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Abstract

Imagining the consequences of one’s own actions, before and during their

execution, allows the agents to choose actions based on their simulated per-

formance, and to monitor the progress by comparing observed to simulated

behavior. In this study, we propose a deep model that enables a robot to

learn to predict the consequences of its manipulation actions from its own in-

teraction experience on objects of various shapes. Given the top-down image

of the object, the robot learns to predict the movement trajectory of the ob-

ject during execution of a lever-up action performed with a screwdriver in a

physics-based simulator. The prediction is realized in two stages; the system

first computes a number of features from the object and then generates the

complete motion trajectory of the center of mass of the object using Long

Short Term Memory (LSTM) models. In the first step, we investigated use of

various feature descriptors such as shape context that encodes a distributed

representation of positions of the object boundary points, unsupervised fea-
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tures that are extracted from autoencoders, Convolutional Neural Network

(CNN) based features that are conjointly trained with the LSTMs, and fi-

nally task-specific supervised features that are engineered to well-encode the

underlying dynamics of the lever-up action. The models are trained in simu-

lation with objects of varying edge numbers and tested in the simulated and

the real world. Our deep and generic CNN-based LSTM model outperformed

the predictors that use unsupervised representations such as shape descrip-

tors or autoencoder features in the simulated test set. Additionally, it was

shown to generalize well to novel object shapes that were not experienced

during model training. Finally, our model was shown to perform well in pre-

dicting the consequences of lever-up actions generated by a screwdriver that

was attached to the gripper of the real UR10 robot. We further showed that

our system can predict qualitatively different trajectories of objects that roll

off the table or tumble over as the result of lever-up action.

Keywords: Robot Learning, Predictive Models, Long Short Term Memory,

Shape Context, Manipulation, Convolutional Neural Networks

1. Introduction

Predicting the consequences of one’s own actions is an important require-

ment for intelligent control and decision making in both biological and ar-

tificial systems. Neurophysiological data suggests that human brain bene-

fits from internal forward models that continuously predict the outcomes of

the generated motor commands for trajectory planning and movement con-

trol [21]. For higher-level cognitive functions, behavioral data suggest that

forward prediction is used to generate multi-step plans to achieve different
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goals. For example, given a number of objects with different affordances such

as pushability, stackability and climbability, the chimpanzees can predict the

outcomes of potential chains of actions and execute a particular sequence

such as stacking boxes on top of each other and climbing over the stack to

acquire a banana that was initially out of the reach [22, 33]. While the un-

derlying mechanisms for more complex reasoning in humans are unknown,

several experiments showed that different parts of the brain become active

in deductive and inductive reasoning [17] in predicting the consequences of

different actions in different states [2, Ch. 9]. Reasoning in artificial agents

also benefits from state transition and prediction models in standard search

and complex planning domains [28, Ch. 3–6,10-11]. In these systems, given

the current state of the environment and the parameterized actions, the next

state predictions can be encoded in different levels of abstractions. For ex-

ample, an upper body humanoid robot with manipulation capabilities can

exploit predictions of high-level categorical effects such as lifted, grasped or

rolled or low-level continuous effects such as the low-level trajectories of the

manipulated objects or the haptic profiles expected to be measured during

action executions.

Prediction of consequences of the robot’s own actions and learning this

prediction capability from the robot’s own interaction experience have been

vastly studied in robotics under the umbrella term of affordances [20]. Start-

ing from the seminal studies [24, 29], affordance learning has corresponded

to acquiring the capability of inferring the effects given objects and actions.

Most of affordance studies have focused on learning robust object representa-

tions to predict effects on challenging objects or on learning how to parame-
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terize actions to achieve desired effects [39]. In these studies, the effects were

discrete and the temporal aspect of the effect representation was ignored.

We require methods that predict how effects temporally evolve during action

execution for better control, execution monitoring, and online planning of

actions.

In our previous work, we showed that learned effect predictions in sub-

symbolic [36] and symbolic [35] spaces enabled the robots to make multi-step

plans to achieve given goals. However, those predictions provided only ap-

proximate estimations about the next states as the effects were represented

with categorical variables. Lower-level effect prediction that takes into ac-

count real-valued state variables and temporal information, on the other

hand, would provide the possibility to mentally simulate any action on any

object. This can be exploited to train inverse models for specific tasks by

imagining the effects of actions instead of actually executing them, or to

monitor the execution performance of the executed actions.

In this paper, our aim is to enable the robot to learn predicting the motion

trajectories of the objects generated by robot actions. The robot’s own ma-

nipulation experience is used for training. Given an object with an arbitrary

shape, we expect the robot to learn the effect of the manipulation action

that is applied to an arbitrary point on the object. This paper is a part of

a larger research agenda studied in the IMAGINE project1, where imagin-

ing effects of the actions are expected to be achieved using machine learning

techniques and physics simulators. The IMAGINE project is implemented

1https://www.imagine-h2020.eu/
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Figure 1: Baxter robot performing lever-up action in order to extract the PCB module of

a hard drive.

in the context of recycling of electromechanical appliances as the current re-

cycling practices do not automate disassembly. One of the most common

actions in disassembly operations, namely lever-up action, is selected as the

sample action in this paper.

The effect prediction is studied in two coupled sequential stages. In the

feature extraction stage, we investigated the use of various object descrip-

tors such as shape context features that well-represent the geometry of the

objects, autoencoder features that encode the shape in a compact reduced

space and task-specific features that are trained along with the subsequent

stage. In the next stage, recurrent neural networks are used to predict the

complete motion trajectory of the object given the object features. To the

best of our knowledge, the learning of prediction of the action effects that

depend on the shape of various objects in trajectory level has not been stud-

ied before. Given the top-down 2D images of objects, our system can learn

to predict such low-level effects using simulated interaction experience, and

can also predict the effects of real robot actions on analogous real objects.

The rest of this paper is organized as follows: The next section provides
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an overview of the studies on effect prediction in robotic systems and the

object descriptors that are suitable for such predictions. Section III provides

the details of our model and the alternative approaches that are used for com-

parison. Sections IV and V give the experimental setup and the experimental

results, and the final section concludes the paper.

2. Related Work

The consequences of the robotic actions can be predicted perfectly if the

dynamics of the system was exactly known. As it is not realistic to model

the complete dynamics of real tasks and situations, the modeling can be

done either through approximating the underlying physical model through

mathematical equations (e.g. simulations with physics engines such as ODE

[32]) or via learning from data. In this section, we will review the relevant

data-driven methods and the relevant feature representations. We will first

review the object representations that encode the geometrical and physical

properties of objects, and then the learning methods that have been used for

effect prediction.

2.1. Representations for effect prediction

Explicit geometric descriptors:. We argue that the representations required

for effect prediction should be compact enough to be processed by the learn-

ing machine and rich enough to encode the geometrical properties of the

objects on which the effects of the actions depend on. Object representa-

tion is an important and well-studied topic in computer vision that has used

inspiration from human visual processes. Initial studies focused on the geo-

metrical properties of the objects and their silhouettes. From a constructive
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perspective, pre-defined geometric object templates were used to segment

complex objects into simple parts with generalized cones [25] and geons [6]

such as ellipsoids, cylinders and cuboids. From a more bottom-up perspec-

tive, on the other hand, Hoffman [19] proposed a geometrical concept called

minima rule that divides the objects into pieces from their local concave

points. The similarity between objects was computed based on how well

those points match across the objects. Extending this work, Singh et al. [31]

segmented the objects by cutting their silhouette from the closest pairs of

local concave points and represented the objects by the composition of the

convex sub-parts. A more distributed and generic representation was pro-

vided by Belongie and Malik [5] who also exploited a similar representation

to compute object similarity. In their method, a number of points were sam-

pled from the border of the object, and the so-called shape context features

on a reference point were computed based on the distribution of the relative

positions of other sample points, offering a measure between different shape

characteristics and geometries. The distance between shape context features

was used as the similarity metric in their study successfully. Recently, Bogh

and Kragic exploited the shape context descriptor in vision-based robotic

object grasping problems [7]. In their method, after the global contour of

an object was extracted using a stereo camera system, the robot learned

to predict whether an object was graspable or not by training a non-linear

classifier (Support Vector Machine) that used shape context features of the

sampled (graspable or non-graspable) points. Shape context was argued to

provide information about the physical characteristics of the objects, such

as their center of gravities; and was shown to be more effective in predicting

7



graspability of novel objects compared to local appearance features such as

filter banks that are composed of edge, texture and colour filters.

Deep descriptors:. With the recent developments in deep learning and the

increasing amount of data, deep object representations have been heavily

used as input representations to learning machines in 2D object recognition

tasks. For 3D object classification, on the other hand, Yi Fang et al. [13]

developed a deep shape descriptor that provides geometrically descriptive

shape features that are robust to noise and structural variations in various

3D datasets. They used 3D object models as input to their model, making

it difficult to be used in real-world circumstances due to the hardness of

complete 3D model retrieval from the environment. We are aiming to use

raw object images instead of using the complete 3D models. Zhu et al. [40]

proposed a new approach for constructing 2D representations from 3D object

data. By projecting 3D shapes into 2D space from a number of perspectives

and using autoencoders to reduce the size of the feature representations, they

show that their method gives high accuracy performances on object matching

as well as leading to a faster and more efficient training procedure for feature

learning. In our work, we investigated the use of several autoencoders in

effect prediction rather than object comparison.

2.2. Learning methods

Probabilistic methods:. Deisenroth et al. [12] proposed to create a proba-

bilistic dynamic model that predicts the next state given the current state

and robot actions using Gaussian Processes. By exploiting the uncertainty

represented in the learned probabilistic model, they showed that a policy
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search algorithm could learn to solve a real cart-pole task efficiently and per-

formed long-term planning effectively. Battaglia et al. [4] proposed to use

Bayesian models, named as Intuitive Physic Engines (IPE), which predicted

the motion of the stacked cuboids that fall to different places on the ground.

They trained their model to predict discrete effects, i.e. whether they fall or

not; and continuous effects such as the direction of fall with the features that

could be extracted from vision. They used only one type of object, there-

fore, did not focus on the effect of the shape of the objects in interactions.

Furthermore, they used manually-engineered features such as the angle of

minimum critical angle across sub-towers.

Deep methods:. It is not realistic to manually engineer different feature sets

for all different tasks, and deep learning methods provide means to automat-

ically extract suitable features for the corresponding problems. Wu et al.

[37] used deep learning to find the parameters of a simulation engine that

predicted the future positions of the objects that slide on various tilted sur-

faces. Lerer et al. [23] trained deep networks to predict the stability of the

block towers given their raw images obtained from a simulator. Fragkiadaki

et al. [15] used a deep model architecture where the output of Convolutional

Neural Networks was used as inputs of Long Short Term Memory cells [18]

to predict the motion of balls in simulated environments. Battaglia et al.

[3] proposed the so-called interaction networks that perform object-centric

and relation-centric reasoning to predict the dynamics of objects. Similarly,

Chang et al. [10] used neural networks to factorize object dynamics into pair-

wise interactions and predict the future trajectory of objects by aggregating

the results of these pairwise interactions. These networks achieved high per-
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formance but did not consider the shapes of the objects. Furthermore, they

mostly used single object types in their experiments and have not considered

setups that involve interactions with robotic end-effectors.

Learning in robotic tasks:. Agrawal et al. [1] trained deep forward and in-

verse models that used the output of CNNs in order to learn how to poke an

object to move it to a given target location. Initial and final images of the

scene were transformed into their latent feature representations using con-

volutional layers of CNNs. The forward model took parameters of the poke

action and the latent representation of the initial image to predict the latent

representation of the final image. The inverse model took latent represen-

tations of both final and initial images to find the parameters of the poke

action. They showed that their model could generalize to novel shapes and

novel objects. While they could find the required parameters for the desired

goal state, the effect of the poke action was not explicitly computed.

End-to-end learning:. The action-effect prediction has also been investigated

in pure end to end learning systems. Finn et al. [14] used convolutional

LSTMs [38] to predict future image frames using only current image frames

and actions of the robot. Similarly Byravan et al. [9] used encoder-decoders

to predict SE(3) motions of rigid bodies in-depth data. Their network was

similar to Finn et al.’s network but their model is designed to work on depth

data and to predict transformation matrix. In end-to-end methods, as the

next RGB(-d) frame was predicted directly, the predictions became more and

more blurred in multi-step predictions. Furthermore, object mask discovery

and prediction of the next positions of the pixels were the main focus of
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Figure 2: Our general framework. The robot executes an action on the object using a tool.

The left-most figure shows the initial state of the object before action execution and the

right-most figure provides the trajectory of the object observed during action execution.

Given the visual perception of the object, one of the feature extraction methods is used

to compute the object features. These features are fed to the LSTM effect predictor that

is trained to predict the observed trajectory.

these studies, whereas the shapes of the objects and their influence in the

generated effects are very central in our study.

3. Proposed Method

Our model predicts the effect of actions given the object and action re-

lated information as shown in Fig. 2. Given top-down image of an object

and the contact point of the tool attached to the robot, our system learns to

predict the motion trajectory of the object position expected to be observed
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during action execution of the robot. This prediction is done by first com-

puting various features from the image of the object and using these features

as inputs of a recurrent neural network (RNN) that outputs the position

trajectory. A number of models that differ in the utilized feature descriptors

are proposed:

• Generic unsupervised features based models: A number of generic fea-

tures such as autoencoder features or shape context features are used

as inputs to the RNN.

• Supervised features based models: A number of features are computed

conjointly with the effect predictor. Given raw images or shape context

features, Convolutional Neural Networks are trained using the error

signal back-propagated from the RNN.

• Task-specific features based models: A number of specific features that

are considered to well-represent the particular task and action are man-

ually designed and used as inputs to RNNs. For the lever-up action,

the edge of the object that supports rotation movement of the object

directly determines the trajectory. Therefore, support points are either

directly provided (as the ground truth) or learned and used as inputs

to the RNN.

Our model will be described in detail in the rest of this section. As the

effect predictor RNN is common in all our models, the specific Recurrent

Neural Network model, namely Long Short Term Memory Network, is de-

scribed first, and the details of the feature representations will be presented

next.
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Figure 3: Trajectory Prediction Model. xt: Current object state. ht: Message passed

from LSTM network to itself and to the output dense layer. Ct: Memory cell of LSTM

network. Object features: Features passed to the LSTM network.

3.1. Long-Short Term Memory (LSTM) networks for effect prediction

Our aim is to predict not only the single snapshot of the outcome obtained

at the end of the action, but also how the environment changes during the

action execution of the robot. For this, our system predicts the trajectory of

the successive states expected to be observed during the execution of the cor-

responding action. Recurrent Neural Networks (RNNs) with the capability

of storing the history of their successive inputs in compact state-like repre-

sentations are suitable for learning in generating such multi-step predictions.

In our model, Long-Short Term Memory [18] (LSTM) networks that are

RNN networks with special LSTM units are used. LSTM units are special

RNN units that can better handle long term dependencies. In addition to

the so-called message (ht), output unit that is used as the input to the next

iteration, LSTM unit also uses an internal memory and specific processing

units, called memory cell and gates, respectively. Figure 3 provides the

structure of LSTM where the information processing is illustrated from left

to right sequentially. First, the current state (xt), the pose of the object, is
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concatenated with the object features and passed to the LSTM network. It is

then processed along with the previous output message (ht−1) to predict the

next output message(ht). Output message (ht) is passed to a dense layer to

predict the next n states (xt+1:t+n), and to the LSTM network for calculation

of the future states. The value of n can be set flexibly.

The simulated interaction scene is arranged such that the robot always

contacts the object from the same position. Therefore, the point of contact

is not used as an additional input to the network. This setting prevents our

model from learning trajectories based on their sizes and initial poses.

3.2. Generic unsupervised features

In this study, we used two types of generic features: shape context fea-

tures that encode geometric boundary of the object with distance and angle

histograms, and autoencoders that represent the raw top-down image of the

object in reduced dimensionality.

3.2.1. Shape context features

Shape context is a distributed representation that encodes histogram of

relative positions of boundary points of an object with respect to a reference

point and direction. The 2D geometry of the object is represented with

a compact histogram representation. In order to exploit the advantage of

action-grounded representations [26], the reference point is set as the point of

contact between the robotic tool and the object, and the reference direction

is set as the direction of the action. After reference point is selected, the

contour of the image is extracted (Fig. 4a), a number of points are sampled

uniformly from the contour, and vectors that connect the reference point to
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Figure 4: Steps of shape context histogram calculation. a) Finding the contours of the

shape. b) Sampling contour points and constructing vectors from the reference point to

all sample points. c) Placing the log-polar coordinate system onto reference point and

arranging frame according to that the first wedge of the log-polar coordinate system fits

the same orientation of the edge that reference point is on. d) Counting sample points

according to wedge and ring indexes and constructing a 2D shape context matrix. e)

Flattening the matrix to get shape context histograms

all sampled points are calculated (Fig. 4b). Each vector provides the distance

between each sampled point and the reference point, and the angle between

the vector and the reference direction. All distances can be scaled by the

mean distance of all points in order to obtain a size-invariant representation.

Finally, a log-polar system is located on the reference point and vectors are

counted as which one of them is placed inside of the which wedge and which

ring of the log-polar system (Fig. 4c). In this way, a feature matrix size of

R ×W (Fig. 4d) is extracted where R and W are ring and wedge numbers

of the log-polar system respectively. The matrix can also be viewed as a flat

R ×W vector (Fig. 4e). Note that the log-polar coordinate system is used

when measuring shape context because it provides more detailed information

for the contour points that is closer to the reference point.

A number of different shape context histograms with different density and

quality measurements can be constructed by changing R and W values. In
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our work, we use 3 different shape context features called as Sc-200 (10×20),

Sc-800 (20 × 40) and Sc-3200 (40 × 80).

3.2.2. Autoencoder features

Autoencoder is a dimensionality reduction technique that compresses high

dimensional data into a small code such that when the code is decompressed

the match between the reconstructed data points and the original ones is

maximum. Bottleneck structure of the autoencoders allows the neural net-

work to represent the original input in a lower-dimensional space while pre-

serving the important characteristics of the data.

In our work, we used two convolutional autoencoders to compute rep-

resentations of the top-down images of the objects in various reduced di-

mensions: Autoencoder512 and Autoencoder256. The autoencoder used in

this study is structured as in [11] starting with the large number of channels

and decreasing the channel numbers towards to the latent layer as the image

shrinks. The Autoencoder512 network takes an (128x128x1) image as input

and outputs another image with the same size. In encoder network, filter

numbers of convolutional layers are chosen as 128, 128, 64 and 8 ordered

from the first to the last layer. For the decoding part, all layers are the same

but in backwards order. Filter sizes of all convolutional layers are (3x3), and

each convolutional layer is followed by a max-pooling (2x2) layer for encoding

or an upsampling (2x2) layer for decoding parts of the network. At the end

we have (8x8x8) encoded features. In Autoencoder256 on the other hand, the

filter number of the last encoder layer is 4 instead of 8. So the output of the

Autoencoder256 is (8x8x4). After training the autoencoders, the activation

in the bottleneck layer is used as the input for the effect prediction model.
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(a) Image CNN (Im-CNN) (b) Shape Context CNN (Sc-CNN)

Figure 5: Convolutional Neural Networks are used as supervised feature extractors

3.3. Generic supervised features

Shape context and autoencoder features are generic features, however,

they arrange the feature space independent of the learning problem while

generally reducing dimension. In this section, we will provide feature ex-

tractors that are trained along with the subsequent RNN predictor. While

training our model to predict the next poses of the object, a convolutional

neural network (CNN) based feature extractor is also trained in the mean-

time. Our CNN can use two different inputs, namely, shape context matrices

or raw images. In the remaining of this subsection, we will provide the details

of CNNs.

Convolutional Neural Networks are variations of feed-forward neural net-

works that run over the 2D structure of image through convolution operation

and pooling layers. CNNs can have multiple convolution layers with pooling

and activation layers between them. They generally take a raw image as

input and learn the network weights that are needed to predict the desired

output from that image. Convolutional layers with (3x3) filters and ReLu ac-

tivation functions are used in this study. Every convolutional layer is followed
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by a (2x2) maxpooling. We implemented two different CNN-based feature

descriptors. Im-CNN (Fig. 5a) takes the raw top-down images of the objects

as inputs whereas SC-CNN (Fig. 5b) uses shape context matrices that are

computed from the boundaries of the objects as inputs. In this study, we

assume that the visual perception is encoded relative to the executed action.

As the lever-up action follows the same trajectory, Im-CNN does not need to

explicitly use any action related information. For both of the CNN models,

we followed the structure of VGG-16 [30] architecture, which is a widely used

standard convolution architecture, where each convolution layer is followed

by a pooling layer while the channel sizes are doubling starting from 32 to

256.

3.4. Task specific features: Support points and their predictors

In order to evaluate the performance of the proposed features above, in

this section, we introduce manually designed task-specific features that have

a direct relation with the physics of the particular task in a compact form.

The performance of the effect predictors with these features will be used as

a baseline. For the particular action of lever-up, the trajectory of the object

depends on the edge which the object rotates around. The support points, i.e.

the object corners that define the supporting edge of the object rotation, are

used as the manually designed ground-truth inputs for the RNN trajectory

predictor. These features are named as support point ground truth, SPtruth.

The support points can be directly extracted from observing the object

movement during action execution, however, our purpose is to predict the

trajectory prior to executing any action. Therefore, we propose a neural net-

work model that learns to predict support points and provide the support
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Figure 6: Support point prediction model. Corner information is separately transformed to

latent space representation using a single shared encoder (E). Representations are merged

into one by using a summation layer. Resulting general representation is given to a decoder

structure to predict the support point of the shape.

point predictions to the effect predictor. These features are called SPpred.

Figure 6 shows the neural network structure that uses the corner coordinate

information from the shapes to predict the two support points. The network

always outputs two support points but input size is changing because edge

numbers of the shapes are changing between 3 and 10. To construct a neural

network that can adapt to the changing number of inputs (corners), we used

a neural network structure inspired from Conditional Neural Processes [16].

A single shared encoder, which is a three-layer MLP with 128 neurons, is used

to transform the corner inputs into their latent space representations. Af-

ter that, all representations are merged into one using an aggregation layer

which sums up the given representation vectors. Using a shared encoder

followed by an aggregation layer, we ensure that our network can handle dif-

ferent numbers of input sizes. The resulting representation holds the general

information about the shape according to its corner information. Finally,

this representation is used as an input to a decoder structure, which is a

two-layer MLP with 128 neurons, to predict the support points. Finally,
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(a) (b)

Figure 7: (a) A sample random shape (pentagon) and the corresponding object generated

in the V-REP simulator. (b) A number of randomly generated sample shapes.

the error of the network is back-propagated according to mean square error

between predicted support points and SPtruth information.

4. Experimental Setup

The robot is required to learn to predict the effects of its actions through

self-exploration and observation. V-REP2 physics-based simulator with Bul-

let engine is used for the training platform. To verify our system with a rich

set of shapes, an object dataset is created in the simulator from randomly

generated shapes. In order to generate an object, a circle is generated with a

radius of 10 cm, and between 3 and 10 corner points are picked randomly on

the circle. The center of the circle is connected with each pair of successive

corner point forming a triangle, and the formed triangles are grouped into

triangle meshes that can be efficiently created in and handled by the physics

engine of the V-REP simulator (Figure 7b). 160 objects are generated in

total for interaction.

The generated objects are imported to the V-REP simulator and placed

on the table. The lever-up action is applied to the same object several times

2www.coppeliarobotics.com/
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Figure 8: An example of lever-up experiment with a sample shape. Lever-up action is

performed from the indicated point of action.

such that the object is contacted from two uniformly sampled points at each

edge. A screwdriver that is attached to the end effector of the simulated

UR10 robot arm is programmed to generate an open-loop lever-up action,

always following the same trajectory as shown in Fig. 8. 1800 interactions

are performed in total, storing the shape of the object, the top-down image

taken by a simulated Kinect camera, and the trajectory of the center-of-mass

of the object in each interaction. The points that support the rotation of the

object are also stored in each interaction.

In order to evaluate our proposed model, the dataset with 1800 interac-

tions is shuffled and then divided into training, validation and test sets. To

make a better comparison between models, 10 randomization seeds are used

for all models. This is to prevent the possibility of inconclusive experimental

results that can possibly be obtained from a seed that randomly perform

better for certain features. 1400 of the trajectories are used on training, 100

of the trajectories are used on validation, 300 of the trajectories are used

for testing. Our models were trained to predict the next pose of the object

given the last 15 poses obtained from the simulator. Number of hidden units

of the LSTM was empirically selected as 256. To prevent over-fitting, the

models were validated on the whole trajectory prediction which was done
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by recurrently predicting the next n poses given the current predictions. In-

termediate outputs of LSTM obtained from previous time-steps were used

for prediction at training time, which boosted the overall performance of the

model. Validation error, which was defined as the mean square error on the

complete trajectory of the levered-up object, was used to select the best per-

forming models at the end. Keras framework with tensorflow backend 3 is

used to train and test the neural network models. ADAM optimizer with de-

fault hyper-parameters and mean squared error loss is used for this purpose

where the number of epochs is limited to an empirically set number, 100.

5. Results

In this section, first, we will show the results of our support point predic-

tion ( SPpred) model.

5.1. Support point prediction

Support points correspond to the object corners around which object ro-

tates during lever-up action. As a task-specific feature, we propose to predict

these points using a neural network and use them as inputs in predicting ob-

ject movement trajectory. Recall that the corner coordinates of the objects

are used as inputs to our neural network (Figure 6). The increase in perfor-

mance of the network, i.e. the increase in its accuracy in predicting support

points for the test samples, is shown in Figure 9a. Results show that our

model reaches up to 93% accuracy predicting the true support points. Com-

paring with a random guess accuracy of 23%, it can be clearly seen that

3https://keras.io/, https://www.tensorflow.org/
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Figure 9: (a) Change in support point prediction with increasing training size. (b) Gener-

alization performance of the model. Our model is tested with the selected group of shapes

while trained with the rest.

our model can learn to predict the support points successfully with a very

high accuracy rate. Results also show that our model can reach around 90%

accuracy using nearly 50% of the training data.

Next, we evaluated the generalization performance of our support pre-

diction model. For this, instead of generating training and test sets from

the completely shuffled data, objects with six shapes are used for training

and objects with the remaining two shapes are used for the test. The ob-

jects that are used for the test was with 3&4 edges first, with 5&6 edges

second, with 6&7 edges third and with 8&9 edges last. Figure 9b provides

the generalization results where our models achieved around 89% prediction

accuracy which is close to the full model accuracy (93%), in predicting novel

shaped objects that was not provided in training phase. Results show that

the parameter sharing encoder structure that we used in our support point

prediction model allowed the network to generalize to the changing number
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(b) Prediction error on final position

Figure 10: This figure shows prediction performance of the models over full trajectory

error and final position error. Boxes corresponds distribution of errors for 10 different

randomization seeds.

of corners successfully.

5.2. Object movement trajectory prediction

The performances of the models that predict the movement trajectory

of the object are evaluated in this section. Figure 10 provides the model

prediction errors where No-Feature (similar to random guess), shape context

(Sc-200, Sc-800, Sc-3200), autoencoder (Autoencoder256, Autoencoder512),

shape context based CNN (Sc-CNN), top-down raw image based CNN (Im-

CNN), predicted support points (SPpred) and real support points (SPtruth)

are used as inputs to the LSTM trajectory predictor. For all features, one

step ahead prediction models (n=1) are used. The error is defined as Eu-

clidean distance between the real and predicted trajectory. For validation
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Figure 11: Effect of increasing training size on prediction performance.

of methods, Euclidean distance between the end-points of the real and the

predicted trajectories are also shown. These errors are shown in Figure 10.

Boxes of each method correspond to the distribution of mean error for data

shuffled with 10 different seeds. In case no input features are used to predict

the effect, the mean error is about 2 cm as shown with the first bar in the

plot. The prediction error decrease through the use of unsupervised generic

features such as shape context or autoencoders; and further decrease if su-

pervised features such as image CNN’s are used. Additionally, models using

unsupervised features have higher variance on error compared to models us-

ing supervised features. Finally, the best accuracy is obtained through the

use of task-specific features, real or predicted support points as shown. While

the low error in models with manually designed features was expected, our

general conclusion is that deep predictor that uses the raw image as input

and effect as output provided better performance compared to unsupervised

generic features that are considered to well-represent the geometry of the

objects.

25



1 2 3 4 5

Number of predicted pose

0.85

0.90

0.95

1.00

1.05

1.10

Er
ro
r (
cm

)

Full Trajectory Errors (cm)

Figure 12: This figure shows full trajectory errors (cm) according to predicted step number

at each iteration. It is shown that changing predicted pose numbers at each iteration results

in a difference in the error less than 5 millimeters.

LSTMs enable predicting more than one step ahead at each iteration,

which would decrease the run time of the model. For example if 50 time-step

trajectory was predicted, performing one-step ahead prediction would require

50 iterations while two-step ahead predictions would require 25 iterations.

We investigated the effect of number of future states the model predicts in

one pass through training models with one to five step ahead predictions.

As shown in Figure 12, no significant difference in error was found between

these models.

We further analyzed how the prediction performance is affected by the

training size. For this purpose, we trained our models with 2%, 4%, 8%,

16%, 32%, and 64% of the data set, and calculated the error with the re-

maining samples. Figure 11 shows the effect of increasing training set size on

prediction error. Errors for CNN and especially autoencoder models quickly

decrease as data size increases. As autoencoders see wider range of shape

data by increased sample size, they can generate more general and robust
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Figure 13: Generalization results. Each model is tested with a particular set of shapes

and is trained with the remaining shapes. For example, the first group of bars correspond

to the errors of different models that were tested with triangles and squares and trained

with the remaining object types.

latent vectors, and models trained on these latent vectors provide better per-

formance even catching the performance of Im-CNN. As expected, SPtruth

and SPpred models perform well even with small amount of data as they are

fine-tuned to the task. Note that SPtruth and SPpred are task-specific high-

level features that already include knowledge about dynamics of the learning

problem, therefore can bootstrap the learning whereas the supervised fea-

ture based Im-CNN performance catches up only with sufficient number of

training data.

5.3. Model generalization analysis

In this section, we analyzed the generalization performance of the learned

models to novel shapes. For this purpose, we trained our models faced with

novel environments. In particular, each model is tested with two types of

objects (e.g. triangle and rectangle) and trained with others. The prediction
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performances of the models on novel shapes are provided in Fig. 13. Overall,

performance degradation is graceful in all models. We observed that SPtruth

and SPpred, and autoencoder exhibited poor generalization performance in

the triangle-rectangle test set, whereas Im-CNN achieved similar generaliza-

tion performance independent of the particular test set. Interestingly, the

performance of the Sc-CNN is stable across different generalization test sets

whereas the best performing shape context feature, Sc-800, fails in general-

ization tests. One can conclude that whether applied on raw image mask

or on distributed shape context representation, convolution layers that are

trained based on backpropagated errors enable stable generalization perfor-

mance. This is probably due to the fact that spatial/topological information

that has a direct influence on the effects is well-organized in 2d form, and

can be extracted by convolution operation effectively. These results suggest

that among the general models, Im-CNN achieves the best performance in

both accuracy and generalization.

5.4. Verification in the real robot

In this section, we provide the evaluation of our model in the real world.

For this, the prediction model that was trained in the simulator was trans-

ferred to the real robot and the predicted and actual manipulation trajec-

tories are compared. A screwdriver was attached to the gripper of the real

UR10 robot (Fig. 14). Two objects, a pentagon shaped object and a hep-

tagon shaped one, were generated and printed using a 3D printer. The size

of the generated objects were kept similar to their simulated counterparts.

To test the model, each object was placed in different orientations so that it

could be levered-up from each of its edges using the real screwdriver. The ob-
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Figure 14: Real robot execution. The first row shows the environment while the execution.

In the second row, first three images show the predicted trajectory (red line) and the

trajectory of the object during the execution (green line) from the point of view of the

camera. The last image shows the side view of the real and predicted trajectories after

the execution is completed.

ject poses were tracked with an Intel real sense camera using ARtags placed

on the objects. The best performing Im-CNN-based LSTM model was used

to predict the trajectory from the top-down masks of the objects.

The sampling rates of the real and the simulated systems and there-

fore the lengths of the trajectories observed are different from each other.

Therefore, Dynamic Time Warping method is applied to remove the timing

discrepancy before comparing the trajectories observed in the real world and

the trajectories predicted based on the simulation experience of the robot.

Then, the distance between trajectories is calculated by taking the average of

the point-by-point Euclidean distances of these trajectories. For comparison

of 3D printed shapes, we generated the real-world setups of the by placing

simulated objects to the same positions in the simulator and by measuring

the simulated object movement trajectories. Tables 1 and 2 provide the dis-

tances between the real and predicted trajectories and the distances between

the real and simulated trajectories. As shown, our predictions were very
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Edge 1 Edge 2 Edge 3 Edge 4 Edge 5

Real vs Simulation 0.485 0.520 0.379 0.385 0.474

Real vs Predicted 0.981 0.446 0.480 0.611 0.401

Table 1: The prediction and simulation error that was observed in pentagon shaped object

experiments. Each column corresponds to a lever-up action that is applied to a particular

edge of the object.

Edge 1 Edge 2 Edge 3 Edge 4 Edge 5 Edge 6 Edge 7

Real vs Simulation 0.447 0.910 0.368 0.333 0.720 0.864 0.338

Real vs Predicted 0.601 0.633 0.460 0.316 0.531 0.499 0.471

Table 2: The prediction and simulation error that was observed in heptagon shaped object

experiments. Each column corresponds to a lever-up action that is applied to a particular

edge of the object

close to the ground truth: the distances between the trajectories were always

below 1 cm in both pentagon and heptagon shaped objects, and lower than

0.5 cm for real life objects. In some cases, the prediction error was smaller

than the simulation error, probably because the object was placed in the

simulator with slight position/orientation error. These results show that our

model can predict the effects of the real robot actions successfully.

To visualize our prediction model, we implemented a system that overlays

the effect prediction, i.e. predicted movement trajectory of the object, on a

graphical user interface (http://wiki.ros.org/rviz) that shows the online

RGB-D output of the Kinect sensor. A number of snapshots from the real

execution are provided in Fig. 14 where the match between the predicted (red

colored) and the real (green colored) trajectories can be seen. We further
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Figure 15: (a) Daily objects, namely table tennis racket, PCB, book and HDD , used in the

real world experiments and their corresponding image masks. The masks are constructed

using convex hulls of the object images and the configuration of the image is adjusted

according to the action points. (b) Average errors (cm) between the predicted trajectory

using the configured images and observed trajectory for each object.

provided a link to the robot execution video.4

We further provide the effect prediction results obtained from a number

of flat daily objects, namely a book, a PCB, an HDD and a table tennis

racket (Fig 15a). The masks of the objects were constructed by finding

their corresponding convex hulls, and these masks were provided to the Im-

CNN predictor as in the previous subsection. As shown in Figure 15b, the

errors between the predicted and the real trajectories were around 0.5 cm for

all objects, therefore indicating that our model can be successfully used to

predict the effects of the actions on various daily objects.

5.5. Non-flat objects and depth-enriched image masks

In the previous sections, we focused on flat-like objects whose top-down

images are sufficient to represent the physical features of the objects. Our

4Video: https://youtu.be/dFPOH1C3DeY
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Figure 16: On the left side of the figure, two different type of objects, a cube and a lying

cylinder, whose top-down image projections are not distinguishable but their resulting

effects are completely different are shown. On the right side, it is shown that our model

can differentiate the two different types of object effects by using depth-enriched images.

system would fail to distinguish action effects on non-flat objects that have

the same top-down projections but different shapes. In this section, we en-

rich the top-down masks of the objects by adding depth information that is

provided by a Kinect camera. We also expanded our dataset by including

lying cylindrical and rectangular objects of various sizes that can only be dif-

ferentiable by the depth knowledge. When original the top-down projection

was used as input to Im-CNN, the average full-trajectory error in prediction

was found to be 7.23 cm, whereas when depth-enriched masks were used, the

average full-trajectory error dropped to 2.77 cm. Note that when lever-up

action is applied on a lying cylinder object, the object starts rolling off the

table, generating a completely different trajectory compared to the trajec-

tory of a levered-up rectangular object that tumbles around its edge (Fig.

16). As shown in the figure, our system was to able predict the trajectories

that correspond to qualitatively different effect categories.

6. Conclusion

In this study, we proposed and implemented a deep prediction model

that enables a robot to predict the consequences of its manipulation actions
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from its own interaction experience on objects of various shapes. Given the

top-down image of the object, the robot learned to predict the movement

trajectory of the object during execution of a lever-up action performed with

a screwdriver in a physics-based simulator. We investigated the use of var-

ious feature descriptors such as shape context representation, autoencoder

features, CNN features and finally manually engineered lever-up specific fea-

tures. Our experimental results show that the highest prediction and gener-

alization performance was obtained with manually engineered features which

are real and predicted support points. However, as it is not feasible to man-

ually encode different features for each different action and task, we used

the performance obtained with these features as the upper bound. On the

other hand, our proposed deep CNN-based LSTM model outperformed other

models that used unsupervised (autoencoders) or generic (shape descriptor)

features. It is shown that errors of the autoencoder models had a higher

variance compared to Im-CNN model because autoencoders were unsuper-

vised feature extractors that were trained independently of the subsequent

recurrent neural network structure. Autoencoders aimed to reduce the di-

mensionality while preserving the important features of the data but this did

not ensure that each resulting latent activation in the autoencoders is always

the optimal one. In each training, the autoencoder may find a different way

to reduce the dimensionality of the data and reconstruct it to the original

size successfully while having different impacts with a high variance on the

latter task. However, in Im-CNN model (or even in Sc-CNN model), image

representations were directly connected to the recurrent neural network, al-

lowing the model to learn always similar representations across different runs
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using backpropagated error. As we used the top-down masks of the objects

as inputs to CNNs, our model was easily transferred to the real-robot in-

teraction settings where the movement of the real objects were successfully

predicted.

Furthermore, we showed that our architecture is versatile and can also use

depth images. When the rollable objects are considered, the trajectories of

the affected objects are completely different (making spirals instead of an arc)

as these objects are pushed away instead of being levered-up. Still, our model

could learn to encode and predict these qualitatively different trajectories.

On this basis, although our framework is verified using a lever-up action

in this study, we believe that it can be used for other motion trajectory

prediction tasks that require learning of the relations between geometries of

objects and the corresponding non-linear motion trajectories.

Our robot learns to predict the action consequences that are determined

by the related parameters of the environment, including friction coefficients.

In case the robot engages with tool-object pairs with completely different

friction coefficients, the predictions would fail as the robot did not learn how

the friction affects the consequences of its actions. Therefore, for generaliza-

tion, the robot is required to experience tool-object pairs of different friction

coefficients. If the friction coefficient can be extracted from the environment,

it can be used as input to the predictor; otherwise, the system needs to learn

to infer this information from active exploration or use closed-loop controllers

in executing its actions. While the focus of this paper is on object represen-

tations and learning methods for effect prediction, domain randomization

techniques [34] that benefit from high-variability in simulations can be used
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to handle different environment dynamics.

It is important to note that while our framework accepts action parame-

ters as input, we did not add explicit action parameters in learning or pre-

diction. In order not to be affected by kinematic constraints of the robotic

platform, the lever-up action was always applied to a reference point with

respect to the screwdriver. This is equivalent to encoding the perception

and action relative to the tool or the end-effector. Such representations are

known to be used in biological systems: target locations are encoded rela-

tive to hand in Parietal Cortex Area 5d during reaching action [8]. Previous

robotics studies also exploited such representations in increasing the perfor-

mance of object affordance classification [27]. In the future, we plan to study

learning of consequences of actions that have complex and varying execution

trajectories.
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