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Abstract— The studies on mirror neurons observed in mon-
keys indicate that recognition of other’s actions activates neural
circuits that are also responsible for generating the very same
actions in the animal. The mirror neuron hypothesis argues
that such an overlap between action generation and recognition
can provide a shared worldview among individuals and be
a key pillar for communication. Inspired by these findings,
this paper extends a learning by demonstration method for
online recognition of observed actions. The proposed method
is shown to recognize and generate different reaching actions
demonstrated by a human on a humanoid robot platform.
Experiments show that the proposed method is robust to both
occlusions during the observed actions as well as variances in
the speed of the observed actions. The results are successfully
demonstrated in an interactive game with the iCub humanoid
robot platform.

I. INTRODUCTION

Studies on mirror neurons [7] indicate that monkeys rec-
ognize other’s actions using the very same neural circuits
that are active during the generation of those actions by the
monkey. The use of action generation circuits for recognizing
other’s actions (rather than using separate recognition circuits
that are detached from action generation) allows the organism
to link his own experiences with the ones observed in others,
enabling the understanding of intentions.

Specifically, this paper adapts the Dynamical Movement
Primitives (DMPs) [3], [8], [2], proposed as a learning by
demonstration method, for online recognition (i.e. recog-
nition before the completion of the observed action). The
proposed method, called Closed Loop Primitives (CLPs), is
shown to recognize and generate different reaching actions
demonstrated by a human on a humanoid robot platform.
Experiments show that the proposed method is robust to
both occlusions during the observed actions as well as
variances in the speed of the observed actions. The results
are successfully demonstrated in an interactive game with
the iCub humanoid robot platform.

In a prior study [1], we had laid out how DMPs can
be extended to support online recognition. However these
extensions had created convergence problems for generation,
and the method was demonstrated for only recognition. This
paper addressed these problems allowing us to recognize as
well as generate actions on the robot from demonstrations.

II. SYSTEM ARCHITECTURE

In this section, we first explain Dynamical Movement
Primitives (DMPs), then we describe our extension Closed
Loop Primitives (CLPs).

A. Dynamical Movement Primitives (DMPs)

DMPs is a method proposed for learning behaviours
from demonstrations. DMPs shown in equation 1, generate
acceleration of an action for a given goal position, states of
the robot(i.e. end-effector position and velocity).

ẍ = K(g − x)−Dẋ︸ ︷︷ ︸
Linear Part

+ K f(s,W)︸ ︷︷ ︸
Non−linear Part

, (1)

where xo is the starting position, s is the phase variable,
g is the goal position, x, ẋ, ẍ are position, velocity, and
acceleration vectors in task space respectively. f(·) is a non-
linear function and W contains the parameters for f(·). K
and D are diagonal matrices.

The phase variable s is defined as:

s0 = 1 (2)
ṡ = −αs (3)

=⇒ s = e−α(t−t0) (4)

It can be seen from equation 4 that s decays from 1 to 0
exponentially in time, decreasing the contribution of the non-
linear part so the system converges to the goal position, and
α is calculated by forcing s = sf at the end of an action.

DMP system in equation 1 can be analyzed in two parts:
(1) Linear part which is inspired by a mass-spring-damper
(MSD) system. (2) The non-linear part which perturbs the
system to generate complex trajectories.

Learning by demonstration (LbD) refers to estimating
action generation parameters given recorded trajectories of
human demonstrations. It is done as follows: First, the states
of the action (x, ẋ,g) are recorded from a single demonstra-
tion. Then, f(·) is left alone and f(·) values are calculated.
Corresponding s values are calculated using equation 4.
Finally, f(·) with respect to s is learned using a learning
algorithm (regression in the cited work).

In addition, DMPs do not have any online recognition
scheme implemented in previous works although offline
recognition is implemented in a previous work [4], and it
is not suitable for online recognition since:

• The non-linear part of the DMPs runs in open loop since
phase variable s is updated without feedback making the
method vulnerable against perturbations.

• The phase variable s depends on the starting time of an
action (equation 4) which may not be observed by the
observer.



• α in equation 4 has to be calculated from the end of
the motion which prevents online recognition.

B. Closed Loop Primitives (CLPs) -
Modifying DMPs for Online Recognition

We propose Closed Loop Primitives (CLPs) equation 5
where we have modified the DMP formulation [2] for online
recognition.

ẍ = K(g − x)−Dẋ + wf K f(z,W), (5)

where wf is the weighing factor, z is the state vector and
W is the parameters of the function approximator f(·), other
variables are same as DMPs. The state vector is added to
make the non-linear part closed loop, which is restricted to
variables observable by others. To keep it simple, we used
the current position and velocity of the end-effector as the
variables of the state vector:

z = [x ẋ ] . (6)

The weighing factor wf is defined to ensure convergence
because by removing the phase variable s from DMPs we
removed the quarantee for convergence:

wf = exp(−∫ h(·) dt), (7)

where h(·) is the instantaneous penalty which penalizes
movements away from goal position. wf starts from 1 and
decays to 0 as the instantaneous penalties accumulate. h(·)
has to be chosen appropriately so that the non-linear part is
penalyzed whenever the system diverges from the goal:

h(ṙ) = p0 exp( p1 exp( p2 ṙ )), (8)

ṙ =
ẋ · (x− g)

||x− g||
, (9)

where ṙ is the radial velocity of the end-effector with respect
to the goal (i.e. change in the distance between current
position and the goal) and p0, p1 and p2 are the parameters
of the Gompertz function which defines a sigmoid function
proposed by Benjamin Gompertz where p0 sets the upper
asymptote, p1 sets the displacement in x axis and p2 sets the
growth rate.

CLPs are guaranteed to converge to the goal point since
the non-linear part will diminish weight whenever the end-
effector gets away from the goal. Furthermore, CLPs run in
a completely closed loop fashion since observable variables
are used and since there is no explicit time variable.

C. Learning by Demonstration

In CLPs, learning by demonstration corresponds to learn-
ing f(·) (estimating its parameters W) given the time
evolution of x, ẋ, ẍ and the goal point g recorded from
multiple demonstrations. One f(·) is learned for each action
irrespective of the goal position meaning each action can be
actuated on any object. As a result one CLP is learned from
multiple demonstrations for each action.

Fig. 1. Experimental Setup. Motion Capture Tracker is attached to the
ceiling (not shown).

f(·) can be observed variables, as calculated in equation 5:

f =
K−1 [ẍ−K(g − x) + Dẋ]

wf
(10)

where wf is calculated from equation 7 using g and x. The
last point of the trajectory is used as the goal point.

To acquire a new behavior from demonstrations, the map-
ping from z to f(·) has to be learned. Given multiple demon-
strations, first each trajectory is translated to a goal centered
frame by subtracting the goal position from all positions.
Then, f(·) is calculated using equation 10. The final step is
to estimate the parameters of the non-linear part (W) using
samples of z as inputs and the corresponding samples of
f(·) as outputs. We used Vijayakumar’s implementation of
LWPRs [9] to learn the relation between z and f(·) using
the default parameters.

D. Online Recognition

During recognition, initial observation of the state vector
(z0) is used to calculate future trajectories for every possible
action-object pair (goal positions are known by the observer)
using the learned models. As the action unfolds, the observed
trajectory is compared with the mentally simulated trajecto-
ries and cumulative error for each pair is calculated:

erri(tc) =

tc∑

t=t0

||x̂i(t)− x|| (11)

where erri is the ith pair’s cumulative error, t0 is the
starting time, tc is the current time, x̂ is the ith pair’s
simulated/predicted position and x is the observed position.
Note that positions are calculated in object centered frame
and thus different objects will yield different x̂i(t) and x(t)
values.

In order to have a quantitative mesasure of similarity
between actions, we define recognition signals as:

rsi(tc) =
e−erri(tc)∑
j e

−errj(tc) , (12)

where rsi is high for pairs with low error. A recognition
decision is made if the ratio of the two highest recognition
signals gets above a certain threshold (Υ).
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Fig. 2. (a): Cartesian state of the end-effector is tracked and translated to a different object centered frame for each object. When recognition starts,
the observed state is used as the initial state to the learned behaviors(not shown). Then the learned LWPR model of each action is used to simulate
future trajectories. As the action unfolds, observed and simulated trajectories are compared and responsibility signals are calculated. From these signals,
recognition decision is made according to the threshold. Note that action choice determines the used LWPR model while the object choice determines the
input of the LWPR model. (b): Cartesian state of the end-effector is obtained from the robot and translated to a object centerd frame for each object. When
the robot decides to act, the LWPR model of the decided action is used similar to the recognition architecture. The generated acceleration command is
sent to the motors.

III. EXPERIMENTAL SETUP

The experimental setup consists of two objects, an actor,
an observer (the robot) and a motion capture system (Fig-
ure 1). The VisualEyezTMVZ 40001 motion capture system
which records the 3D Cartesian positions of markers at
100Hz is used for tracking targets. One marker is attached
to the right wrist of the actor (end-effector) and one marker
is attached to the center of each object.

A. Actions

Four actions are defined as:

• L(X): Reaching X from left.
• R(X): Reaching X from right.
• T(X): Reaching X from top side.
• B(X): Reaching X from bottom side.

and applied on two objects, left object (LO) and right
object(RO).

The flow diagram of the recognition architecture for reach-
ing to left on left object is depicted in figure 2(b) and the
flow diagram of the generation architecture reaching to left
of the left object is shown in figure 2(a).

1http://www.ptiphoenix.com/VZmodels.php

B. Training & Test Sets

Using the target tracking system, different actions on both
objects are recorded. Beginning and end parts of each record-
ing is truncated by a speed threshold to discard motionless
parts (threshold = 0.05m/s).

To form the training set, a 3D workspace is defined for
the starting points for actions. The size of the workspace
is maximized by selecting closest and furthest points where
the actions can be performed comfortably2. 3 × 3 × 3 (3
points for each dimension) are selected for the workspace
which results in 27 points in total. From each starting point
2 repetitions for each object are performed which results in
108 recordings per action.

Test set is composed of 25 trajectories for each object-
action pair. The actor has selected initial positions randomly
while remaining in the 3D workspace defined for the training
set.

C. Learning

In order to learn from demonstrated actions, the state
vector (z) and the corresponding f(·) are calculated for each
sample in each trajectory using the training set. Then, an

2±30 cm in left/right and up/down directions, 20-60 cm outwards with
respect to the midpoint of object centers.



(a) Observed action and mentally simulated
trajectories L(LO)

(b) Recognized action L(LO) (c) Recognized action R(LO)

(d) Recognized action T(LO) (e) Recognized action B(LO)

Fig. 3. Observed trajectory shown with black line and the corresponding recognition signals. Axes for trajectories are in meters.

Fig. 4. Confusion matrix for Υ = 4.

LWPR model is trained for each action until the performance
stops increasing for 10 epochs (maximum 100 epochs). This
procedure takes approximately 4 minutes for each action on
a PC with a CPU running at 2.67 GHz and a RAM of 4GB.

D. Goal Estimation

The goal positions for each action (i.e. offsets with respect
to the object center) are calculated by taking the average of
the goal position for each of the two demonstrations in the
training set. For a single demonstration the goal position is
taken as the last position in the trajectory in the reference
frame of the acted object.

IV. RECOGNITION

We evaluate the recognition performance of CLPs as
follows:

• When the beginning of an action is observed, mental
simulation of trajectories for each action-object pair is
initiated.

• As the action unfolds, mentally simulated trajectories
are compared with the observed trajectory.

• Recognition signals (RS) are calculated from the errors
where a high signal corresponds to a low error.

• An action-object pair is chosen as the recognized action
if largest RSs ratio to the second largest RS gets above
the threshold Υ.

Figure 3(a) shows an observed trajectory and 8 mentally
simulated trajectories. Recognition signals are shown in
figures 3(b), 3(c), 3(d), 3(e) for different demonstrations from
the test set. Although the system may make a mistake at
the beginning as in figures 3(c) and 3(d), the recognition
signal of the correct action triumphs over others as the action
unfolds.

We calculated the confusion matrix for Υ = 4 (using
position comparison) which gives 85% success rate where
an action is recognized before 50% is completed on average.
Figure 4 shows that greatest confusion is between R(LO) and
L(RO) which is an expected result since the beginning part
of the trajectories are similar for these actions although their
velocity profile is different. Furthermore, some of the rows
do not sum up to 25 which shows that some actions are left
unrecognized because of the threshold.

V. RECOGNITION UNDER OCCLUSION

In this experiment, we focused on three scenarios:

• Occlusion in the begining: The beginning of an action
is occluded and mental simulation starts when the
occluded part ends and the first sample is observed.

• Occlusion in the middle: The middle of an action is
occluded. Mental simulation starts with the first sample
and continues until the end, however errors and RSs
are not updated for the occluded part since there is no
observation there.

• Occlusion in the end: The end of the action is occluded.
Mental simulation and recognition signal calculation is
done as usual but ends in the occluded part. If a decision
is not yet made, then the observation is left undecided.



(a) Blocked at beginning (b) Blocked at middle

(c) Blocked at end

Fig. 5. Recognition signals with respect to time when 20% of the observation is occluded for all 3 scenarios

First, we calculated the recognition performance for the
above scenarios for Υ = 4. Then, we systematically ana-
lyzed the effect of threshold values for different occlusion
percentages in order to find the best success rate and the
corresponding threshold value. We did this because an RS
may not dominate above others when the action is occluded,
causing it to be left undecided.

Figure 5 shows the recognition signals when 20% of the
action is occluded. Figure 5(a) shows when occlusion is at
the beginning. As seen from the plot the system is able to
cope with missing the beginning of an action. Figure 5(b)
shows when occlusion is at the middle, and figure 5(c) shows
when occlusion is at the end of an action. The recognition
signals does not change during occlusion since system does
not update itself.

In figure 6, success rates for Υ = 4 for the three scenarios
with respect to the percentage of the blocked part is shown.
As seen from the figure, success rates are high for all cases
for considerable amounts of occlusion (≈40%). Furthermore
when the beginning of an action is occluded, small amount
of occlusion (upto 20%) gives better results.

Figure 7 shows the threshold values that give the best
results for different amount of occlusions. As the amount
of occlusion increases, smaller thresholds give better results
since the number of undecided cases decreases.

The success rates when the middle of an action is occluded
are unexpectedly high, especially for lower thresholds. This
is mostly due to the continuation of mental simulation during
occlusion without updating recognition signals: Although
decision times are not shown in the figure, most actions
are decided after the occluded part and as the amount of
occlusion increases decisions are made closer to the final
point of an observation, i.e. as if decided after the action is
completed.

Results show that our system can cope with considerable
amount of occlusion whether the occluded part is in the
beginning, middle or end. Furthermore, it can be suggested:
(1) To use a higher velocity threshold to assume that an

action is started and to start mental simulation, since small
amount of occlusion gives better results for occlusion in the
beginning, (2) to use an adaptive threshold when an occlusion
is detected since smaller thresholds gives better results when
the amount of occlusion increases, and (3) to force the system
to decide on the best option when the amount of occlusion is
very high since threshold values close to one gives the best
result for these cases.

Fig. 6. Success rates versus the percentage of occlusion for Υ = 4.

Fig. 7. Thresholds that give the best results.

VI. RECOGNITION UNDER DIFFERENT SPEEDS

In this experiment we tested the recognition performance
of the system when the same action is observed with different
speeds. Since it is hard to record the same action with
different speeds, we modified the time stamps of an action
while leaving the observed positions as they are. Through



this, an action can be replayed at different speeds without
changing the position profile.

From figure 8, it can be seen that our system obtains a 60%
success rate even when the speed of an action is doubled or
decreased to 70%. Using different thresholds for different
speeds is not a feasible approach since Υ = 4 gives the best
result for most of the cases.

This experiments show that our system can cope with
speed changes in the range of 0.7X − 2X while obtaining
success rates higher than 60%. When comparing two trajec-
tories, our algorithm compares the points with closest time
stamps.

Fig. 8. Success rate vs. the speed multiplier for different thresholds.

VII. ROBOT DEMONSTRATION

We used the proposed system in an interactive game that
can be played between a human actor and humanoid robot
iCub [5].

The scenario of the game is as follows: The actor performs
one of the 8 behaviors (2 objects, 4 actions). iCub blinks
when it recognizes an action and reacts with the appropriate
counter action in order to bring his hand to the opposite side
of the acted object. Then iCub returns to its steady state
when the actor brings its hand away from the object and the
cycle starts from the beginning.

It should be noted that iCub uses the same system (LWPR
model) while recognizing an action and generating the same
action. The system runs with a loop period of 10ms (100Hz)
both during the recognition phase and the generation phase.
For converting velocity commands in Cartesian space to
joint velocities we have used the iKin library [6] which
can produce smooth human like motions. Although CLPs
generate acceleration commands, iKin and most of the other
inverse kinematic libraries does not support acceleration
commands and thus we have integrated the acceleration
commands to obtain velocity commands before sending them
to the inverse kinematic library.

Video of this interactive game can be found in our website3

and snapshots of the video can be seen in figure 9.

VIII. CONCLUSION

In this paper, we described CLPs, a method for learning,
generation and recognizing actions, which is developed by
modifying DMPs. CLPs are shown to generate and recognize

3http://www.kovan.ceng.metu.edu.tr/pub/video/recognitionLow.mp4

Fig. 9. Interactive game with the robot. Each row shows a different
demonstration. First column shows the starting point of the actions. Second
column shows the moment where iCub recognizes the actions (indicated by
the eye blink). Third column shows the end of the actions for the actor and
the last column shows the point where iCub finishes its actions.

different reaching actions online, using the same architecture
similar to mirror neurons. Also experiments show that CLPs
are robust to occlusions during observed actions, and speed
variances of the observed actions.

The system was demonstrated as an interactive game with
iCub humanoid robot, showing that the system is able to
recognize and generate actions against real life problems.
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