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Abstract—How the sensorimotor experience of an agent can be 

organized into abstract symbol-like structures to enable effective 

planning and control is an open question. In the literature, there 

are many studies that start by assuming the existence of some 

symbols and ‘ground’ those onto continuous sensorimotor signals. 

There are also works that aim to facilitate the emergence of 

symbol-like representations by using specially designed machine 

learning architectures. In this paper, we investigate whether a 

deep reinforcement learning system that learns a dynamic task 

would facilitate the formation of high-level neural representations 

that might be considered as precursors of symbolic representation, 

which could be exploited by higher level neural circuits for better 

control and planning. The results indicate that without even 

explicit design to promote such representations, neural responses 

emerge that may serve as the basis of abstract symbol-like 

representations. 

Keywords—Symbol Emerge, Reinforcement Learning Symbol 

Generation, Symbol grounding 

I. INTRODUCTION 

The term ‘concept’ or ‘symbol’ corresponds to internal 
representation of classes of things. Understanding symbolic 
manipulation is important as it enables humans with the means 
to classify, understand, predict and communicate [1]. From a 
neural evolutionary point of view, it is not yet known when and 
how high level, symbol-like representations emerge and start to 
be utilized by living systems for action and planning. As a 
general trend neural evolution utilizes what is available rather 
than reinventing a better version of an existing neural circuit [2]. 
So, it is conceivable that the symbolic, conceptual representation 
that humans use for effective action execution and planning are 
based on more primitive neural circuits evolved earlier.  

Mostly, the AI literature does not consider this evolutionary 
symbol formation view. The mainstream use of symbols in AI 
dates back to times of the first intelligent robot Shakey [3], and 
can be linked to Newell and Simon's work [4], who both adhered 
to the notion that a physical symbol system has the necessary 
and sufficient means for general intelligent action. From this 
perspective, symbols can be seen as the main ingredient of 
intelligent behavior. However, the developmental psychologist 
and roboticists argue that the symbols are not innate and emerge 
by the dynamic interactions of the agent with the environment 
[5, 6, 7]. Symbol formation thus should be facilitated by the 
formation of intermediate neural representations for abstractions 
and concepts. 

II. RELATED WORK 

In the literature, there are many successful studies that have 
started by assuming the existence of symbol-like representations 
and discovered the continuous sensorimotor signals to ground 
them to the real world. In [8] Precup et al. showed that 
temporally learned abstract knowledge and the action series 
(options) make learning more efficient. Options were used as 
sub-goals with the aim of improving themselves. Once a policy 
selection method was chosen, it requires following the internal 
policy to the end. In addition, this was extended to concurrent 
activities, multi-agent coordination and hierarchical memory for 
addressing partial observability [9]. In [10], Saxe et al. brought 
a new look to macro actions (series of primitive actions), which 
ran several macro actions simultaneously to solve new tasks. 
While the aforementioned studies assumed the existence of 
predefined symbols, others have adopted the notion that symbols 
should be formed by the experience obtained through the 
sensorimotor apparatus of the agents [11]. In this vein, Ugur and 
Piater showed how symbols and symbolic rules can be formed 
in the continuous sensory space of a robot that explored the 
objects with its push, poke, grasp and release actions [12,13]. 
While these studies have explored symbol emergence in a 
forward predictive model learning framework, the work of 
Konidaris et al. [14,15] considered symbol formation in a 
Reinforcement Learning (RL) framework. To be concreate, 
Konidaris et al. showed the formation of symbols to be used as 
preconditions and effects of actions for deterministic [14] and 
probabilistic [15] plans in simulated environments. 
Subsequently, they showed that this framework can be applied 
to physical robotic systems for discovering symbolic and rule-
based representations from robot sensorimotor data [16]. While 
aforementioned studies assumed existing feature extractors and 
focused on generating compact representations of symbols for 
planning, there are other studies that aimed at facilitating the 
emergence of such symbols using specially designed neural 
networks or classification techniques. For example, Stolle et al. 
[17] studied macro actions for creating logic and evaluation 
perspectives. Their intuition was that states that are frequently 
visited could provide a useful goal. Pierre-Luc Bacon et al. [18] 
showed that option-critic architecture was capable of learning 
both the internal policies and the termination conditions of 
options without additional rewards or sub-goals. Finally, 
Ranchod et al. [19] utilized inverse reinforcement learning to 
discover reusable skills with the segmentation of unstructured 
trajectories by applying a Bayesian nonparametric approach.  



Overall, in all the review works above, there are always 
design biases or choices that promotes the formation of high-
level representations. In this paper by contrast, we investigate 
the formation of symbol-like representations with no 
assumptions on the existence of such representations and with 
no explicit design choices to promote abstractions. To be 
concrete, our work is focused on the key consideration of 
whether a simple learning mechanism with no neural network 
engineering generates neural activities that may be considered 
symbol-like or abstract high-level representations. A positive 
answer would be invaluable, as one can envision higher level 
circuits that exploit these neural activities for further planning 
thereby giving a computational account of possible neural 
organization for movement control and learning. 

To realize the aforementioned no-bias scenario, a RL 
framework is adopted for the sensorimotor learning of the 
‘squat-to-stand’ task, where a robot needs to learn to generate 
joint torques to change its posture from squat to stand without 
falling over. In this setup, we sought to investigate whether 
symbol-like representations emerge during learning. This was 
done by analysing the properties of the neurons in the policy 
representing neural network during and after learning.  

III. METHOD 

To investigate whether high-level abstract representations 
may emerge through sensorimotor learning, we adopt a RL 
framework to teach a simulated robot to stand up in the face of 
postural perturbations. The task is adapted from our ongoing 
work on human adaptation to postural perturbations [20,21]. The 
critical consideration here is to see whether a simple learning 
mechanism with no neural network engineering generates neural 
activities that encode abstract high-level representations some of 
which may be considered precursors of symbolic representation.  

A. Task 

We use a simulated three degrees of freedom robot that has 
to learn from a neural network controller squat-to-stand 
movement under perturbation. The robot is modeled as a three-
link chain attached to the ground (Fig. 1). In particular, the robot 
is composed of an upper leg, lower leg and a torso, with lengths 
of 0.61m, 0.39m, 0.61m and masses of 0.10kg, 17kg, 32.44kg 
respectively. The equations of motion are generated by the PyDy 
package (https://www.pydy.org). For the RL setup, the task state 
(Eq. 1) is defined as the vector of joint angles (𝜕𝑖) and angular 
velocities (𝜑𝑖):  

                    𝑆 =  {𝜕1, 𝜕2, 𝜕3, 𝜑1, 𝜑2, 𝜑3}                      (1) 

The action parameters (Eq. 2) of the robot controller are 

defined as the vector of torques (𝜏𝑖) applied to each joint at each 

simulation time step:  

                           𝜐 =  {𝜏1, 𝜏2, 𝜏3}                                  (2) 

 

 
Fig. 1 Simulation movements evolving over time after training a neural 
network successfully. 

 

An episode is defined as 2 seconds in which the robot has to 
complete the squat-to-stand task. The RL control frequency is 
set to 50Hz, therefore one episode generates 100 data points 
unless the episode ends due to one of the termination conditions 
(see below). The goal of the squat-to-stand task is considered to 
be satisfied when the height of the robot (i.e., endpoint/head 
vertical position) can be kept over 1.5 m for a duration of at least 
0.2 seconds.  

To make the task more challenging, the squat-to-stand task 
includes a non-trivial perturbation which pushes the robot in the 
posterior direction with a force 𝐹𝑝𝑒𝑟𝑡 proportional to the vertical 

velocity of the center of mass 𝑉𝑐𝑜𝑚 of the robot (Eq. 3): 

                            𝐹𝑝𝑒𝑟𝑡 =  𝐶 . 𝑉𝑐𝑜𝑚                                   (3) 

In all simulations, the perturbation constant C is taken as 
C=300, except for the environment change experiment (see 
Section III.C) where it is reduced to induce a change in the 
environment. The perturbation constant and dynamic 
parameters for the model are chosen to mimic the parameters 
used in an ongoing experimental study where human adaptation 
in full body movement is studied [20,21]. 

B. Learning setup 

To solve this RL problem one can define several reward 
functions. In the reported experiments in this paper, no terminal 
cost is used, and the running reward function r is defined as an 
increasing monotonic function of robot height, h(t) that is the 
vertical position of the end effector of the robot’s kinematic 
chain at time t. To be concrete, the reward function is given with 
r(h) = (h/2+0.5)2 if h>0 otherwise r(h)=0. An episode is 
terminated when the allowed time of 2 seconds has elapsed or 
the robot falls (h < 0.5m) or the robot hits the joint limits |𝜕𝑖| ≥
𝜋 for any joint i.  

Since the action space is intrinsically continuous, we adopted 
a policy gradient method that can represent policies with 
continuous action spaces. Policy gradient RL finds a local 
optimal policy by following the gradient of the expected total 
reward over episodes. In this study, we used an actor-critic 
method that has a stochastic policy (Eq. 4), which is used to 
sample the actions for policy exploration and exploitation. The 



critic, on the other hand, evaluates the goodness of the current 
policy by estimating the value function (𝑉𝜋).  

                                   𝜋 ~ 𝑁(𝜇, 𝜎)                                     (4) 

Thus, the actor and critic are two separate function 
approximators implemented as neural networks. In the current 
implementation, the actor network represents the mean of the 
policy and its parameters are updated according formula (Eq. 5). 

∇𝑈(𝜃) ≈  
1

𝑚
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Where u, s and R(s,t) represents action and state and immediate 
reward; t, H, m represents time, rollout length and number of 
rollouts respectively; 𝜃 and 𝜙 denote the weights of the policy 
and critic networks respectively [22]. In turn, the critic network 
parameters, are updated by minimizing the squared loss to 
regress V against the average cumulative reward collected over 
the sampled trajectories (Eq. 6):  

             𝜙𝑖+1 ←  𝑎𝑟𝑔𝑚𝑖𝑛∅
1

𝑚
∑ (𝑅 − 𝑉∅

𝜋(𝑆𝑖))2𝑚
𝑖=0              (6) 

The standard deviation 𝜎  controls the exploration- 
exploitation trade off through action sampling (Eq. 4). It is 
gradually decreased as learning progresses, as opposed to being 
learned by a neural network, which we found to work better for 
our task. The decay is implemented by the update rule where 
𝜎(𝑡 + 1) = 𝜎(𝑡) 𝑥 0.999 , and the decay constant is chosen 
empirically.  

Both the actor and critic networks are designed as small 
networks to avoid redundancy and thus ease the analyses of 
neural responses. A policy network with a single hidden layer 
composed of 32 neurons is empirically found to be enough to 
learn a task. The input and output layers are automatically 
determined by the state and action spaces. Consequently, the 
policy network has 6 inputs and 3 outputs corresponding to the 
dimensions of state and action spaces, respectively. The critic 
network is implemented as a two hidden layer network. The 
number of neurons in the layers are set as 16 and 32 conforming 
to the small network desiderata.  

C. Experiments and Data Analysis 

The analysis addresses three basic issues of whether learning 

facilitates (i) the emergence of neural encoding of the physical 

robot state, (ii) the specialization of neuron populations that are 

formed via learning, and (iii) the response of the learned squat-

to-stand controller network to changes in the environment. For 

the analysis, all the data generated during learning and testing 

were first stored in a database, which consisted of the generated 

actions, states, rewards, robot joint positions, and the neuron 

outputs at each time step. The neuron outputs were normalized 

within their corresponding layer so to be in the range 0 to 1. The 

details of the analyses are given in the following three 

subsections.  

1) Neural coding of the robot state 
For the control of the task of the squat-to-stand movement 

under perturbation, a key physically meaningful parameter is the 
position and velocity of the centre of mass of the robot (COM). 
In this analysis, we aimed to detect neurons that may capture 
COM dynamics, in particular the vertical distance of COM from 
the ground (COM Y) and the vertical velocity of the COM. For 
each neuron in the policy network, the linear correlation 

between neuron outputs and COM height/velocity was 
computed. Subsequently, correlations of the neuron outputs with 
COM height/velocity were obtained. This allows the 
visualization of the COM dynamics to be represented within the 
neuron population as histograms. The analysis was conducted 
after 20K training episodes, where the learning was stabilized, 
and the robot was observed to complete the squat-to-stand 
movement successfully. For detecting neural representation of 
the COM dynamics, single trials were performed with 
exploration turned off (𝜎 = 0). The learning and testing were 
repeated 20 times to assess the variability in COM height and 
velocity representations formed.  

2) Neural population specialization 
This analysis focused on detecting functional specialization 

of neurons during the learning process. For this analysis, 
learning was conducted for 20K episodes until the robot learned 
to complete the squat-to-stand task. While training was taking 
place, in every 1,000 episodes, the exploration was temporarily 
turned off, and the policy network was put in the control of the 
robot with the current network weights. The analysis conducted 
in this part, not only considers the full squat-to-stand movement 
period, but also focuses on three predefined phases, being early 
(the first 0.5 seconds), mid (the middle 1 second) and final (the 
last 0.5 seconds) of movement segments that roughly 
corresponds to standing up, tuning balance, and balanced pose 
stages. As a single successful episode takes 2 seconds, and the 
data sampling is performed at 50Hz, a successful training 
episode generates 100 data points. Hence the defined phases of 
early, mid and final correspond to the neural activity vectors 
with sizes 25, 50 and 25 respectively. In case of early 
termination, the neural activity is taken as zero after the failure, 
and the learning update is performed with a shorter episode 
length (i.e., H is adjusted accordingly in Equations 5 & 6). To 
assess the number of distinct neural response patterns in the 
policy network, the number of clusters are estimated by using 
X-means algorithm [23] applied to the aforementioned activity 
vectors.  

The analysis conducted after each 1,000 training episodes 
was used to obtain the evolution of the number of distinct neural 
activity patterns as a function of training time. All X-means 
clustering applications were repeated 10 times to assess the 
variation due to the stochasticity in the X-means algorithm. The 
X-means meta-parameters of minimum and maximum cluster 
sizes were set to 3 and 16 respectively. Once the number of 
clusters was estimated for each learning episode, the neural 
activity patterns corresponding to the cluster means were 
obtained by using standard K-means to detect potential abstract 
representations formed.  

3) Response to environmental change 
In this analysis, the response of the network to an 

environmental change with no additional learning was assessed. 
Like the earlier analysis, the system was trained for 20K 
episodes to learn the squat-to-stand movement under 
perturbation. After the learning task was finished, the 
perturbation force was slightly changed by reducing the 
perturbation coefficient from C=300 to C=290 (see Method 
Section A), which was sufficient to make the robot fall down. 
The response of the network to the aforementioned change in 
environment was analyzed according to the phases defined in 
the previous section.  



 

Fig. 2. Mean total reward collected as a function of the number of learning 
episodes, over 20 repeats are shown. The shades around the mean indicates 
standard deviation.  

IV. RESULTS 

A. Results: Neural coding of the robot state 

To make sure that the results related to neural responses are 
not due to a peculiar reinforcement learning session, we first 
assessed the total reward collection regime by looking at 
repeated learning trials. To be specific, the mean total reward 
collected as a function of number of episodes was plotted 
together with the standard deviation to indicate the variation in 
learning (Fig. 2). The mean total reward averaged over 20 trials 
shows a monotonic increase as expected, as the robot could 
stand-up after each learning session.  

Furthermore, the small standard deviation around the mean 
at any phase of learning suggests that the system learns the task 
in a similar and consistent fashion for each learning attempt. 
Thus it may be argued that the results given in the following 
section are general within the considered task domain, since 
consistent learning was observed as seen in Fig. 2.  

We focused on the vertical (Y) axis COM dynamics in 
assessing the potential physical robot state representation by the 
neural activity after learning. The correlation analysis of the 
neural responses during the squat-to-stand task executions 
revealed that 6/32 neurons strongly encode COM vertical 
position (Fig. 3 top panel) indicated by the high mean correlation 
coefficient (ρ>0.95). Notably, 15/32 neurons also strongly 
correlated (ρ>0.75) with the vertical COM position. The small 
standard errors on the histogram bars indicate the consistency of 
the robot COM vertical position encoding by a significant subset 
of policy network neurons.  

The number of neurons that strongly encode COM velocity 
was less with a lower correlation level compared to the position 
encoding (Fig. 3 bottom). On the average only 8/32 neurons had 
a strong correlation (ρ>0.75) with the COM vertical velocity. On 
the other hand, a large portion of the neurons (21/32) showed a 
mid-level (0.75>ρ>0.30) correlation, which was not the case for 
position encoding.  

 

Fig. 3. The mean correlations of the robot’s vertical COM position (upper panel) 
and velocity (lower panel) with the neural activities of the policy network are 
shown as histograms (y-axis indicates the number of neurons). Training and 
testing were repeated 20 times. The resulting standard errors also are shown 
superimposed on the mean bars.  

B. Results: Neural population specialization 

As learning proceeds, it is putative that policy network 
neurons will attain certain functions that enable the robot to 
stand up. The question one might ask is whether a distributed 
functional property will be attained by all the neurons together, 
or whether some modularity will emerge. In case of the latter, 
we can try to understand the modular functional organization by 
investigating neuron subpopulations that share similar response 
characteristics, and therefore infer possible representations they 
may be endowed with by learning. Thus, we first assess the 
number of response clusters within the policy network.  

When the neuron responses are considered for the whole 
duration of the squat-to-stand-up movement while learning, the 
number of clusters started at around 10 and converged to 3 as 
found by the X-means algorithm (see Fig. 5). The same X-means 
clustering also was repeated when the neuron outputs were 
constrained to different phases of the movement (i.e., early, mid, 
final). The early phase usually corresponds to standing up, 
whereas the mid phase corresponds to balanced posture for the 
successful trials. The final phase usually corresponds to the time 
when the robot starts to lose balance or fall. In these specific 
phases, the converged number of clusters was consistently found 
to be 5 on average (see Fig. 4). Therefore, we used K=5 for 
further analysis using K-means as presented next.  

Although X-means gives us the number of neural response 
patterns formed, to see the individual patterns it is necessary to 
investigate the response profiles of the clusters found. For this, 
we applied the K-means algorithm at different points of learning 
progress, which corresponds to the detailed analysis of the blue 
curve in Fig. 4. To be specific, the clustering was applied after 
2.5K, 7.5K, 12.5K and 20K learning episodes had taken place. 
The resulting mean neural response patterns, (i.e., the cluster 
means) are given in Fig. 5. As can be seen neural clusters are not 
very different at the beginning (Fig 5. left-top); specialization 
starts to appear after around 10K episodes of learning (Fig 5. 
top-right, bottom-left), and finally a mature robot controller with 
distinct responses is obtained when the task is successfully 
learned (Fig 5. bottom-right).  



 

Fig. 4. Neuron output responses that were subject to X-means analysis are 

shown as a function of training episodes. Blue curve indicates the number of 
clusters found when the neural responses are taken as corresponding to the full 

episode of squat to standing. On the other hand, the orange, red and green 

curves correspond to the specific phases of early (first 0.5s), mid (0.5s-1.5s) 
and final (1.5s-2s) phases, respectively. (Best seen in colours) 

 

Additional clustering analysis was performed that revealed 

an organizational relationship among the clusters as a function 

of simulation time (Fig. 6). During the standing up phase (first 

0.5 s), each neuron population had a specific response profile 

to actuate the robot without a fall (Fig. 6, left-top); in the mid 

phase (0.5-1 s); the neuron populations act as distinct nonlinear 

feedback controllers to bring the robot to a standing posture; 

and finally, in the last phase the neuron populations produce 

almost constant neural output to counteract gravity.  

From a general perspective the constant neural output can 

represent the concept of ‘stability’; whereas the alternating 

output pattern of the mid-phase may represent the concept of 

‘keeping balance’.  

 

 

 
Fig. 5. Neuron outputs are obtained by K-means clustering applied on the whole 
episode with the original training setup reported on different training stages 

2.5K, 7.5K, 12.5K and finally 20Kth episode. Additionally, the dashed curve 

indicates the vertical COM position (COM Y). (Best seen in colours) 

 
Fig. 6. Neural response means obtained by K-means clustering applied on the 

neural response vectors corresponding to the early, mid, and final phases of a 
squat-to-stand movement. All outputs are gathered after 20K training trials. The 

blue dashed curve superimposed on the plot indicates the height of the robot 

during the movement. (Best seen in colours) 

C. Result: Response to environmental change 

It is conceivable that a formed neural representation may 
display emergent patterns when the environment is changed 
beyond what the network has seen during its learning period. To 
assess the neural response in the policy network when the 
environment changed, the perturbation force constant, as 
previously noted, (see Eq. 3) was reduced from C=300 to C=290 
so that the robot could no longer maintain balance with the 
control policy that was learned with the original perturbation 
constant. By using the number of clusters found in the previous 
section, the neuron responses were grouped with the K-means 
algorithm (K=5) for the specific phases of the early, mid and 
final phases of task execution. It was found that the neurons 
show similar patterns in the early and mid-phases to the ones 
obtained with the original setting, probably due to the fact that 
the perturbation constant change was small.  

 

Fig. 7. Neural response means obtained by K-means clustering applied on the 
neural response vectors corresponding to the final phase of squat-to-stand 
movement under the changed environment (perturbation constant reduced to 290 
from 300). The blue dashed curve  superimposed on the plot indicates the  COM 
vertical position of the robot during the movement. (Best seen in colours) 



Therefore, further analysis is conducted on the final phase of the 
movement where the environment change has a dramatic effect 
of fall vs. no-fall in spite the small change in perturbation. The 
result of the K-means algorithm applied to the final phase of the 
movement revealed distinctive cluster means (Fig. 7). The 
results in Fig. 7 can be summarized as follows; (i) - cluster 1, 13 
neurons- these neurons have minor activity during the final 
phase of the movement, they only show a slight increased 
activity towards the end of the execution of the task. (ii) - cluster 
2, 7 neurons- these neurons decrease their activity in parallel to 
COM position (COM Y) decrease trend. However, the drop in 
activity seems predictive and is sharper than the vertical COM 
position. (iii) - cluster 3, 8 neurons - these neurons decrease their 
activities in parallel to the COM position decrease trend. Their 
response is a somewhat time-shifted and scaled-down version of 
Cluster 2 neurons. (iv) - cluster 4 and 5, 4 neurons- increase their 
activities while the vertical COM position starts to decrease. 
These neuron activities, especially cluster 4’s, can be predictive 
of an upcoming fall. Therefore, these neural responses can be 
used as a symbolic representation indicating a pending fall.  

V. CONCLUSION 

It is an open question whether the neural circuitry of the 
brain is explicitly programmed to develop high-level constructs, 
concepts or symbols, or alternatively such representation may 
emerge through mere sensorimotor learning. If the latter is true 
then the evolution of neural circuitry in biological systems could 
be explained by a hierarchical mechanism, where already 
existing circuit capabilities such as abstract and symbol-like 
representations are exploited by ‘newer’ circuits. To check the 
plausibility of the latter alternative, we simulated a simple robot 
that must learn squat-to-stand movements in the face of 
systematic perturbations via reinforcement learning, where the 
policy/controller of the robot is represented as a neural network. 
The analysis on the neural responses of the policy network 
revealed that (1) parsimonious physical representation of body 
dynamics (COM dynamics) is, to a large extent, represented in 
the neural responses (Fig. 5), (2) certain neuron populations in 
the policy network that learned to implement a stand-up 
controller form functional units that can be used to represent 
symbol-like constructs during learning (e.g., ‘stability’ - Fig. 6), 
(3) a change in the environment that was not seen before or 
during learning that may yield discrete representations of the 
robot self (e.g., ‘now falling down!’ – Fig. 7). Thus, our study 
supports the idea that basic sensorimotor learning that allowed 
earlier biological systems to survive might also have facilitated 
the formation of symbol-like or high-level representations that 
were amenable to evolutionary exploitation by higher-level 
additional circuitry. Therefore, we believe the next step to 
advance the symbol emergence argument is to show how the 
formed representations in a policy network can be exploited by 
additional neural mechanisms for effective planning and 
execution. This we plan to address next. It would be also 
interesting to investigate the pros and cons of distributed vs. 
local representations of high-level concepts for biological and 
artificial systems. The former allows robustness whereas the 
latter allow energy economy in neural computations involving 
the formed representations. 
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