
sensorimotor space and it is a promising framework for end-

Fig. 7: Experimental setup and snapshots from demonstrations
in the obstacle avoidance task where heights were provided as
parameters.

Fig. 8: Qualitative results of selected three joints on novel
interpolation (a,b) and extrapolation (c) cases

to-end learning of complex trajectories.

C. Task Parameterization and Generalization in Real Robot
This experiment investigates the capability of the CNMP

in learning of non-linear environment-movement relations in
an object pick and place task that requires obstacle avoidance.
UR10 robotic arm equipped with a Robotiq gripper and a wrist
mounted force/torque sensor was used for this purpose. After
the robot was provided a number of demonstrations in different
environments, we analyzed the generalization capabilities in
novel configurations. The heights of the manipulated object
and the static obstacle were provided as task parameters (γ)
and the joint angles were included in the SM vector. The task
was composed of moving the gripper to a suitable position
to pick up the object according to its height first, and then
moving it towards the target position following an arc avoiding
the obstacle. The experimental setup and snapshots from an



Fig. 9: The experimental setup for pick-and-place task where the placement position depends on the weight and shape of
the container. On the left, the movement trajectories for different configurations are provided: The container is reached and
picked-up (1), lifted (2), and carried toward target position (3). On the right: demonstration SM data.

example demonstration is provided in Fig. 7. CNMP was
trained with 8 movement trajectories that were obtained in
different object-obstacle configurations. The heights of the
object and obstacle were provided as parameters: γo=(2, 6),
γh=(2, 4, 6, 8). The non-linear relationship between joint val-
ues and γ can be observed in Fig 8, which provides the
demonstrated trajectories in gray, especially in elbow and
shoulder joints.

The generalization capacity of the system to novel object-
obstacle settings was tested in two different conditions where
the test distributions were sampled from inside and outside of
the range of demonstration. Both conditions were tested with
three different environments. In the interpolation condition, the
robot generated a movement trajectory in the joint space suc-
cessfully picking and placing the object avoiding the obstacle
in all three tasks. The predicted and executed trajectories were
compared against ground truth trajectories and the results of
two example test cases are provided in the Fig. 8(a,b). The
gray lines indicate the demonstrations used for the training,
the blue dashed line indicates the ground-truth, and the red
line is the prediction of the system. The average absolute errors
measured in degrees are also summarized in Table I, where star
indicates the novel conditions. The maximum average absolute
error along the trajectories was 0.28 degrees. Considering
these results, we conclude that the prediction mechanism of
the CNMP can generalize to the novel situations sampled
inside the training distribution. In the extrapolation cases, our

TABLE I: Average joint errors (in degrees) between predicted
and ground truth trajectories. The upper and lower three
rows show the errors in the interpolation and extrapolation
conditions, respectively.

Joint Errors (deg)
Task Parameters Base Shoulder Elbow Wrist1 Wrist2 Wrist3
Obj: 3∗ Obs.: 3∗ 0.23 0.271 0.173 0.232 0.064 0.254
Obj: 3∗ Obs.: 6 0.158 0.167 0.145 0.163 0.061 0.126
Obj: 4∗ Obs.: 7∗ 0.099 0.101 0.269 0.280 0.055 0.093

Obj: 7∗ Obs.: 9∗ 0.719 0.895 3.569 3.687 0.156 0.665
Obj: 8∗ Obs.: 10∗ 1.038 2.325 8.879 8.094 0.360 0.830
Obj: 9∗ Obs: 11∗ 1.861 5.380 17.978 14.894 0.590 1.386

motivation was to gradually increase difficulty and evaluate
the limits of the system. For this purpose, the heights of
the object and obstacle was gradually increased. The task
was successfully executed in γ = (7, 9) parameter configu-
ration but the robot started failing when the object and wall
height exceeded γ = (8, 10). Fig. 8(c) shows the trajectory
prediction of one of the trajectories generated and Table I
bottom three rows present the average absolute errors for the
extrapolation cases. As the results show the performance of the
trajectory prediction for extrapolation novel cases decreased
significantly, especially when the extremity of the case with
respect to the boundaries of the training.

D. Movement Primitive Classification and Adaptation to Per-
turbations in Real Robot

This experiment aimed to demonstrate the movement gener-
ation capability of the CNMP taking into account the categori-
cal semantics included in the demonstrations and its adaptation
capacity in response to external perturbations. The UR10 robot
arm, Robotiq gripper and force/torque sensor system was used
to teach a pick and place task applied to a container placed on
a table. The task is designed with the following schedule: The
object was picked up from the middle of the table, and placed
at one of the four target locations depending on the type of the
container and its weight. Two different containers were used
with different amounts of weights as shown in Fig. 9, resulting
in four different types (2 containers x 2 weight categories) of
demonstrations. 5 different weights were used for each weight
category, therefore 4x5=20 demonstrations were provided to
the system for training, following the trajectories shown with
the dashed lines in the same figure. SM vector included the
3d position of the gripper, the joint positions of the fingers,
and the force/torque readings. In testing, given a container
(cube with a low weight) unknown to the robot, the robot
started the execution without any information on the conditions
and updated its predictions online. Before interacting with
the container, any four target-points were equally likely for
the system, therefore the variance of the prediction started
high as shown in the middle-left plot in Fig. 11. The robot



Fig. 10: Movement adaptation experiment. The robot gen-
erates the required movement trajectories in its end-effector
and finger position spaces, automatically perceiving the task-
related features such as the weight and shape of the object
through its sensors (proprioception and force/torque readings).
https://youtu.be/cPKOIaf0mUc

next reached to the object and started interacting with it: As
soon as it enclosed its fingers and started lifting the object,
the received feedback from the interacted container through
proprioception and force/torque measurements automatically
conditioned the robot to generate a trajectory that ends up in
the lower-bottom corner from a low-variance distribution (the
bottom-left plot in Fig. 11). During the movement of the robot,
we stepped in and put more marbles inside the box inside the
gripper, effectively increasing the weight of the cube carried
by the robot. The updated SM conditioning automatically
updated the distribution of the movement trajectory, setting
the final point to the bottom-right region on the table (see the
bottom-right plot in Fig. 11) and changing the motion of the
end-effector towards that position through the PD controller.
The increase in the time variable is suspended until the error
between predicted and actual SM vanished. Finally, the cube
with the increased weight was placed to the position that was
demonstrated for high-weight boxes. This experiment showed
that although the task parameters (type and weight of the
container) were not explicitly provided as parameters, the asso-
ciation between the movement trajectory and these parameters
were learned in the SM space of the robot through associating
finger proprioception values and force/torque readings with the
movement trajectories of different types. Furthermore, thanks
to conditioning the system with the current SM in each time
step, the system was shown to effectively react to changes that
influence the task execution. Such a reaction was possible as
the robot inferred that the target position only depended on
the sensor measurements and was invariant from the current
location of the robot.

V. CONCLUSION

Our CNMP method was shown to learn the non-linear rela-
tionships between environment parameters and complex action
trajectories, deal with raw input through convolution operation,
learn multiple modes of operations for the same primitive,

Fig. 11: Online conditioning and adaptation to unexpected
changes during motion execution. Final position estimations
are shown at 4 timestamps with black dot and gray shade.
Container is approached (1), grasped but not lifted (2), lifted
and carried (3), made heavier (4).

and generalize to novel configurations if they are sampled
from the experienced range. A wide range of relationships
were shown to be automatically discovered and learned. In
the first real robot pick-and-place task, the robot learned a
continuous non-linear relation between the parameters and the
action trajectories, whereas in the second robot experiment, it
learned that containers with different weights were required
to be placed in the same final positions. In the second robot
experiment, the factors that influenced the task execution,
such as weight and shape of the object, were never provided
to the robot. Still, based on its interaction experience, the
robot successfully learned to generate the required movement
trajectory through exploiting the learned encoding in its low-
level sensorimotor space that included proprioception and
force readings. Furthermore, our continuous online condition-
ing with the current sensorimotor values enabled the robot to
detect and respond to changes in the factors that influence task
execution, on the fly. The PD controller enabled reacting to
such external perturbations, however without any convergence
or goal-achievement guarantees. In the future, we plan to study
on mechanisms that makes search in the execution history and
in the encoding space of the sensorimotor representations, and
possibly rewinding the taken steps in order to successfully
reach to the new environment state exploiting the learned
multi-modal relations.

ACKNOWLEDGMENTS

This research has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement no. 731761, IMAGINE. Also, thanks
to Ahmet E. Tekden for early discussions.



REFERENCES

[1] Brenna D Argall, Sonia Chernova, Manuela Veloso, and
Brett Browning. A survey of robot learning from demon-
stration. Rob. and Auto. Sys., 57(5):469–483, 2009.

[2] Tamim Asfour, Pedram Azad, Florian Gyarfas, and
Rüdiger Dillmann. Imitation learning of dual-arm manip-
ulation tasks in humanoid robots. International Journal
of Humanoid Robotics, 5(02):183–202, 2008.

[3] Christopher G Atkeson, Andrew W Moore, and Stefan
Schaal. Locally weighted learning for control. In Lazy
learning, pages 75–113. Springer, 1997.

[4] H Ben Amor, Oliver Kroemer, Ulrich Hillenbrand, Ger-
hard Neumann, and Jan Peters. Generalization of human
grasping for multi-fingered robot hands. In IROS, pages
2043–2050. IEEE, 2012.

[5] Sylvain Calinon. A tutorial on task-parameterized move-
ment learning and retrieval. Intelligent Service Robotics,
9(1):1–29, 2016.

[6] Sylvain Calinon, Paul Evrard, Elena Gribovskaya, Aude
Billard, and Abderrahmane Kheddar. Learning collabora-
tive manipulation tasks by demonstration using a haptic
interface. In Advanced Robotics, 2009. ICAR 2009.
International Conference on, pages 1–6. IEEE, 2009.

[7] Vivian Chu, Ian McMahon, Lorenzo Riano, Craig G
McDonald, Qin He, J Martinez Perez-Tejada, Michael
Arrigo, Naomi Fitter, John C Nappo, Trevor Darrell,
et al. Using robotic exploratory procedures to learn the
meaning of haptic adjectives. In ICRA, 3048–3055, 2013.

[8] Alain Droniou, Serena Ivaldi, and Olivier Sigaud. Deep
unsupervised network for multimodal perception, repre-
sentation and classification. Robotics and Autonomous
Systems, 71:83–98, 2015.

[9] Marta Garnelo, Dan Rosenbaum, Christopher Maddi-
son, Tiago Ramalho, David Saxton, Murray Shanahan,
Yee Whye Teh, Danilo Rezende, and S. M. Ali Eslami.
Conditional neural processes. In ICML, 1704-1713 2018.

[10] Hakan Girgin and Emre Ugur. Associative skill memory
models. In IROS, pages 6043–6048, 2018.

[11] Alja Kramberger, Andrej Gams, Bojan Nemec, Dimitrios
Chrysostomou, Ole Madsen, and Ale Ude. Generaliza-
tion of orientation trajectories and force-torque profiles
for robotic assembly. Robot. Auton. Syst., 98(C), 2017.

[12] Dongheui Lee and Christian Ott. Incremental kinesthetic
teaching of motion primitives using the motion refine-
ment tube. Autonomous Robots, 31(2-3):115–131, 2011.

[13] Manuel Mühlig, Michael Gienger, and Jochen J Steil.
Interactive imitation learning of object movement skills.
Autonomous Robots, 32(2):97–114, 2012.

[14] R. Pahic, A. Gams, A. Ude, and J. Morimoto. Deep
encoder-decoder networks for mapping raw images to
dynamic movement primitives. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA),
pages 1–6. IEEE, 2018.

[15] Alexandros Paraschos, Christian Daniel, Jan Peters, and
Gerhard Neumann. Probabilistic movement primitives.

In NIPS, pages 2616–2624, 2013.
[16] Peter Pastor, Ludo Righetti, Mrinal Kalakrishnan, and

Stefan Schaal. Online movement adaptation based on
previous sensor experiences. In IROS, 365–371, 2011.

[17] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan
Schaal. Learning and generalization of motor skills by
learning from demonstration. In ICRA, 763–768, 2009.

[18] Affan Pervez and Dongheui Lee. Learning task param-
eterized dynamic movement primitives using mixture of
gmms. Intelligent Service Robotics, 11:61–78, 2018.

[19] Stefan Schaal. Dynamic movement primitives-a frame-
work for motor control in humans and humanoid
robotics. In Adaptive Motion of Animals and Machines,
pages 261–280. Springer, 2006.

[20] Aleš Ude, Andrej Gams, Tamim Asfour, and Jun Mori-
moto. Task-specific generalization of discrete and peri-
odic dynamic movement primitives. IEEE Transactions
on Robotics, 26(5):800–815, 2010.

[21] Emre Ugur and Hakan Girgin. Compliant parametric
dynamic movement primitives. Robotica, 2019. in press.

[22] Sethu Vijayakumar and Stefan Schaal. Locally weighted
projection regression: Incr. real time learning in high
dimensional space. In ICML, pages 1079–1086, 2000.

[23] Y. Zhou and T. Asfour. Task-oriented generalization of
dynamic movement primitive. In IROS, pages 3202–
3209, 2017.


