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Fig. 1: CNMP framework for learning full body motion. Given multiple trajectories for a single or multiple behaviors, the
system learns a robust representation that encodes the distribution of the trajectories. While our framework handles multiple
body parts simultaneously, the figure shows a single dimension JP that corresponds to a joint or a part. The figure is adapted
from [1]

I. INTRODUCTION

The purpose of this study is to demonstrate a new approach
to whole body motion prediction problem using a state-
of-the-art robot learning from demonstration framework,
the Conditional Neural Movement Primitives (CNMPs)[1].
Previous experiments on robotic learning have shown the
capability of CNMPs to learn complex multi-modal sen-
sorimotor relations within the environment, and predict
sensorimotor trajectories satisfying external goals such as
obstacle avoidance tasks. CNMPs’ power of learning a priori
knowledge of data and predicting conditional distributions
is not only limited to robotic learning. Conditional Neural
Movement Primitives(CNMPs) were designed as a learn-
ing from demonstration framework for robotic movement
learning and generation. It’s built on top of Conditional
Neural Processes(CNP) architecture which has a deep neural
structure trained via gradient descent and defines conditional
distributions over functions given a set of observations[2].

Predicting whole body motion trajectories requires novel
ways to represent whole-body motion with respecting the
coupling of body joints and dimensions, recognizing multiple
trajectories for the same behavior, and encoding different be-
haviors in the same model. Recent state-of-the-art approaches
on human motion prediction employed RNN based models
which produced promising results[3], [4].

CNMPs can be trained with a single or a number of
trajectories of 3D positions of body parts. It learns the
underlying trajectory distribution of the motion and pre-
dicts whole body motion trajectories over target observation
points. Our preliminary results show that our model can learn
multiple behaviors simultaneously and successfully generate
the motion trajectory of all body parts given a desired body

configuration at desired time points.

II. METHOD

CNMPs framework is built on top of CNP neural model[2]
which processes the training data to extract prior knowledge
by sampling random observations and predicts conditional
distributions over target queries. CNMPs learn underlying
distribution of the provided multi-variate data, and allow
conditioning this distribution on any target time points. Fig.
1 shows the training procedure of CNMPs on a hypothetical
1D trajectory scenario. At each iteration, a) a uniformly-
random motion Mi is selected from motion set M . b) n
random observation points and a random target query tq is
sampled uniformly from Mi. c) Each observation point goes
through the parameter sharing encoder network E which
produces latent space representations ri, in this stage CNMPs
allow concatenating external parameters γ. Note that external
parameters are not used in this study. The representations
obtained for different time points are merged into a single
general representation r using a symmetric operator which is
generally a mean operation. r is then concatenated with target
query time tq and fed into query network Q which produces
distribution mean and variance, namely (µq, θq). d) CNMPs
predict corresponding trajectory distribution of the queried
time-step by inferences based on sampled observations. The
network is trained via stochastic gradient descent with the
negative conditional log probability function.

After training phase, CNMPs can be conditioned on single
or multiple time-steps to produce trajectory distributions to
satisfy the given conditions. Moreover, whole movement
trajectories can be generated by querying CNMPs with all
time-steps. Please refer to [1] for details.



CNMPs are exploited to model whole body motion. Tra-
jectories of 3D positions of the body parts are used as inputs
to the system. In order to generate motions, our system
is conditioned with desired 3D body configuration. Mo-
tions were gathered from KIT Whole Body Human Motion
database. The time is scaled between [0,1] to ensure time
invariance and 3D locations of body parts were normalized
to ensure space invariance. 14 markers that cover whole body
are selected out of 50 markers. Fig 2 shows sequential 3D
body configurations of turning left motion from training data,
observed at initial, middle and final time-steps.

III. EXPERIMENTS

In the first analysis, we evaluated the performance of CN-
MPs in learning single behavior from three different but sim-
ilar trajectories of walking forward. After our model learns
these trajectories, our model is conditioned on observation
points with the corresponding body configurations at start,
middle and final time-steps. Constrained with these body
configurations at different time-steps, the model successfully
generated the body configurations for all time-steps. Fig. 3
shows the real and predicted positions of head, shoulder, and
knee parts of the body. As shown, the complex trajectories
of body parts were successfully learned and generated.

In the second analysis, we investigated whether our system
can learn multiple behaviors simultaneously. For this, we
trained the system with two different behaviors, namely
forward walking with a left turn and forward walking with a
right turn. Similar to the first experiment, after the system is
trained, the model is conditioned with body configurations
that are desired to be observed at specific (initial, middle
and final) time-steps. Fig. 3 shows the real and predicted
positions of head, shoulder, and knee parts of the body. As
shown, the complex trajectories of body parts of different
behaviors were successfully learned and generated. Results
for both experiments with whole trajectory predictions can
be reached here.

IV. CONCLUSIONS

In this paper, we proposed to extend and use CNMPs that
were originally designed for robotic manipulation tasks in
whole body human motion modelling and learning. Prelim-
inary results show how remarkably well CNMPs can learn
to encode complex trajectories of a single or multiple whole
body behaviors from only a few motions, extract knowledge
about underlying trajectory distributions and generate close
to perfect full trajectories of body parts given desired body
configurations at desired time points.

Although we only experimented with forward walking
and walking with turns, we believe CNMPs can learn more
varieties of whole body motions which will be studied in
followup works. Future work will include using trajectories
of a bigger set of body joints, learning trajectories that
involve more complex motions and comparing our results
with recent state-of-the-art-approaches [3], [5] .

Fig. 2: Snapshots from a training motion. Different colours
indicate sequential joint locations in 3D space.

(a) Walking straight

(b) Left Turn

(c) Right Turn

Fig. 3: Each row shows Z-coordinate values of right anno-
tated joints taken from different(head, knee, shoulders from
top to below) parts of body over timesteps. Blue lines are
target trajectories and red lines are predictions of CNMPs.

https://youtu.be/A4tWZLOO4fA
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