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Abstract—The direct perception of actions allows a robot
to predict the afforded actions of observed objects. In this
paper, we present a non-parametric approach to representing
the affordance-bearing subparts of objects. This representation
forms the basis of a kernel function for computing the similarity
between different subparts. Using this kernel function, together
with motor primitive actions, the robot can learn the required
mappings to perform direct action perception. The proposed
approach was successfully implemented on a real robot, which
could then quickly learn to generalize grasping and pouring
actions to novel objects.

I. INTRODUCTION

In order to plan complex manipulation tasks, a robot must
know which actions it can perform with the available objects.
In unstructured environments, such as in homes or service
industry settings, the potential manipulations of objects will
not be pre-specified. Hence, the robot must autonomously de-
termine the possible actions, and adapt these actions according
to the specific object being manipulated.

Physically interacting with objects helps an agent to learn
object affordances [1], which can then be predicted by learning
direct mappings from the object’s visual features to specific
actions. This approach is known as direct perception of ac-
tions, and differentiates itself from indirect methods by not
requiring intermediate representations, such as object classes
[2], [3]. Direct action perception is a fundamental concept in
J. J. Gibson’s the theory of affordances [2], which proposes
that agents regard objects in their environment according to
the actions that these objects allow, or “afford”, the agent to
perform.

The three main components of an affordance are: 1) the
perception of an object entity, 2) the action behavior performed
by the agent, and 3) the resulting effect of the action on the
object [4], [5]. In this manner, the affordances predicted from
visual features can be verified by performing the action and
observing the resulting effects. The experience gained from
such physical interactions can subsequently be used to predict
affordances more accurately in the future. Other physical
properties, such as friction and weight distribution, also factor
into whether an object affords a particular action. However,
this additional data is usually only acquired once the robot
has begun manipulating the object. The focus of this paper is
on predicting affordances from only vision data.
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Figure 1. The image on the left shows a human demonstrating a pouring
action to the robot using a watering can. The image on the right shows how
the robot has learned to generalize the action to a cup using the kernelized
direct action perception framework.

In this paper, we propose an example-based approach for
robots to learn direct mappings from object point clouds
to motor primitive actions. The proposed approach is based
on two key insights: 1) the perception of objects and the
interactions between objects are based largely on the objects’
surface geometries [2], and 2) the affordances of objects are
often related to only subparts of objects and not the whole
object [6]. Given these two insights, we propose that the robot
should generalize between objects by searching for subparts
with similar geometries to those that have previously afforded
an action. For example, wedge-shaped subparts can be used for
cutting, bowl-shaped subparts can be used for holding fluids,
and handle-shaped subparts can be used for grasping.

One of the main challenges of the direct action percep-
tion approach is finding a set of suitable visual features
for representing objects. If the features do not differentiate
between objects that afford an action and those that do not,
then it is impossible for the robot to learn the affordance.
However, using many features increases the dimensionality of
the learning problem and, hence, requires more samples to
learn. We propose a non-parametric representation of objects,
which is based directly on the point clouds perceived by the
robot. In this manner, the robot does not rely on hand-designed
features and can learn to discriminate between any objects
that are not visually identical. This representation forms the
basis of a kernel function, which allows the robot to compute
the similarity between subparts. Given this kernel function,
kernel-based machine learning methods [7] can be used to
learn the shapes of affordance-bearing subparts. The actions
are represented using motor primitives, which are flexible and
straightforward to adapt to different situations [8], [9].



The kernel function forms the basis for predicting, from
previous experiences, the probability that applying the motor
primitive to a particular subpart will result in the desired
effect. This probabilistic prediction is based on kernel logistic
regression, and can be initialized with a single demonstra-
tion of a successful action. After initialization, the robot
can autonomously learn to predict suitable actions of new
objects through interactions with objects in its environment.
The proposed approach is called kernelized direct action
perception (K-DAP). The K-DAP method was implemented
on a real robot, as shown in Fig. 1, which was then able to
quickly generalize grasping and pouring actions from single
demonstrations to various novel objects.

II. KERNELIZED DIRECT ACTION PERCEPTION

In order to accurately learn direct action perception, the
robot requires flexible representations of both the observed
objects and its own actions. Suitable representations for objects
and actions are presented in Section II-A and II-B respectively.
In Section II-C, we explain how the robot can learn to predict
the success probability of applying an action to a specific
subpart of an object. We discuss how the proposed approach
relates to previous work on affordance learning in Section II-D.

A. Non-parametric Representations of Surface Structures

In this section, we present a non-parametric representation
of surface geometries, as well as how the similarity between
two subparts of objects can be computed. The proposed
representation is based directly on the point clouds acquired
from 3D vision systems, such as dense stereo, time-of-flight
cameras, and LADAR.

A subpart S is defined by the tuple (O,w, P ), where O
is the subpart frame, w(x) is the weighting function, and P
is a 3D point cloud describing the surface of the object. The
subpart frame O is a coordinate system defined relative to
the real object, which specifies the location and orientation of
the subpart in the task frame. The point cloud P can then be
defined as a set of n points at positions pi 2 R3

; i 2 {1, ..., n}
relative to the subpart frame O. The weighting function w(x),
where x 2 R3 is also defined relative to O, gives weights to
those regions of the point cloud that pertain to this particular
subpart. Given the point cloud P of a whole object, the
weighting function defines the points that are relevant for
describing the subpart. For the experiments in Section III,
the weighting function was defined as an isotropic Gaussian
function centered on the subpart frame O.

The surface distribution of subpart S can, thus, be repre-
sented by the surface function f(x), which has a high value
when x is close to the subpart’s surface, and a lower value
when it is further away. This function can be represented non-
parametrically by centering a weighted Gaussian distribution
on each of the points pi from the point cloud. Hence, the
surface distribution of the subpart is represented as

f(x) =

nX

i=1

w(pi) exp(�h�2 kx� pik 2
).

where h 2 R is a length scale parameter, which can be
automatically set using methods such as leave-one-out cross-
validation [10]. This non-parametric representation preserves
the original vision data and is sufficiently flexible to model
any perceivable differences in shape.

In the K-DAP framework, the robot learns to predict the
potential actions of an object based on how similar its subparts
are to previous subparts. The robot, therefore, requires a
similarity measure for comparing the surface distributions
of different subparts. The similarity measure, for comparing
subpart S↵ = (O↵, w↵, P↵) and subpart S� = (O� , w� , P�),
is given by the non-parametric surface kernel (NSK):

k (S↵, S�) =

´
R3 f↵(x)f�(x)dxq´

R3 f↵(x)f↵(x)dx
p

f�(x)f�(x)dx
.

This kernel represents the normalized inner product of the
two surface distribution functions, and is closely related to
probability product kernels [11]. The value of the kernel has a
range from 0 to 1 and the maximal value of 1 is obtained iff the
normalized surface distributions of the two objects are iden-
tical; i.e. the shapes of the subparts are perceieved to be the
same. Higher kernel values are achieved when there is more
correlation between the surface distribution functions. When
comparing two subparts S↵ and S� , both subparts usually use
the same weighting function; i.e., w↵(x) = w�(x)8x 2 R3.
Therefore, we exclude the subscript for the weighting function
in the remainder of this paper. This kernel function allows
the robot to use kernel methods [7] from machine learning to
predict from the subpart’s shape whether it affords an action.

As the cloud points are represented by Gaussians, the kernel
value is straightforward to compute analytically. The terms in
the denominator need to only be computed once for each sub-
part. Computing the numerator requires integrating over n↵n�

Gaussians. This computation can be performed efficiently by
first pruning out points with low weights w(pi) ⇡ 0, and only
considering pairs of points that are near each other according
to the length scale parameter h.

B. Linking Visual Features to Action Parameters
Rather than only predicting whether a specific action is

applicable to an object, the robot must also adapt its actions
according to the subpart it is manipulating. Therefore, rather
than using fixed actions, the robot should use motor primitives.
A motor primitive represents a continuous range of similar
actions that an agent can perform [12]. The specific execution
of a motor primitive is defined by a small set of meta-
parameters, which are selected according to the context of the
action.

For the robot, we propose using dynamic systems motor
primitives (DMPs) [8], [9], which have been successfully used
to allow robots to perform a wide range of motor skills [13],
[14], [15]. A DMP can be learned from a single, or multiple
[15], demonstrations of an action and defined such that the
only open meta-parameters are the movement’s initial state
ys and goal state yg [8]. In the K-DAP framework, the motor
primitives are used to define the trajectory of the subpart
frames, e.g. O� , relative to the task’s reference frame. As a



Algorithm 1 K-DAP Learning Procedure
INITIALIZATION FROM A SINGLE DEMONSTRATION:
1. Observe object to obtain point cloud P0

2. Define example subpart S0 = (P0, w,O0):
O0 defines location of subpart in task frame
w(x) defines region of P0 relevant to subpart

3. while human is demonstrating action:
Record the trajectory ⌧ of O0 within the task frame

4. Set start state and goal states:
ys = ⌧(t = 0) and yg = ⌧(t = end)

5. Learn DMP action A(ys, yg) from ⌧
6. Set result of demonstration as successful E0 = 1

7. Compute maximum-likelihood estimate of P (E|S,A)

FOR EACH NEW SUBPART Sm:
1. Observe new object to obtain point cloud Pm

2. Search Pm for subpart frame Om:
Om = argmaxO P (Em = 1|(Pm, w,O), A)

3. Set start state ys = current pose of Om in task space
4. Robot executes DMP action A(ys, yg)
5. if action was successful Em = 1, else Em = �1

6. Compute maximum-likelihood estimate of P (E|S,A):
v = argmax

ṽ

Pm�1
i=0 � ln

�
1 + exp(�Ei˜v

T
k(Si))

�

OUTPUT:
Affordance-bearing subpart predictor:
P (E = 1|S,A) =

�
1 + exp(�v

T
k(S))

��1

result, the robot always moves the selected subparts of objects
in a similar manner when performing a specific task.

From a developmental viewpoint, 7-10 months old infants
can acquire skills more quickly when a caregiver provides a
single demonstration of the task [16], as well as draw the
infant’s attention to task-relevant features and sub-goals [17].
Similarly, the robot’s actions may be learned from a human
demonstration of the task. This demonstration provides the
agent with an example of an affordance-bearing subpart S0,
as well as the trajectory ⌧ of this subpart frame O0 during the
task. This trajectory can then be used to learn the movement
parameters of the DMP. The initial and final states are given
by the start of the trajectory ys = ⌧(t = 0) and its termination
state yg = ⌧(t = end). We denote the learned DMP action,
and its hyper-parameters, as A(ys, yg).

Given the point cloud P� of a novel object to manipulate,
the action selection process involves searching the point cloud
for a new subpart frame O� on which to execute the learned
DMP. The robot selects the subpart frame corresponding to
the subpart with the highest probability of affording the action.
The probability of a subpart being affordance-bearing is based
on the robot’s previous interactions with similar objects. In
Section II-C, we will discuss in detail how the robot computes
these probabilities.

Once the new subpart frame O� has been chosen, the initial
state of the motor primitive is defined by the initial state of the
subpart frame ys = O� . Similarly, the goal state yg , defined
relative to the task frame, is assumed to be the same as the one

used in the demonstration. For tool usage and similar tasks, the
goal state can be defined relative to another object’s subpart
S✏ by defining the task frame as O✏. The selection of the new
subpart frame O� thus sets the necessary meta-parameters of
the DMP and, hence, defines a specific action that the robot
can execute A(ys, yg).

When selecting a subpart frame O� , the robot is effectively
defining a new subpart S� = (P� , w,O�). In this manner,
each choice of action becomes linked to a specific set of visual
features. These visual features can then be used as the basis for
predicting whether the action is being applied to an affordance-
bearing subpart and will therefore be successful.

C. Learning to Predict Affordance-bearing Subparts
The DMP behaviors in Section II-B are defined for all

possible subparts. However, the action will only be successful,
and result in the desired manipulation, if the sulected subpart
affords the action. The final part of the K-DAP framework
is therefore to predict whether applying the motor primitive
A(ys, yg) to a subpart will result in the desired manipulation.
We will assume that the effects corresponding to successful
E = 1 and unsuccessful E = �1 action executions are
predefined. The effect classes can also be learned in an
unsupervised manner [1], [18], but this is beyond the scope of
this paper.

Rather than using a classifier to directly predict the outcome
class E, we propose using kernel logistic regression (KLR) to
learn the probability of a subpart affording a specific motor
primitive. An action A on subpart S is then predicted to be
successful E = 1 if p(E = 1|S,A) > p(E = �1|S,A). A
continuous probabilistic representation is useful for selecting a
suitable action, as it allows the robot to differentiate between
multiple subparts that are labeled as successful. The KLR
approach is based on the maximum entropy principle and,
hence, will assign probabilities close to 50% to subparts
that are dissimilar to all previous subparts. Using KLR, the
predicted probability of successfully applying an action A to
a subpart S is given by

p(E = 1|S,A) =
�
1 + exp(�v

T
k(S))

��1
,

where the ith vector element of k(S) is given by [k]i =

k(S, Si) , the S0...m�1 are the m previously encountered
subparts, and v 2 Rm is a learned weight vector. One KLR
is learned for each affordance. The logistic sigmoid function
ensures that the probability is valid and p(E = 1|S,A) +
p(E = �1|S,A) = 1.0.

The weight vector v is computed by finding the maximum
likelihood solution

v = argmax

ṽ

"
m�1X

i=0

ln

⇣�
1 + exp(�Ei˜v

T
k(Si))

��1
⌘#

,

where Ei 2 {�1, 1} indicates whether subpart Si had af-
forded the action A. This optimization problem is convex
and, therefore, the global maximum can be found using the
Newton-Raphson method. In practice, this optimization is
usually computed with a small amount of regularization, which
penalizes large values for v. Regularization avoids over-fitting



Figure 2. The picture shows the four objects used in the pouring task
experiment. The robot was initially shown how to pour with the large watering
can on the left. The robot then had to autonomously learn to generalize this
demonstrated action to the three objects on the right: a plastic cup, a different
watering can, and a small jug.

v to the previous examples and results in better generalization
to new subparts. Once the weight vector v has been learned,
the robot can predict the success probability of applying the
motor primitive to novel objects.

D. Related Works
The direct action perception and affordance learning frame-

works have been receiving an increasing amount of interest
from the robotics community [4]. However, previous work
in this area has largely focused on learning the affordances
related to entire objects, such as lifting and rolling [19],
[3]. Learning affordances at the subpart level has usually
only been studied in the context of learning visual cues for
specific actions, such as grasping [20], [21], [22]. These
approaches use predefined parametric features to represent
objects and their subparts. Instead, the K-DAP approach uses
a more flexible non-parametric representation that is based
directly on the robot’s observations. Our previous work on
learning affordances through self-exploration [1] and parental
scaffolding [23] has also usually used a fixed set of pre-
programmed behaviors. The proposed approach uses DMPs
in order to learn actions from a single human demonstration,
and adapt these actions to different subparts.

The direct linking of point clouds and actions, as used in the
K-DAP framework, was inspired by the work of J.J. Gibson on
optical flow for affordances [2]: When the DMP trajectory of a
subpart frame O is combined with the relative position of the
point cloud P , the robot actually defines a 3D trajectory for
each point in the point cloud. Therefore, if two subpart frames
O↵ and O� follow the same trajectory, and two points are
located at the same positions relative to their subpart frames
p↵i = p�j , then these two points will also have the same
trajectory. If many points match between the subparts, then
these points would induce the same optical flow for the two
objects. Therefore, a high NSK value between two subparts
k(S� , S�) ⇡ 1 effectively predicts that the same action on the
two subparts will result in a similar optical flow.

III. EXPERIMENTS

The proposed method was realized on the robot shown in
Fig. 1. The robot consists of a 7 degrees-of-freedom Motoman
robot, a five-fingered Gifu robot hand, and a Swiss Ranger
time-of-flight camera for perceiving the robot’s environment.

The robot was given the tasks of generalizing grasping and
pouring actions from one object to various other objects that

afforded these actions. A key goal of these experiments is to
test whether the K-DAP framework can be initialized with a
single demonstration. The experiments show that the robot can
autonomously learn to generalize the demonstrated actions to
new objects.

The general framework of the experiments is explained in
Section III-A. The grasping experiment is detailed in Section
III-C, and the pouring experiment is explained further in
Section III-D.

A. Learning Initial Affordances from Demonstration

Inspired by infant development [23], a parental scaffolding
approach is used to teach the robot new motor-skills. First,
a human provides an initial demonstration of how the task
is performed. Afterwards, the robot is allowed to learn by
interacting with similar objects, using the initial demonstration
as an initialization point. The grasping and pouring actions
were demonstrated to the robot using kinesthetic teach-in, as
shown in the left image of Fig. 1. By guiding the robot through
the required movements, the demonstrator could transfer their
knowledge of the motor skill, to the robot, in an intuitive
manner.

The demonstrations for both the grasping and the pouring
actions were performed using the large watering can shown
in Fig. 2. An important part of the demonstration is defining
the relevant subpart. For many tools, the subpart frame can be
defined at the main point of contact between the tool and the
object that the tool is manipulating. The subpart frames were
therefore positioned on the points pi closest to the other object
being manipulated. For grasping, the subpart was positioned
on the handle, closest to the hand frame, and aligned with the
approach direction of the hand. For pouring, the subpart frame
was positioned on the lip of the spout, closest to the container
being poured into, and aligned with the tipping axis of the
pouring motion. Given the demonstration of the task and the
subpart frame, a suitable DMP could be learned.

The point clouds of the objects were acquired from a
single perspective of the objects using the robot’s time-of-flight
camera. The object’s point cloud was automatically segmented
from the background and the robot’s arm. The points were
weighted according to an isotropic 3D Gaussian weighting
function w(x) = exp(�ˆh�2

x

2
). The width parameter ˆh was

set to match the size of the subpart; i.e., the size of the handle
for grasping, and the head of the spout for pouring.

B. Searching for Affordance-bearing Subparts

After initializing the system with a human demonstration,
the robot had to learn to predict affordance-bearing subparts
through interactions with novel objects. For each attempt at
the task, the robot evaluated the subpart that it found to
be the most likely to succeed Om = argmaxO P (Em =

1|(Pm, wm, O), A). The robot started each trial by acquiring
a new point cloud Pm for the current object. The objects
were shifted between attempts, but always positioned such that
an affordance-bearing subpart was perceivable and the action
could be executed.
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Figure 3. The top left image shows the grasp demonstrated to the robot by
a human teacher. Using the K-DAP approach, the robot learned to generalize
the demonstrated grasp two five other objects. The other five images show the
final grasps learned for these objects. The fraction below each image indicate
the number of successful grasps that the robot executed while learning to
grasp this object. A 5/5 indicates that the robot could immediately generalize
the demonstrated action to these objects

The search for the new subpart frame consisted of two
stages. In the first stage, the likelihood of success is evaluated
for each point in the object point cloud. The orientations of the
subpart frames were set by aligning the principle component
directions of the weighted point clouds. The point with the
highest success probability was then used to initialize the
second stage of the search. This second stage used a stochastic
local optimization procedure to find a suitable subpart frame,
which could then be evaluated. The entire searching process
required on average only two seconds per previous subpart.

After executing the DMP on the subpart, the results of the
attempt were evaluated and the learned success probabilities
were updated. Although we hand-coded the effect classes for
this experiment, the robot could have also discovered them by
monitoring and categorizing the created effects autonomously
[1], [18]. The updated KLR was then used to determine the
subpart for the next attempt. In order to maintain independent
experiments, the learning process was reinitialized before the
robot began interacting with a new object. In a real world

setting, the robot would not reinitialize between objects, and
would instead accumulate the knowledge gained from multiple
objects. The K-DAP approach for learning affordances from
physical interactions is summarized in Alg. 1, including the
initialization by a human demonstration.

C. Grasping
In the first experiment, the robot was given the task of

generalizing a grasping action to five novel objects. The ability
to grasp objects is an important prerequisite to many other
manipulation actions. All of the objects had handles, but of
varying shapes and sizes. The robot was given only five
attempts to grasp each of the test objects, resulting in 25
grasps overall. An attempt was considered a success E = 1

if the robot placed its fingers such that it could lift the object
afterwards. Otherwise, the attempt was a failure E = �1.

The results of the experiment are shown in Fig. 3. A total
of 21 of the 25 attempted grasps were successful (84%), and
the robot was able to immediately determine a suitable grasp
for three of the five objects.

The most difficult object to grasp was the small jug shown
in Fig. 2; i.e., Test Object 2 in Fig. 3. The reason for this
relatively low score is due to the opening on the top of the
container. When viewed from above, the concave sides of the
opening result in self-occlusions, and its rim is perceived as a
ring floating in space. This ring structure has a similar shape
to a handle. After a couple of failed grasps in this region, the
robot learned how to correctly grasp the object by the handle.

One possible solution to the problem of self-occlusions is to
use full, rather than partial, point clouds of objects. Such point
clouds could either be accumulated from multiple view points
of the scene, or by predicting the shape of occluded regions
[24]. This extension of the K-DAP framework is however
beyond the scope of this paper, but will be investigated further
in the future.

D. Pouring
The second experiment focused on a pouring task. In order

to avoid damage to the robot, the robot learned the pouring
action with rubber balls instead of a fluid. The robot had to
learn to generalize the pouring action to three different objects:
a small jug, a small watering can, and a plastic cup. These
three objects are shown in Fig. 2, next to the large watering can
used for demonstrating the action. For the pouring experiment,
the grasps of the objects were selected such that large parts
of the objects’ surfaces were visible, including many subparts
that did not afford the pouring action. Therefore, the cup was
grasped from below rather than the side, as shown in Fig. 1.
The robot ran five trials on each object. Each trial consisted
of the robot repeatedly attempting the pouring task until it had
successfully poured the ball into the plastic container 3 times.

The results of the experiment are shown in Fig. 4. The
average number of attempts required to complete the task were
4.6, 3.8, and 4.0 for the small jug, watering can, and plastic
cup respectively. Given that each trial contained exactly three
successful attempts, the robot failed on average 1.2 attempts
per trial while learning.
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Figure 4. The number of attempts required to successfully pour three
times from an object. Each bar indicates one trial, in which the robot is
initializes with a single demonstration of grasping a different object. The red
line indicates the three successful grasps required to complete the task. The
number of grasps above the red line indicates the number of failed grasps that
the system used to learn the correct action.

In four of the five experiments with the plastic cup, the robot
was able to immediately generalize the pouring action from the
large watering can. This is largely due to the fact that the basic
shape and rotational-symmetry of the cup tended to result in
similar visual features across trials. In the trial that required
eight attempts, the first trial found a subpart that resulted in
the cup not being tilted enough for the ball to fall out. The
robot subsequently tried a few other regions of the cup before
learning to use the opening properly. Most of the failures of
the watering can corresponded to attempts to pour the ball
using the opening on the top. However, this opening did not
allow the ball to be poured in a controlled manner and, hence,
these trials were regarded as failures.

IV. CONCLUSION

The direct action perception framework presents an effective
approach for a robot to generalize manipulations between
different objects. In this paper, we presented a non-parametric
approach to representing the surfaces of object subparts. This
representation forms the basis of a kernel function, which is
used to learn the shapes of affordance-bearing subparts. In
order to adapt to different subparts, the robot’s actions are
defined as motor primitives.

The proposed framework was implemented on a real robot.
The robot was initialized with a single demonstration from
a human, and subsequently learned through interactions with
other objects in its environment. As a result, the robot could
then quickly generalize both grasping and pouring actions to
new objects.
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