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Abstract—The concept of affordances appeared in psychology
during the late 60’s as an alternative perspective on the visual
perception of the environment. It was revolutionary in the
intuition that the way living beings perceive the world is deeply
influenced by the actions they are able to perform. Then, across
the last 40 years, it has influenced many applied fields: e.g.
design, human-computer interaction, computer vision, robotics.
In this paper we offer a multidisciplinary perspective on the
notion of affordances: we first discuss the main definitions and
formalizations of the affordance theory, then we report the most
significant evidence in psychology and neuroscience that support
it, and finally we review the most relevant applications of this
concept in robotics.

Index Terms—Affordances, ecological perception, motor learn-
ing, cognitive robotics, developmental robotics.

I. INTRODUCTION

The term affordances was introduced by the American
psychologist James Jerome Gibson in 1966 [1]–[3]. With his
own words [1, p. 285]:

“When the constant properties of constant objects
are perceived (the shape, size, color, texture, com-
position, motion, animation, and position relative
to other objects), the observer can go on to detect
their affordances. I have coined this word as a
substitute for values, a term which carries an old
burden of philosophical meaning. I mean simply
what things furnish, for good or ill. What they afford
the observer, after all, depends on their properties.”

What the objects afford the observer are action possibilities;
according to Gibson, these possibilities are directly perceived
by the observer from the incoming stream of visual stimuli,
without the need to construct a detailed model of the world
or to perform semantic reasoning. Only the minimal infor-
mation that is most relevant for action is picked up from
the environment, because “perception is economical” [3, p.
135]. Central to Gibson’s theory is the notion that the motor
capabilities of the agent dramatically influence perception,
and that somehow the external environment is understood
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in a self-centered and action-centered way. Since Gibson, a
number of explanations have been proposed in psychology,
while researchers in neurophysiology and brain imaging have
reported evidence of neural representations supporting the
validity of his theory. Moreover, the concept of affordances has
inspired roboticists to develop computational models aiming
to improve the perceptual and behavioral skills of robots.

In this paper we review the main definitions of affordances
and the most relevant observations in psychology and neuro-
science; then we discuss the related work in robotics, present-
ing the state of the art and identifying the main challenges
and the most promising research directions. A brief survey of
works dealing with computational models of affordances in
the areas of artificial intelligence and robotics was published
a few years ago [4]. Here we report a more comprehensive and
updated list of such works, together with a deeper discussion
on how they link to relevant research in psychology and
neuroscience.

The rest of the paper is organized as follows. In Section
II we review the main definitions and formalizations of the
concept of affordances. In Section III we discuss the most
relevant studies in psychology, and in Section IV we report
evidence from neuroscience. Then, in Section V we offer a
comprehensive survey of the related works in robotics. Finally,
we provide a closing discussion in Section VI and some
concluding remarks in Section VII.

II. THE CONCEPT OF AFFORDANCES

Jones discusses in [5] how Gibson’s thinking with respect
to affordance perception has evolved and changed over the
years, from his early studies on visual perception [6], to the
first appearance of the word affordances [1], until his last work
[3], where he writes [3, p. 127]:

“The affordances of the environment are what it
offers the animal, what it provides or furnishes,
either for good or ill. The verb to afford is found
in the dictionary, but the noun affordance is not. I
have made it up. I mean by it something that refers to
both the environment and the animal in a way that no
existing term does. It implies the complementarity of
the animal and the environment.”

Still, this definition of affordances is very broad, leaving
room for various interpretations. In Gibson’s view, a sta-
ble surface affords traversing, a predator affords danger, a
stone affords hammering. Also, while he mainly focuses on
affordance perception, he does not discuss much how the
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ability to perceive affordances is acquired, how affordances
are represented, and how are they used by the agent to drive
its behaviours.

After Gibson died in 1979, the concept of affordances was
further analysed by many psychologists, with various authors
trying to better formalize it [7]–[15] and others discussing
related issues and implications (as, for example, Michaels
[16] and Heft [17]). In the following we review the main
reinterpretations and derivations of Gibson’s theory.

A. Ecological Psychology

Turvey [7] defines affordances as dispositional properties
of the environment: properties that become apparent only in
some specific circumstances, which in the case of affordances
is the presence of an agent. For instance, an apple has the
disposition to be edible, which becomes an actual property for
an animal that is able to eat it (e.g. a pig). According to Turvey,
affordances allow prospective control (i.e. action planning), as
they inform about action possibilities to achieve goals. More
recently, Caiani [8] has further investigated the dispositional
interpretation of affordances. According to Caiani, affordances
can be viewed as “sensorimotor patterns in the perceptual
stimulus that may or may not be associated with some target
suitable for action”.

As opposed to Turvey, Stoffregen [9] claims that affordances
cannot be defined as properties of the environment only,
but instead they are relative to the agent-environment system
considered as a whole. He defines affordances as [9, p. 115]:

“...properties of the animal-environment system, that
is, that they are emergent properties that do not
inhere in either the environment or the animal.”

According to Stoffregen, if affordances were belonging to
the environment only, then the agent would have to do further
reasoning to infer what is available to him. Instead, the agent
directly picks-up information that already exists (i.e. the direct
perception theory), and that is related to the agent-environment
system.

On the other hand, Chemero [10] argues that affordances are
not properties (and for sure not properties of the environment),
but instead they are relations between particular aspects of the
agent and particular aspects of the environment. The apple
affords to be eaten by the pig is somehow similar to John is
taller than Mary in the sense that it is a relation between two
entities, and not a property of one or the other.

B. Computer Science

Efforts to formalize the concept of affordances arise from
the computer science community as well, and in particular
from the fields of artificial intelligence (AI) and robotics.

Most notably, the work of Steedman [11] provides a com-
putational interpretation of affordances using Linear Dynamic
Event Calculus. Steedman does not focus on the perceptual
aspect of affordances; instead, he is interested in the relation
between the object-actions pair and the corresponding events
in the environment. In other terms, his formalism relates the
objects (and the afforded actions) to the pre-conditions allow-
ing for the actions to take place, and to the post-conditions

generated by the actions. For example, a door is linked to
the actions of ‘pushing’ and ‘going-through’, to the necessary
pre-conditions (e.g. the door needs to be open to allow ‘going-
through’) and to the consequences of applying these actions to
the door (e.g. ‘pushing’ a door which is closed will result in
opening the door). The different actions that are associated
with an object constitute the Affordance-set of that object,
which is populated incrementally through learning and devel-
opment. The explicit modeling of actions pre-conditions and
post-conditions naturally allows action planning, for example
with a forward-chaining strategy; this constitutes perhaps the
most interesting aspect of this formalization.

Also, Sahin et al. propose a formalization that explicitly
addresses the use of affordances in autonomous robots [12].
Similar to Chemero, who views affordances as relations be-
tween the agent and the environment, they define affordances
as acquired (effect, (entity, behavior)) relations, such that
when the agent applies the behavior on the entity, the effect
is generated. According to Sahin et al., affordances can be
viewed from three different perspectives, namely agent, envi-
ronmental and observer perspectives: to be useful in robotics,
affordances should be viewed from the agent perspective, and
explicitly represented within the robot. This formalism has
been extended and implemented in a number of robotic studies
[18]–[33] that will be reviewed in Section V.

C. Industrial Design

The idea of applying the concept of affordances to objects
design comes from D. Norman’s popular book: The Design
Of Everyday Things [13]. In his book, whose original title
was The Psychology Of Everyday Things (POET), notions
from Ecological Psychology are combined with those of
ergonomics, generating the concept of user-centered design,
which focuses on the needs and expectations of the user, disre-
garding what he thought were secondary issues like aesthetics.
A good designer should “make things visible”, making sure
that the object interface provides the right messages, so that
the user can easily “tell what actions are possible” (i.e. the
object affordances). In this context [13, p. 9]:

“... affordances refer to the perceived and actual
properties of the thing, primarily those fundamental
properties that determine just how the thing could
possibly be used.”

As pointed out in [15], Norman’s discussion on affordances
slightly deviates from the Gibsonian view, mainly because of
the different objectives that Gibson and Norman had: Gibson
was interested in understanding how humans perceive reality;
Norman was interested in designing objects so that their utility
could be perceived easily. In [14, p. 9], Norman writes:

“The designer cares more about what actions the
user perceives to be possible than what is true”.

D. Cognitive Science

The theory of affordances has been useful in explaining
how possibilities provided by the environment are perceived
and acted on by the organisms. However, it says very little
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about how this process is connected to higher-level cognitive
skills such as memory, planning and language. A fruit might
indeed suggest “eat me” [34], but we would reason over many
different factors such as its price, ownership or hygiene before
eating it. Indeed, one important question is how to integrate the
concept of affordances within a broader cognitive architecture
and how to relate it with other cognitive processes.

The early computational model of visual recognition, pro-
posed by the pioneering cognitive scientist David Marr, views
recognition as a top-down and object-centric information
processing task [35], [36]. The three stages in this task,
namely primal, 2.5D and 3D sketches are required to re-
construct the objects in our brain in order to understand
and reason over them. Therefore, there is not much space
for an ego-centric direct concept like affordances in such a
constructivist approach. Vera and Simon, on the other hand,
explicitly address affordances in their system [37]. However,
contrary to the Gibsonian view, they argue that affordances
might be viewed as relatively fast semantic mappings between
symbolic perceptual and action representations, advocating
the construction of perceptual symbols for the detection of
affordances [38].

The constructive and direct approaches to perception have
been integrated by several cognitive scientists, including Ul-
ric Neisser, whose perceptual system is composed of three
modules [39]. While the first two modules are responsible
for direct perception of action and social interaction possi-
bilities, respectively, the third module covers processes such
as pattern recognition, language understanding and problem
solving [40]. The direct perception module is responsible for
the detection of affordances as “every purposive action begins
with perceiving affordances” [39, p. 235]. However, according
to Neisser, the Gibsonian view of affordances is inadequate,
since “it says so little about perceiver’s contribution to the
perception act” [41, p. 9]. Exposed to objects with a large
number of affordances, the agents are put in an active role
through a cyclic perceptual activity which prepares them to
search for particular affordances at each moment.

E. Summary and discussion

In summary, despite the details of their different interpre-
tations, ecological psychologists (Gibson, Turvey, Stoffregen,
Chemero) seem to agree on one major point:

• an affordance manifests itself in relation to the action and
perception capabilities of a particular actor.

Another central pillar in their discussion is that affordance
perception is direct. But what does this mean in computational
terms? The main idea is that low level visual features are
associated with action possibilities without the need to re-
construct an intermediate fully detailed model of the objects
nor to recognize them semantically, making affordance percep-
tion precategorical and subconscious; interestingly, this idea
finds a neurophisiological support in the discovery of canonical
neurons (as discussed later in Section IV). However, direct
perception does not mean that no intermediate processing
happens; on the contrary, a lot of computation is performed
by the brain, mainly in the dorsal stream of the visual cortex,

as discussed later in Section IV. Moreover, the existence of
this direct link between perception and action does not imply
that action execution is automatically generated by affordance
perception; such phenomena might occur in less developed
animals (e.g. frogs [42]), but this is certainly not the case
in humans, where affordance perception comes together with
several other cogntive processes (as discussed in Section II-D),
including inhibition mechanisms (related experiements will be
discussed in Section III-B).

Then, the formalizations of Steedman and Sahin add an
important dimension:

• an affordance representation should include the effects
of the afforded action (with respect to the object that
displays such affordance, and with respect to the agent
who perceives such affordance).

Interestingly, this overall view nicely accommodates what
is generally accepted in experimental and developmental psy-
chology: that perception is deeply influenced by action [43]
and that actions are prospective and goal-directed [44].

The interpretation of Norman somehow “simplifies” the
notion of what an affordance is, providing a down-to-earth
definition which is currently the more popular among the non-
specialists, although it maintains the original traits of “agent-
dependent” and “action-suggesting”.

Finally, studies in cognitive science (mainly by Neisser)
point out how affordances can play an important role in
more general cognitive architectures, but also that the existing
theories still do not fully support that.

III. EVIDENCE FROM PSYCHOLOGY

We discuss here evidence obtained from different fields
of psychology. Overall, the three following sections provide
support for three major claims about affordances:
(A) humans (and animals) perceive the environment in terms

of their body dimensions;
(B) the visual perception of some object properties that are

important for action (e.g. size, position) has a direct link
to action generation, that allows for fast action execution
if there is a will to execute the action;

(C) affordance perception depends on the sensorimotor expe-
rience of the agent (or, in other terms, affordances are
learned by the agent through the interaction with the
environment, in a developmental fashion).

A. Ecological Psychology

Although J. J. Gibson introduced the concept of affor-
dances within his theory of visual perception [3], therefore
strongly focusing on the visual processes behind affordance
perception, most of the later experimental studies in ecological
psychology were dealing with the verification of affordance
perception capabilities, without elaborating the underlying
perception/pick-up mechanisms and the related visual invari-
ants. They typically measure whether or not humans can detect
the action possibilities offered by objects and spatial layouts
in different conditions, and do not provide detailed insights on
how animals perceive affordances. Still, they provide valuable



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. XX, NO. XX, XXXX 4

information on a broad range of affordances by systematically
changing the animal/environment systems in a controlled way.

Prior to affordance perception experiments with humans,
it was already shown that many animals, including simple
amphibians, can perceive locomotion affordances of varying
size barriers, apertures, overhead holes and pits [45], [46].
Ingle and Cook, in particular, show that the ratio between the
size of the body and the size of the aperture is important in
deciding whether to jump or not through a hole for leopard
frogs [47]. McCabe is among the first to propose to measure
the existence of affordances using ratios between animal and
environment properties [48]:

“Since affordances constitute unique
animal/environment compatibilities, one cannot
measure those compatibilities with standardized
metric systems. . . . For the relationship of interest,
inches are superfluous. It is the ratio that is
perceptually detected and used.”

Then, in his pioneering work, Warren shows that a human’s
judgment of whether he can climb a stair step is not determined
by the absolute height of the step, but by its ratio to his
leg-length [49]. Furthermore, he shows that humans could
detect not only the critical points that signal the existence
of the climb-ability affordances, but also the optimal points
that correspond to minimal energy consumption configurations
for climbing. Next, the researchers have investigated how
perception of affordances is affected by changing the ‘body’
component of the perceived affordance ratio by tricking the
subjects about the size of their bodies. They show that when
the perceived eye-height of the subject changes (i.e. the subject
views the world from a higher or shorter spot without noticing
the changed elevation) her judgement on critical points also
changes in deciding sitability and climbability [50]. More
interestingly, perception of affordances that are not directly
related to the height of the subject, such as pass-through-ability
that depends on the ratio between the width of the shoulder
and the size of the aperture, also changes when perceived eye-
height is modified in a similar way [51]. These experiments
show that the visual perception of geometrical dimensions
such as size and distance is scaled with respect to bodily
properties of humans.

Recently, decisions on reaching attempts and execution of
such movements have been analyzed on both children and
adults, who are asked to fit their hand through openings of
various sizes [52]. While subjects of every age group show
sensitivity to changes in the environment by scaling their
attempts to opening size, supporting the idea that a basic
perception of affordances is present since early on and it
affects action decisions, younger children (16-month-olds to 5-
year-olds) are more likely to attempt impossible openings and
to touch openings prior to refusing, suggesting the presence
of a slow developmental trend of affordance learning and
refinement during growth.

Other researchers investigated additional factors that affect
affordance perception in more complicated settings. For ex-
ample, haptic information is shown to be used together with
vision in order to determine the critical points that signal the
transition between walking and crawling in infants that move

over sloped surfaces [53], [54]. In another locomotion task, it
is shown that humans can reliably detect the critical points that
signal gap-crossing in dynamically changing layouts [55], [56]
even with monocular vision [57]. Furthermore, not only static
properties but also the dynamic state of the humans are shown
to be important in detecting critical points in complicated tasks
such as detecting the time-gap for safe street-crossing [58].
However, how exactly these additional factors are integrated
with more basic affordance perceptions has not been fully
explained yet.

B. Psychophysics

Ellis and colleagues [59]–[61] have extensively investigated
object affordances using the stimulus-response compatibility
effect paradigm, and the more general relationship between
affordances and embodied cognition. For example, in [60] they
investigate what happens when a visual target object has to be
attended in the presence of distractor object. They measure
the participants’ reaction times to produce the responses re-
quested by the experiment (i.e. to classify as either “round” or
“square”, by producing a precision or a power grip, a target 3D
object presented on a computer screen) and study how they are
influenced by the congruence or incongruence of the distractor
size with the requested responses. The results show the target-
related compatibility effects found in previous experiments
without the distractor, and also show an unexpected interesting
effect of the distractor: responding to a target with a grip
compatible with the action afforded by the distractor produces
slower reaction time in comparison to the incompatible case.
They interprete these results proposing that the inhibition
of the action elicited by the distractor interferes with the
execution of similar actions in comparison to different actions.

Recently, a paradigm called spatial alignment effect has
been used to measure to what extent object related affordances
depend on the space, i.e. reachability boundaries [62]. This
paradigm compares the reaction times of an action towards the
same object in different configuration, i.e. in different position
and orientation. Faster reaction time to a configuration corre-
sponds to ‘direct’ perception of the affordance, and therefore
faster activation of the action. When left or right handled 3D
mugs are placed in peripersonal or extrapersonal spaces, the
reaction time in response to a left-/right-hand grasp command
is fast only when the hand-handle sides are congruent and
the mug is within the peripersonal space [63]. In a similar
experiment performed with real mugs that spatial compatibility
effect is also observed when the object is presented not
just in the actual-reaching spaces, but also in near-reaching
spaces which are also perceived to be reachable [64]. These
experiments suggest that ‘direct perception’ of graspability
depends on both grasp-related properties of the object and
‘direct grasp’ activation potential without any intermediate
movement.

C. Developmental psychology

Affordances provided by the environment are not fixed;
instead, they change over the course of the lifetime of the
human. New motor skills bring new action possibilities, which,
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in turn, should be learned to be detected perceptually. For
example, after acquiring independent sitting capability, infants
can actively explore the objects with their freed-up hands, and
learn about manipulation affordances. Accordingly, they start
exhibiting sensitivity to three-dimensional form of objects, and
reason about completion of incomplete parts of these objects
only after self-sitting experience [65]. At 6 months of age,
they manipulate objects in a differentiated manner depending
on the object’s properties [66]. During the second half year
they become sensitive not just to objects and surfaces alone,
but to the affordances entailed by the relation between the
two [67]. However they need to start crawling and walking, in
order to perceive affordances related to the spatial layout of
the environment. While crawling children perceive both rigid
and non-rigid surfaces as traversable, walking children learn
that non-rigid surfaces such as waterbeds are not ‘that much’
traversable [68].

Although J. J. Gibson himself mentions that affordances
are learned in children [3], he does not discuss the learning
mechanisms in detail because he is not particularly interested
in the development of affordance perception [69, p. 271].
Likewise, all the experiments in Ecological Psychology focus
on affordance perception in adult agents in a fixed time point
in their lifetime. Instead, the line of research established by
Eleanor Jack Gibson, who “nearly single-handedly developed
the field of perceptual learning” [70], has been a notable
exception in studying the learning of affordances from both
developmental and ecological perspectives. As J. J. Gibson
writes [71]: “we divided the problems between us, and she has
concentrated on perceptual learning and development while
I concentrated on the senses. Her forthcoming book (E. J.
Gibson, 1969) will take up the story where mine leaves off”.

E. J. Gibson believes that “ecological approach to percep-
tion is the proper starting place for a theory of perceptual
learning and development” [72]. Indeed, in contrast to the
main views of her time, she believes that the ambient arrays
of light that arrive to the receptors are already structured
and carry information related to the affordances of objects:
the development corresponds to learning how to pick-up this
information. Following the ideas that she developed in her
early work on learning of reading in children [73], she argues
that learning is neither the construction of representations from
smaller pieces, nor the association of a response to a stimulus.
Instead, she claims that learning is “discovering distinctive
features and invariant properties of things and events” [74],
[75, p. 295]. In learning the letters, for example, children
detect different combinations of distinctive features which
are invariant under certain transformations such as straight
lines and curves [73]. Perception is not constructing a new
description of the world; therefore learning is not enriching
the input but discovering the critical perceptual information in
that input. She names this process of discovery differentiation,
and defines it as “narrowing down from a vast manifold of
(perceptual) information to the minimal, optimal information
that specifies the affordance of an event, object, or layout” [75,
p. 284]. Her position is related to modern views in Cognitive
Science that see visual perception as an active process of
discovery, supported by sensorimotor knowledge [76]. Indeed,

she also notes how babies use exploratory activities, such
as mouthing, feeling, licking, and shaking, to generate the
perceptual information; exploration increases predictability
and efficiency of affordance perception [77], and terminates
with a significant reduction of uncertainty [78].

In the following we report the most relevant milestones of
child development, as observed in a number of psychology
studies, and relate them to the progressive acquisition of
affordance perception and exploitation skills.

1) Early sensorimotor development: The sensorimotor de-
velopment in humans already starts in the womb [79], [80]
and progressively shapes infant behavior after birth into the
childhood [81], [82]. Newborns have several innate reflexes
such as pupil reflex to light, sucking reflex to objects in mouth,
mono reflex to sudden movements or palmar-grasp reflex to
objects inside palm [83]. They also have crude skills such
as primitive form of hand-eye coordination, which can direct
both eyes and hands of the newborns toward visually detected
events and objects [84]. These reflexes and primitive skills
transform to more complex intentional sensorimotor programs,
and help development of advanced cognitive capabilities.
For example, palmar-grasp reflex, which automatically closes
infant’s fingers in response to objects in the palm, transforms
into intentional grasping [81], and disappears by 6 months
of age [85]. Rudimentary hand-eye coordination skill, on the
other hand, is continuously exercised by frequently moving the
hand in front of the eyes between 2 and 5 months of age [86].
Consequently, by 4 months of age, infants learn to perceive
reachability affordances [85, p. 199]. By 5 months of age,
they learn to slow down the speed while approaching to the
object [85, p. 100] with accurate reach trajectories [87, p. 41].
It takes 9 months for infants to reach for objects with correct
hand-orientation and adjust their grip size based on objects’
size before contact [85]. Affordances related to orientation and
size of objects develop later than position related affordances
as probably the former requires more complex processing of
the visual data.

2) Means-end behaviors, predicting effects and imitation:
By 7-8 months of age, infants start exploring the reachable
objects with qualitatively distinct manipulative actions such as
pinch-grasping, rubbing, holding, and shaking [88], [89]. The
actions around this age are relatively simple [90] and mostly
involve single objects [91]. Focused exploratory behaviors and
multimodal exploration have special importance for learning
in this stage [92]. Mostly without intervention of the parents,
infant self-explores and self-observes the environment in a
goal-free fashion [93]–[96], driven by intrinsic drives such
as curiosity, novelty and surprise [97]–[99]. Through such
exploration and learning, they start distinguishing actions from
their consequences [100]. Observing the consequences of
actions and relating these consequences to the visual and other
properties of the objects leads to learning of object affordances
[72]. After approximately 9 months of age, the infants start
using learned affordances to achieve certain goals, predicting
desired changes in the environment to achieve the goals,
and executing the corresponding actions [101]–[103]. By 10-
12 months, they can make multi-step plans using learned
affordances and sequencing the learned action-effect mappings
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for different tasks. For example, they can reach a distant toy
resting on a towel by pulling the towel first or retrieve an
object on a support after removing an obstructing barrier [104].
At around 12 months, infants have also become skilled in
reproducing the end states of observed actions that involve
objects. Goal emulation, i.e. reproduction of the observed goal
[96] with a tendency of skipping the demonstrator’s strategy
[105], becomes possible at this age; one possible explanation
might be that at this time infants can predict the effects of
their actions on the objects based on the learned affordances,
and can therefore obtain a self-centered representation of the
observed goals by chaining such predictions. On the other
hand, infant’s affordance learning strategy changes around this
age as well. Provasi et al. [93] showed that while 9 month old
infants can learn affordances of containers only through self-
exploration, 12 month olds learn more effectively if opening
action is demonstrated by others. This data suggests that social
learning through goal emulation [96] becomes available with
learned affordances, and helps learning further affordances.
While younger infants are more inclined to emulate observed
goals, older infants tend to exactly imitate the demonstrated
action sequence even if they notice that those actions are not
causally related to the goal [106]. On the other hand, copying
the exact action sequence is not straightforward for young in-
fants as the affordances and observed action trajectories might
not match to infants’ own sensorimotor repertoire [107], [108].
In order to overcome this challenge, parents support infants by
making modifications in their infant-directed actions, i.e. they
use “motionese” [109]. For example, they insert pauses while
executing complex actions to highlight the subgoals that can
be sequentially (and more easily) achieved by infants [110].
Motionese might serve as a bridge from affordance-based goal-
emulation mechanisms to complex imitation capabilities [21].

3) Tool use and problem solving: Infants start exploring
multi-object affordances from month 12 [111]. They insert
rods into circular holes in a box or stack up blocks into towers
of two blocks from 13 months [112]. While at 13 months
infants can only insert circular rodes into circular holes in
a plate, by 18 months they can perceive the correspondence
between different shaped blocks and they start inserting dif-
ferent shaped blocks into corresponding holes [113]. Finally,
by 18 months of age, they can perceive affordances that
involve more than two objects and act accordingly. At the
second year, in general, children begin using objects for
increasingly complex problem solving and tool use [114].
While a number of researchers have suggested that tool use
requires a cognitive leap beyond information that is directly
perceived, thus requiring the ability to engage in novel forms
of symbolic or relational thinking [115], a new wave of
research proposes an alternative view in which tool use is seen
as an extension of the perception-action coupling that infants
show during the first year of life; therefore, the very concept
of tool may emerge from the detection of possible affordances
between objects or object parts, based on information that is
directly perceived [116]. From this perspective, the trial and
error attempts that precede successful tool use can be seen as
exploratory behaviors, providing opportunities for affordance
learning. Indeed, Lockman sees tool use as gradually emerging

through sensorimotor experience, building-up on objects affor-
dance knowledge [116]; his position is close to the embodied
cognition approach [117], which assumes that to use tools
people need to activate past sensorimotor experience with
them, but no semantic reasoning skills. However, whether
tool use emerges progressively through familiarization with
experience or it appears through sudden insight is still an
unresolved issue. For instance, the recent observations of
Fagard et al. [118] seem to support the latter hypothesis. In
[118] a longitudinal study on five infants from age 12 to
20 months is reported; children have to use a rake-like tool
to reach toys presented out of reach. Their results indicate
that it is only between 16 and 20 months that the infants
suddenly start to intentionally try to bring the toy closer
with the tool. According to Fagard, this sudden success at
about 18 months might correspond to the coming together of
a variety of capacities, such as the development of means-
end behavior. This is in line with the early view of Kohler,
which sees tool use as appearing from sudden insight [119].
Recently, an extensive multimodal dataset was collected by
recording videos of 124 human subjects performing visual
and manual exploration of unfamiliar tools while verbalizing
their experience [120]: the participants were exploring lithic
tools, for which the affordances/functions were not known.
Interestingly, the analysis of this corpus of data could provide
further insight about the visual (and multimodal) processes
that support both the learning of affordances and the attempts
to infer the affordances of unknown objects and tools.

D. Summary and discussion

The experiments described in Section III-A show that hu-
mans (and other animals as well) perceive affordances in the
environment depending on their body dimensions. However,
they say little about what is exactly the visual information that
is picked (e.g. what low level features?), and why that specific
information is selected (among all the possible choices).

The studies reported in Section III-B clarify some of the
concepts proposed by the ecological psychologists, in par-
ticular with respect to the relationship between affordance
perception and action execution: even if an afforded action is
suggested upon visual presentation of an object, its execution
can be inhibited by other cognitive processes, if there is no
conscious will to perform the action. If there is a conscious
will, instead, then the execution of the afforded action is faster.

While Sections III-A and III-B focus only on affordance
perception, in Section III-C we discuss affordance learning: i.e.
learning how to perceive affordances, learning how to extract
the minimal visual information that is most relevant for action.
Research in developmental psychology clearly shows that
the human ability to perceive affordances emerges gradually
during development, and it is the outcome of exploratory and
observational learning; as this ability appears, the children also
start to be capable of predicting the effects of the actions,
eventually achieving problem solving skills. This body of
research offers a clear suggestion to roboticists: in order to
effectively perceive affordances, robots must first learn from
their own sensorimotor interactions with the environment.
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IV. EVIDENCE FROM NEUROSCIENCE

The evidence from neuroscience reported hereinafter helps
to better interpret computationally the observations and intu-
itions coming from psychology, and more specifically:
(A) that perception of action-related object properties is fast;
(B) that perception and action are tightly linked and share

common representations;
(C) that object recognition and semantic reasoning are not

required for affordance perception.

A. Visual processing in the primate cortex

According to two visual streams theory [121]–[124], visual
information is processed in two separate pathways in primate
cerebral cortex. The ventral pathway plays an important role
in constructing semantic perceptual information about the
objects through categorization, recognition and identification
[125]. The dorsal pathway, on the other hand, processes
visual information to control object-directed actions such as
reaching and grasping [126], and presents shorter latencies
(about 100msec) with respect to the ventral pathway [127]. In
particular, edge detection (visual area V1), depth processing
(visual area V3) and surface and axis representations (CIP
- Caudal Intraparietal Area) are critical subprocesses of the
dorsal visual pathway of the primate cortex leading to the
affordance representation in AIP - the anterior intraparietal
area [128]. A comprehensive description of the information
processing occuring in the primate visual cortex, from a
computational perspective, is provided in [129].

According to J. Norman, it is straightforward to conclude
that “the pickup of affordances can be seen as the prime ac-
tivity of the dorsal system” [130, p. 143]. Indeed, more recent
anatomical and physiological evidence has led researchers to
propose a further subdivision of the dorsal stream into a dorso-
dorsal and a ventro-dorsal sub-streams [131]. While the dorso-
dorsal sub-stream seems to be more involved in the online
control of action through proprioception, the ventro-dorsal one
provides somatosensory and visual information to the ventral
premotor cortex. Ventral premotor area F4 is in fact involved
in coding the peripersonal space for reaching [132], [133] and
area F5 contains neurons coding hand/mouth grasping.

B. Visuo-motor neurons

The majority of F5 neurons discharge during goal-directed
actions such as grasping, manipulating, tearing, holding [134]
but do not discharge during similar fingers and hand move-
ments when made with other purposes (e.g. scratching, push-
ing away). F5 grasping neurons show a variety of temporal
patterns of activation. Some neurons are more active during the
opening of the fingers, some discharge during finger closure
and some others discharge during the whole movement. More
interestingly, many grasping neurons discharge in association
with a particular type of grip (precision grip, finger prehension
and whole hand prehension). Taken together, the functional
properties of F5 neurons suggest that this area stores a set
of motor schemata [135] or, in other terms, a ‘vocabulary’
of motor acts [134]. Populations of neurons constitute the

‘words’ composing this vocabulary. This vocabulary-like struc-
ture is characterized by a syntactic organization. Different
levels of generalization are present, from very specific neurons
discharging only during grasping of a particular object (e.g.
a small piece of banana but not a small piece of apple)
to very generalizing neurons responding during movements
that share the same goal but are performed with different
effectors (e.g., when the monkey grasps an object with its
right hand, with its left hand or with the mouth). Interestingly,
this organization seems to support the principle of motor
equivalence postulated by Bernstein early on [136]. In addition
to their motor discharge, many F5 neurons (about 20%) have
been shown to fire also in response to food/object visual
presentation [134]. More recently the visual responses of F5
neurons were re-examined using a formal behavioral paradigm
to separately test the response related to object presentation,
during the waiting phase between object presentation and
movements onset, and during movement execution [137]. The
results showed that a high percentage of the tested neurons,
in addition to the ‘traditional’ motor response, responded also
to visual presentation of three-dimensional graspable object.
Among these visuo-motor neurons, two-thirds were selective
to one or a few specific objects. When visual and motor
properties of F5 neurons are compared, it becomes evident that
there is a strict congruence between the two types of responses.
Neurons that become active when the monkey observes objects
of small size, discharge also during precision grip. In contrast,
neurons selectively active when the monkey looks at large
objects, discharge also during whole-hand prehension.

The finding in macaque monkeys of visuo-motor responses
at the two sides of the frontoparietal circuit for grasping, which
includes parietal areas AIP/PF/PFG and ventral premotor
area F5, strongly supports the affordance idea. Frontoparietal
neurons might be devoted to transform object visual infor-
mation into grasping actions. Premotor cortex, in turn, sends
projections both to the primary motor cortex and to the cervical
enlargement [138]–[140]. Object-related visuo-motor neurons
have been successively named canonical neurons [141] to
distinguish them from the other class of visuo-motor neurons
of area F5, the mirror neurons, responding instead to action
observation [142]. Further studies confirmed the existence of
canonical neurons within ventral premotor cortex [143], and
within intraparietal region AIP and posterior parietal cortex
[144], [145]. It should be noted, however, that while F5
visuo-motor neurons seem to group actions according to a
motor syntax (see above), parietal (AIP) neurons seem more
influenced by geometrical features of objects and when some
generalization occurs, it seems more dependent on geometrical
clustering [144].

These results have interesting parallels in humans. Exper-
iments on human subjects using either fMRI [146] or TMS
[147]–[149] have shown sub-threshold activations of specific
motor neurons during observation of objects that affords
specific actions. Interestingly, these motor activations appear
to be more pronounced if the observed objects are within
reaching distance [150], of if they are reachable by another
agent [151]. EEG studies investigating the time course of
affordance activation have also shown that early sensory visual
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pathways are modulated by the action associated with objects
and by the intentions of the viewer [61].

C. Object recognition and semantic reasoning

The visuo-motor control of manipulation [126] and locomo-
tion [152] actions was shown not to be affected by impairments
in the ventral stream. A patient with such impairment was able
to successfully avoid obstacles, or insert mail into slots in
correct orientation using her dorsal system. However, while
performing actions successfully, she did not recognize the
objects she was interacting with, and cannot report the related
properties of the objects such as orientation of the slots or
height of the obstacles. Other experiments measured reaction
times towards various familiar and unfamiliar objects, and
they revealed that semantic information about the objects (e.g.
object category) does not appear to produce detectable effects
in priming actions; on the other hand, subjects act faster when
the actions are congruent with the perceived visual qualities of
even unfamiliar objects [153]. Therefore, it seems that humans
do not need to recognize objects in order to perceive and act on
their immediate affordances. Still, semantic object recognition
information and the corresponding properties were shown to
be communicated to the dorsal pathway in a top-down fashion
for control of manipulation actions [154].

This hypothesis seems to be confirmed by brain imaging
studies as well. In [155], Humphreys showed that, when
presented with a tool, some patients, who lacked the ability
to name the tool, had no problem in gesturing the appro-
priate movement for using it. According to Humphreys, this
suggested a direct link from the visual input to the motor
actions that is independent from more abstract representations
of the object, e.g. its name. In another study that Humphreys
presented in [155], two groups were shown object pictures,
non-object pictures and words. One of the groups was asked
to determine if some actions were applicable to what it was
presented. The other control group was asked to make size
judgments. The brain activities in both groups were compared
using functional brain imaging. It was observed that a specific
region of the brain was activated more in the first group
who were to make action judgments. It was also seen that
this specific region was activated more when the subjects
were presented with pictures of the objects rather with the
names. This showed that action related regions of the brain
were activated more when the visual input was supplied (i.e.
sensory representation), rather than the linguistic one (i.e.
abstract/symbolic representation).

D. Summary and discussion

Overall, research in neuroscience provides important infor-
mation about the neural representations that seem to permit
affordance perception. More specifically, the discovery of
canonical neurons (described in Section IV-B) unveils the
existence of specific neural structures that are involved in
both action execution and action perception (or better, af-
fordance perception) [156], supporting a more general view
in neuroscience and cognitive science that sees action and
perception as closely related [157]–[159]. These conclusions

are interestingly similar to those of the ecological approach
[160, p. 1236]:

This process, in neurophysiological terms, implies
that the same neuron must be able not only to code
motor acts, but also to respond to the visual features
triggering them. ... 3D objects, are identified and
differentiated not in relation to their mere physical
appearance, but in relation to the effect of the
interaction with an acting agent.”

Moreover, several studies support the idea that object recog-
nition and semantic reasoning are not required for affordance
perception: different brain areas are involved in the related
processing (see Section IV-A) and patients that show inabilities
to recognize objects could instead perceive their affordances
(see Section IV-C).

V. AFFORDANCES IN ROBOTICS

The concept of affordances is highly relevant to autonomous
robots and it has influenced many studies in this field.
First, it is important to underline the similarity of the argu-
ments of J. J. Gibson to those of the reactive and behavior-
based roboticists (e.g. R. Brooks [161]). This similarity was
initially noted by Arkin [162], and then further discussed
by Sahin [163]. Interestingly, both the theory of affordances
and that of behavior-based robotics emerged as alternative
suggestions to the dominant paradigms in their fields, by
opposing direct action-perception couplings to modeling and
reasoning. Indeed, Brooks’s claim “the world is its own best
model” [161, p. 13] puts forward the idea of a robotic
direct perception in which a complex internal model of the
environment can be replaced by a number of simple sensory-
motor mappings. Similarly, Murphy [164] suggests that robotic
design can draw inspiration from the theory of affordances
to eliminate complex perceptual modeling without loss in
capabilities. Also, Duchon et al. [165] have invented the term
Ecological Robotics referring to the application of ecological
principles to the design of mobile robots, like for example the
use of optic flow for navigation control.

However, when scaling from simple reactive behaviors
to more advanced scenarios (e.g. manipulation of different
objects, complex problem solving), the solutions proposed by
behavior-based robotics seem to be not powerful enough. Still,
computational models of object affordances can be extremely
helpful to capture the most informative object properties in
terms of the actions that a robot is able to perform, and in terms
of its available sensors. Also, they might offer an elegant and
effective solution to represent that sensorimotor knowledge
that is fundamental to obtain meaningful predictions about
the consequences of the robot actions, which are needed for
planning and problem solving. Indeed, when looking at the
different formalizations of the concept of affordances (that we
reviewed in Section II and summarized in Section II-E) and
at the evidence from psychology and neuroscience (outlined
in Section III and Section IV respectively) there seem to be
two main aspects which are very relevant for robotics:

i) affordances depend on the perceptual and motor ca-
pabilities of the agent (they are not properties of the
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environment alone), and the ability to perceive them
is acquired by the agent through a long sensorimotor
learning process;

ii) affordance perception suggests action possibilities to the
agent through the fast activation of sensorimotor (i.e.
visuo-motor) neural structures, and it provides also a
mean to predict the consequences of actions.

Overall, during the last twenty years many roboticists have
been successfully using ideas related to affordances and direct
perception for the design of intelligent robots. In the following
we discuss the most influential among such works.

A) In Section V-A we introduce pioneering works in which
robots are learning action-related object properties by
doing actions: this is the central idea behind affordance
learning, which then permits affordance perception.

B) Then, in Section V-B we review the works in which the
effects of the actions are explicitly considered, leading to
affordance models that can be used not just to suggest
the afforded action, but also to predict its consequences.

C) Section V-C deals with grasp affordances; we discuss
these works in a separate subsection because they are
very specific to the grasping problem.

D) The studies included in Section V-D extend the concept
of object affordances to pairs of object that can interact
together (i.e. multi-objects affordances), leading to the
concept of tool use.

E) Then, in Section V-E we report research in which models
of affordances (both of single-object and multi-objects)
are used to make predictions of the effects of the actions,
and such predictions are employed for action planning
and problem solving.

F) In Section V-F we highlight the importance of the af-
fordances in human-robot interaction (HRI), by reporting
works in which the robot ability to perceive affordances
improves the quality of HRI.

G) In Section V-G we review studies of developmental
and cognitive robotics in which models of affordances
are included in developmental learning processes and
cognitive architectures.

H) Finally, in Section V-H we summarize the state of the art
in affordance-related robotics research.

A. Learning action-related object properties

Among the very first attempts to exploit robot actions to
improve object perception is the work of Krotkov [166]. In
particular, in the “Whack and Watch” experiment, the mass
and friction of different objects are estimated by poking them
with a wooden pendulum while recording their motion with
a camera. Although the claimed objective of the study is to
detect the materials of the objects, Krotkov suggests that:

“Perception of material types and properties will
contribute significantly to the emerging area of re-
search on reasoning about object functionality. ...
The ability to classify objects by their material
properties will permit deeper reasoning, for example,
recognizing that a hard-heeled shoe could substitute

for a hammer, even though their shapes differ dra-
matically.”

Interestingly, similar experiments have been performed in
most of the early works on robotic affordances. Fitzpatrick
et al. [167]–[169] propose an ecological approach to affor-
dance learning, putting forward the idea that a robot can
learn affordances just by acting on objects and observing
the effects: more specifically, they describe experiments in
which robots learn about the rollability affordance of objects,
by tapping them from several directions and observing the
resulting motion. The first step is to understand that tapping an
object has the effect of generating an optic flow in the images
extracted from the robot cameras, i.e. a perceptual invariant
that is directly perceived [167], [168]. Then, during repeated
explorations, the robot can learn the relationship between such
effects and the action-object pairs, and eventually perform a
simple emulation task in which the best action to reproduce
an observed motion of the object has to be chosen [169].
Stoytchev presents simulation results in which a robotic ma-
nipulator applies random sequences of motor behaviors to
different objects and attempts to learns the so-called ‘binding
affordances’, i.e. behavior sequences that generate specific
motions of the objects [170].

One limitation of these early studies is that what is learned
are the affordances of specific objects. This means that the
identity of the object must be recognized by the robotic
agent before the affordances could be inferred; however, this
strongly limits the generalization capabilities of the system
to never-seen-before objects. Moreover, this approach seems
to be in contrast with the idea of direct perception from
Ecological Psychology, in which perceived visual features are
directly associated with an affordance, without an explicit
recognition/classification of the object.

B. Representing the effects of the actions

Later works address the problem of relating the perceived
properties of the environment to the learned affordances, and
also to the effects of the afforded actions.

1) Effects from internal indicators: A number of early
simulation studies propose to use internal drives in learning
affordances and extracting the related invariants from the
continuous sensorimotor experience of the robot. MacDorman
[171] studies the extraction of invariant features of different
affordances provided to a simulated mobile robot, where af-
fordances are provided as internal feedbacks from interactions
with different objects such as tasty or poisonous ones. In
his study, the invariant features are defined as perceptual
signatures that tend not to vary among the samples of the
same affordance category but they do vary among differ-
ent affordance categories. Cos-Aguilera et al. [172], [173]
cluster the sensory space of a wandering simulated mobile
robot to capture the regularities in the environment, and
learn the relations between the active clusters and the pre-
defined outcomes of interactions with these clusters. Indeed,
the learning and extraction of invariant features and the use of
internal indicators are interesting ideas, that originate from the
observations in Ecological Psychology (mainly of E. J. Gibson
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about differentiation [74], [75, p. 295], see Section III-C) and
Developmental Psychology (about instrinsic motivation and
curiosity [97]–[99], see Section III-C2). However, the robotic
works described above do not provide information on how to
exploit affordance perception in realistic goal-directed tasks.

2) Pre-defined effect categories: Fritz et. al [174] introduce
the concept of affordance cueing, which consists in detecting
salient regions of the visual stream where the perceptual invari-
ants that allow affordance detection are present. Within such
regions, only the visual features that support the identification
of an affordance are selected. In a later extension of the work
[175], the system is applied to a real world scenario; however
the perceived affordance (i.e. liftability) depends on a very
simple cue: whether the top of the object is flat or not. In
order to perceive and act on more complex affordances, such
as power- and precision-graspability affordances provided by
mugs with handles to an anthropomorphic robot hand, low-
level features that are directly extracted from depth images of
the objects were shown to be effective [32]. Ugur at al. [22],
[176] learn traversability affordances of a robot for navigation
in indoor environments in the presence of everyday objects
such as balls, tables and doors. After exploration and learning
in simulation, given features extracted from grids in the depth
image, the real robot is able to predict which directions are
traversable without using an intermediate object detection pro-
cess. The robot is able to detect critical points for traversability
through apertures, under overhead obstacles, over slopes, and
against cylinders lying in different orientations without explic-
itly recognizing objects, in scenarios similar to the ones used in
the experiments in ecological psychology summarized in Sec-
tion III-A. Dogar et al. extend this approach and use learned
affordances in a goal-directed way by selecting a movement
primitive [23] or by blending the pre-coded movement prim-
itives based on their affordances [26]. Cakmak et al. [25] go
one step ahead by chaining affordance-based predictions of
outcomes of actions and generating plans; however object-
free perception of the environment is very limiting to make
complicated plans. Movement possibilities that are provided
to the end effectors of manipulators can also be considered as
traversability affordances as noted by Erdemir et al. [177], who
propose a cognitive architecture in which the agent can predict
the consequences of its actions based on internal rehearsal.
Kim et al. [178], on the other hand, study traversability in
more difficult outdoor environments with different objects and
layouts such as wet grounds, grass fields, trees and brushes. In
an online learning setting, the robot collects image snapshots
while traversing the environment, self-labels them based on
its collision experience, and learns the relations between low-
level visual features and traversability through classification.
Eventually, the robot exhibits high performance in difficult
terrain, for example by detecting tall grasses, which look like
substantial obstacles due to their vertical extent, as traversable.

3) Probabilistic representations: All the aforementioned
studies rely on deterministic one-directional mappings. In-
stead, the works in [179]–[189] use probabilistic networks
to capture the stochastic relations between sensorimotor vari-
ables. These representations allow for bi-directional infer-
ences, that enable prediction, imitation and planning. More-

over, probabilistic learning greatly improves the ability of the
system to deal with uncertainty, redundancy and irrelevant
information, efficiently implementing Gibson’s idea of eco-
nomical perception [3, p. 135] (see Section I).

Demiris and Dearden [179] propose the use of Bayesian
Networks (BN) [190] to learn a forward model that relates
the robot motor commands to the visual effect of the resulting
motion. Such a model can then be inverted to imitate a visually
detected motion of another agent (e.g. a human). However,
no object-oriented actions are considered in this study. Hart
et al. [180] report experiments in which the humanoid robot
Dexter learns the liftability affordance of objects using prob-
abilistic relational models [191], and in particular Relational
Dependency Networks (RDN) [192]. Both object properties
(e.g. bounding box dimensions) and action properties (e.g.
hand approaching direction) contribute to the liftability es-
timation: for example, a long box used in the experiments
was always graspable, but was liftable only when approached
from the top. The authors also propose to employ Relational
Probability Trees [193] to explicitly analyse the contribution
of the different sensorimotor variables encoded in the RDN
representation, making evident that only some variables were
indeed affecting the object liftability. Sun et al. present in [186]
an extension to their previous work [178]. While in their first
system the learned affordances are directly associated with
the perceived visual appearance of different terrains (i.e. the
direct perception approach), in their later study the affordances
are related to categories that are formed on top of the visual
features, using a probabilistic graphical model that they call
the Category-Affordance model. Results obtained with two
different mobile robots in indoor scenarios show that the
addition of this intermediate categorization step improves the
prediction accuracy of the system, especially when a small
amount of training data is available. Kroemer et al. [188]
implement direct perception of graspability and pourability
affordances without using any hand-designed features. For
this, they use a non-parametric representation for affordance-
bearing parts of objects, which is based directly on the point
clouds perceived by the robot. Hermans et al. [189] learn
pushability affordances of objects through training regressors
that predict straight-line or rotation scores based on local and
global visual features. After learning through exploration, the
mobile manipulator robot could infer effective push points for
novel household objects regardless of whether they belong to
a previously encountered object class. Similarly, Kopicki et
al. [187] learn probabilistic models of outcomes on pushing
manipulations. However, this type of predictive models could
only make prediction in a uni-directional way.

The common limitation of many of these studies is that they
consider the existence of only one affordance (e.g. liftability,
traversability, containability). It is not obvious then how these
approaches can generalize to the more realistic case in which
multiple affordances are present in the environment, and
learning one particular affordance influences the prediction
of other affordances. A more general computational model,
which supports learning of different affordances, is proposed
later on by Montesano et al. [181]–[184]. The model em-
ploys a Bayesian Network (BN) to encode the probabilistic
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relations between a set of random variables describing three
main sensorimotor entities: actions, objects and effects. The
data is discretized using k-means clustering to train the BN
efficiently; a later version of the model allows to directly use
continuous variables, by using a Gaussian Mixture Models
representation of the perceived visual features as input of
the BN [185]. After learning, the BN can be used to infer
the conditional probability distribution of any set of variables
with respect to any other variable, allowing several robot
abilities: e.g. to predict the outcomes of an action on a visually
presented object, to select the action that would generate a
desired/observed effect, to estimate what action has generated
a visually detected effect. Interestingly, these abilities match a
number of behaviours observed in human babies, as reported
in Section III-C2.

4) Self-discovered effect categories: A number of re-
searchers focused on affordance learning methods that first
categorize the effect space in an unsupervised way, and then
learn the relation between object features and the discovered
categories, thus achieving a self-discovery of effect categories
that is compatible with the modern view in Developmental
Psychology [101], [102] and Neuroscience [158]. Griffith et al.
[194], [195] describe a learning procedure in which the robot
discovers whether objects can be classified as containers. The
recorded effects of the action are clustered in an unsupervised
way using X-means [196] and used to automatically determine
the object category (i.e. container or non container). The
perceived visual features of the objects are also clustered
through X-means, and associated with the effect category
using sparse coding [197]. Using such stored experience the
robot is able to then infer the category of unknown objects
based on their perceived visual features. While Ugur et al.
[27] apply X-means clustering that is followed by SVM
classification, Ridge et al. [198] use Self-Organized Maps
and Kohonen’s learning vector quantization to learn push
related affordances. Ridge et al., in a follow-up work [199],
show a gain in performance when affordances are learned
using features that are particularly defined dynamically with
respect to the corresponding manipulation actions. Ugur et al.
[19], [33] realize a two-level clustering algorithm that takes
into account the representational differences between different
perceptual channels and uses a verification step that makes
sure that the discovered effect categories can be predicted by
the robot. Similar ideas on generating useful categories were
also proposed by others, where categorization is also based on
the ability to predict the outcome of action execution (Mugan
and Kuipers [200]) and categories are used only if they appear
in the learned rules (Pasula et al. [201]).

C. Grasp affordances

Because the detection of grasp affordances is essential for
robotic manipulation, there is a large body of literature on
this topic. The solutions proposed in the literature can be
roughly categorized in two groups: analytic and data-driven
approaches. Analytic approaches [202], [203] rely on precise
geometrical and physical models of the objects and of the
manipulators in order to compute the optimal finger placement

for stable grasps. Data-driven approaches [204], on the other
hand, use self-generated or existing databases of grasp experi-
ences in order to assess grasp affordances of target objects.
Bogh et al. [204] divide data-driven approaches into three
groups: grasping known, familiar and unknown objects. The
approaches in the first category synthesize grasps for known
objects, where the identity and pose of the target object are
recognized first, and the grasp control for the corresponding
object are fetched from the database. While some of these
studies use simulators [205] in order to sample and evaluate
grasps for objects represented as 3D shape primitives [206],
others learn grasps from human examples [207] and refine
them with robot experience [208], [209]. The solutions of the
second category compare the target object with the known
objects using similarity metrics that take into account grasp
related visual object features [210], [211], with the assumption
that similar objects can be grasped in similar ways. Finally,
the studies in the third category directly compute grasp af-
fordances by identifying perceptual structures in the form of
local [212] or global [213] features. Analytical approaches
provide guarantees of stability and robustness; however, they
assume exact knowledge of relevant properties of the object
(e.g. 3D geometry, center of mass, weight, surface friction)
and of the robot hand (e.g. dynamic and kinematic model),
that are typically not known precisely in real environments.
Similarly, data-driven approaches for known objects give high
performance, but cannot deal with novel objects at all. Data-
driven approaches for familiar or unknown objects, on the
other hand, can infer grasp affordances of novel objects;
however, since they rely on previously acquired knowledge,
they require large datasets of object images and robot-object
interactions, and might be computationally expensive, making
the real-time extraction of object features challenging.

Overall, the approaches that best fit the interpretation of
affordances given by Ecological Psychology and Neuroscience
are the data-driven grasp synthesis approaches for familiar
or unknown objects, which employ datasets that are (at least
partially) generated by the robot [210]–[213]. In other terms,
these are the approaches in which the graspability affordance
is perceived from low level image features, instead of using
analytical reasoning over 3D object models, and in which the
robot embodiement and sensorimotor capabilities are taken
into consideration to learn what are the relevant low level
features to look for in the images (i.e. how to pick-up
the affordances); these approaches do not include an object
recognition step in the visual pipeline, and they can better
generalize to novel objects by looking for distinctive low level
image features that indicate graspability.

D. Multi-objects models and tool use

A few computational models of affordances deal with multi-
objects scenarios, either in terms of tool use [214]–[223]
or pairwise object interaction [224], [225], with the long-
term objective of obtaining more complex problem solving
abilities in autonomous robots. A robot agent specifically
tailored towards learning tool use is reported by Wood et al.
[214]. In their work, an artificial neural network is used to



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. XX, NO. XX, XXXX 12

learn appropriate postures for reaching and grasping tools, on
board the Sony Aibo robot platform. Sinapov and Stoytchev
[215]–[217] investigate the learning of tool affordances as
tool-behavior pairs that provide a desired effect. However,
what is learned are the affordances of specific tools (i.e.,
considered as individual entities), and no association between
the distinctive features of a tool and its affordances is made.
The generalization capabilities of the system are limited to
dealing with smaller and larger versions of known tools. The
work by Tikhanoff et al. [218] focuses on learning a specific
affordance (i.e., pulling) during tool use. Although useful for
robot operations, this knowledge is specific for the tool that
is experienced, and cannot be easily generalized to novel
(i.e. previously unseen) tools. In a recent extension [219]
visual features extracted from the functional part of the tool
are related to the effects of the action, and this allows to
adjust the motion parameters depending on how the tool has
been grasped by the robot. An interesting approach has been
proposed by Jain et al. [220], in which a Bayesian Network is
used to model tool affordances as probabilistic dependencies
between actions, tools and effects. To address the problem of
predicting the effects of unknown tools, they propose a novel
concept of tool representation based on the functional features
of the tool, arguing that those features can remain distinctive
and invariant across different tools used for performing similar
tasks. However, it is not clear how those features are computed
or estimated, if they can be directly obtained through robot
vision and if they can be applied to different classes of tools.
Moreover, it is worth noting that in [215]–[220] the properties
of the acted objects are not explicitly considered in the model;
only the general affordances of tools are learned, regardless
of the objects that the tools act upon. The works of Moldovan
et al. [224], [225] consider a multi-object scenario in which
the relational affordances between objects pairs are exploited
to plan a sequence of actions to achieve a desired goal, using
probabilistic reasoning. The pairwise interactions are described
in terms of the objects relative distance, orientation and con-
tact; however, they do not investigate how these interactions
are affected by different geometrical properties of the objects.

An important step toward solving this problem in a more
general way, by considering the properties of both tools and
affected objects and modeling how those properties influence
the effects of specific actions, has been recently made by
Gonçalves et al. [221], [222]. In their work, the Bayesian
Network (BN) probabilistic model initially proposed in [184]
is extended to consider not just actions that are directly applied
to an object, but also actions that involve the use of a tool,
i.e. an intermediate object. Indeed, this BN model encodes
the probabilistic relation between the visual features of both
tool and object, the applied action and the resulting effects. A
further extension of this work shows how the auto-encoders
framework could be applied to this problem to allow for online
incremental learning with continuous variables [223]. These
works [221]–[223] support computationally the position of
Lockman [116] that tool use can emerge gradually from the
sensorimotor experience of the agent and from the progressive
detection of affordances of the interacting objects (see Section
III-C3).

E. Multi-step predictions for action planning

In order to provide the system with the ability to plan a
sequence of actions to achieve a desired goal, several one-step
predictions have to be chained together to obtain a consistent
multi-step prediction, in which the predicted post-conditions
of one action match the required pre-conditions of the follow-
ing action. Interestingly, the computational interpretation of
affordances outlined in Section II-B naturally allows for this
to be achieved, and indeed many robotics works described
hereinafter follow from that formalization.

In [226], a simulated mobile robot learns the environment
dynamics in its perceptual space and makes multi-step action
plans to achieve goals in a locomotion task. The initial percept
space is categorized in an unsupervised manner, i.e. irrespec-
tive of the interaction experience of the robot, and the robot
learns the initial-percept → final-percept mapping. On the
other hand, in [227], predicates are discovered from low-level
sensory readings during a goal-free exploration and learning
phase. However, although objects could be categorized based
on their shapes in the sensory level, this information is not
used in effect prediction. Moreover, only position features are
used to learn “simple affordances of the object” [227, p.886].
Sequences of sensorimotor predictions are used for forward
planning in systems based on the SensoriMotor Contingencies
Theory (SMCT) [228], [229]; the theory is highly related to
O’Regan and Noë’s [76] account for visual consciousness,
which argues that seeing is a way of acting and vision is a
mode of exploration of the world that is mediated by knowl-
edge of sensorimotor contingencies. Although affordances are
not explicitly addressed in SMCT, they are “undoubtedly
strongly related” [76, p. 945] as both theories oppose de-
tailed internal modeling and emphasize the information pick-
up aspect of perception [75]. In this context, Hoffman et
al. [230], [231] study locomotion affordances provided to
quadruped robots and Hogman et al. [232] learn grounded
object categories following the same idea, i.e. to use multi-
ple sensorimotor observations obtained from a sequence of
actions. Jun Tani’s neurorobotics framework [233], [234] has
also been effectively used for learning and predicting agent-
environment interactions for multi-steps plans, using either
multi-component recursive neural networks [233] or stochastic
multiple timescale recurrent networks [234]; however, their
focus is on learning visuo-proprioceptive sequences rather
than learning how to perceive the affordances provided by the
environment.

An interesting computational architecture which tackles the
problem of using learned affordances for action planning was
proposed under the name of object-action complexes (OACs,
[235]–[238]). In an attempt to bridge low-level sensorimotor
knowledge and high-level symbolic reasoning in autonomous
robots, OACs brings together ideas and techniques from be-
havioral robotics and AI in a coherent architecture. Inspired
by Steedman’s formalization of affordances [11] (see Section
II-B), an OAC is defined as a triple (E, T, M) where E
identifies a motor program, T is a function that predicts how
the current state of the environment (including the robot) will
change after the execution of the motor program, and M
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is a statistical measure of the success of the OAC. Both T
and M can be learned by the robot through exploration. For
each OAC, the function T maps only relevant portions of the
state space, and can contain both continuous (sensorimotor)
and discrete (symbolic) variables; for example, continuous
variables could be the perceptual invariants of an affordance,
while discrete variables could be logical predicates. Therefore,
within the same control architecture, there can be both low-
level OACs related to a basic action (e.g. grasp an object
of a certain perceived size) and high-level OACs related to
more abstract goals (e.g. take possession of a non reachable
object). The hierarchical combination of high-level and low-
level OACs could then allow for complex problem solving
based on the combination of symbolic planning and learned
sensorimotor schemas. Following the OACs approach, Kaiser
et al. [239] recently implemented a complete system on the
humanoid robot ARMAR-III, in which rule-based whole-
body locomotion and manipulation affordances are extracted
from segmented RGB-D images. Still, the practical uses of
OACs reported in the literature are limited to relatively simple
examples, with pre-learned transition rules and pre-defined
high-level relations, in which many typical situations that
characterize robot behaviors in the real world are not consid-
ered (e.g. noisy or erroneous perception, execution failures,
unexpected events).

Notably, recent advances in this line of research have been
obtained in parallel by two different groups, who propose
systems in which the learned affordances and their predictions
are exploited to generate and execute symbolic plans in
complex real world scenarios. First, Ugur and Piater realize
development of the symbolic knowledge in three stages [240].
In the first stage, the robot learns the affordance categories.
Then, the system learns logical high-level rules that return
a stacking-effect category given the affordances of the in-
volved objects. Finally, these categories and rules are encoded
in Planning Domain Definition Language (PDDL), enabling
symbolic planning with off-the-shelf AI planners. In a follow-
up work, Ugur and Piater close the symbol formation loop
by grounding the generated plans in the real-world and by
discovering new affordances that appear during plan execution
[241]. Second, in the recent work of Antunes et al. [242], one-
step predictions based on learned affordances, that are encoded
with the Bayesian Network model proposed in [221], [222],
are used as probabilistic rules for a probabilistic planner (i.e.
PRADA [243]), which can in turn predict the consequences
of complex action sequences using approximated inferences
over a structured dynamic Bayesian Network representation. In
both works [241], [242] the afforded actions are represented as
goals; this is in line with modern positions in neuroscience (see
[134], [135], as discussed in Section IV-B) and developmental
psychology [44]. This organization of the motor system allows
to separate the action selection process, based on the perceived
affordaces, from the physical execution of the action; as an
outcome, the robots show a certain degree of flexibility in
problem solving, displaying behaviors in the real world that
resemble what is observed in human babies (see Section
III-C2, and in particular [101]–[104]).

F. Human-robot interaction and communication

Affordance learning and perception can be exploited to
improve the quality of natural human-robot interaction, for ex-
ample by providing robots with a better understading of natural
language [244]–[247], by helping the robotic understanding of
human actions [248], [249] and by enabling object recognition
in terms of the functions that objects afford to humans [250]–
[253].

1) Affordances and language: In [244] the robot learns
object affordances during verbal interaction with a human
caregiver, using Bayesian Networks, and can therefore learn
several words-meaning associations. Similar models are pro-
posed in [245] and [246], where the relations between words
(nouns, adjectives and verbs) and objects properties (includ-
ing their affordances) are represented using a set of SVM
classifiers. A framework based on Markov Random Field is
proposed by Celikkanat et al. [247] in order to model the
co-occurrences of actions, object percepts, object affordances
and language by constructing a so-called concept web; given
information in a particular channel, such as an object percept
or a word, the corresponding concepts in the web are activated
(e.g. the object affordances). In all these systems, the ability
to concurrently perceive i) spoken words and ii) objects
affordances, helps the robot to remove perceptual ambiguities
and to better understand the interaction with a human.

2) Detecting human affordances: A number of works have
originated in the computer vision community with respect to
the problem of visual detection of ‘human’ object affordances,
i.e. the actions that the objects afford to humans [248]–[253].
In [248] object affordances are detected along with human
manipulation actions from video sequences in an integrated
framework, using both standard [254] and factorized [255]
conditional random fields. The same objective is pursued
by the system proposed in Koppula et al. [249], where
more complex full-body human activities are considered and
object-object interactions are modeled as well. The system
acquires RGB-D video streams on the PR2 robot and uses
associative Markov networks [256] to model the actions-
objects dependencies, where the nodes encode the subactivities
and affordances, and the edges correspond to the learned
relations between these components. AfNet, the Affordance
Network [250], [251], is an open knowledge-base of visual
affordances of common household objects, particularly suited
for affordance detection from RGB-D images in domestic
robots. Image regions with specific properties (e.g. high con-
vexity of a surface) are labeled with specific affordance labels
(e.g. contain-ability). In [252] images and meta-data sources
extracted from the web are used to learn a knowledge base
of object affordances using Markov logic networks [257], a
representation that unifies Markov Random Fields and first-
order logic. In [253] a large corpus of RGB-D images of over
105 kitchen, workshop and garden tools, in which tool parts
are annotated with the relevant affordances (e.g. grasp-ability,
pound-ability, cut-ability), is used to train structured random
forest classifiers [258] to infer the affordances of local shapes
and geometries. While these systems achieve good recognition
rates and can be very useful in practice (e.g. for service
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and collaborative robots), they do not provide much insights
about how humans may use affordance knowledge to better
understand the actions of others. Unlike biological agents,
these learning systems are only observing the actions of others
(i.e. by analyzing images) without doing actions themselves.
Indeed, the absence of this mirror mechanism might justify
the performance gap which is still present between humans
and machines [259], although there is no consensus yet on the
existence of such a mechanism in humans [260].

G. Developmental and cognitive modeling

Affordance learning in artificial agents has been included in
a number of studies that model either long-term developmental
processes (Section V-G1), specific psychology studies (Section
V-G2) or cognitive architectures for autonomous robots (Sec-
tion V-G3).

1) Developmental modeling: In their survey of the on-
togeny of tool use, Guerin et al. [82] formulate concrete
recommendations on how to approach the modeling of general
mechanisms of sensorimotor development and knowledge rep-
resentation, including actions-object relationships. Cangelosi
et al. [261], [262] identify the key challenges in developmental
robotics, and propose a practical roadmap which includes a
series of milestones such as action and affordance learning,
social learning and cognitive integration. Hart and Grupen
[263] propose a developmental system in which the senso-
rimotor space of a manipulator robot is self-organized by ap-
plying Piaget’s accommodation and assimilation mechanisms
[101]. Fitchtl et al. [264] use predictions of action effects
as inputs in predicting effects of other actions. They show
that a speed boost can be achieved in the initial phases of
learning, especially if the learning problem is hard. Ugur
et al. [265] show that such a bootstrapping effect can be
obtained not only if the pre-learned affordances are used as
inputs for predicting more complex affordances, but also if the
training objects are actively selected to be maximally different
based on their learned affordances. In a follow-up work, Ugur
et al. [266] propose an active learning method which uses
intrinsic motivation for selecting actions and feature selection
for establishing links, in order to let the system discover the
hierarchical affordance structure automatically. As a result,
the robot learns simple poke affordances first, and uses the
learning outputs to acquire more complex stacking affordances
later on. This ‘re-use’ idea has been exploited also by Wang
et al. [267], who consider the transfer of learned affordances
from previously explored objects to new similar objects. The
system described by Worgotter et al. [268], on the other
hand, transfers affordance knowledge between objects and
between actions, in order to replace the components that are
missing in the immediate environment of the robot during plan
execution. Ivaldi et al. [269], [270] increase object recognition
performance through a socially guided intrinsic motivation
system that actively selects objects to explore, actions to
execute and caregivers to interact with; similar strategies that
combine robot motor exploration with social guidance could
be used to increase the speed and efficacy of affordance
learning as well. Indeed, Ugur et al. [21] describe a staged

developmental framework in which a wide range of skills
(execution of behavioral primitives, affordance perception,
emulation, imitation) emerge through real-world interactions,
inlcuding robot-caregiver interactions. They show that the use
of simple-to-complex perceptual information (i.e., first tactile,
then visual and finally social cues) and the progressive shift
from self-exploration strategies (during affordance learning)
to observational learning (through emulation) are necessary
and sufficient for the progressive development of the targeted
sensorimotor skills. Indeed, this study offers a computational
account of several observations in Developmental Psychology
(see Section III-C2 in particular), supporting the idea that
affordance learning allows goal emulation, and that both
precede the emergence of imitation abilities in human infants
[93], [96], [106].

2) Cognitive modeling: Cognitive and neuro-robotics simu-
lations have been proposed to model the object affordance and
stimulus responsibility effects [271], [272]. These models are
based on the TRoPICALS [271], a neuro-robotics cognitive
architecture that captures the neuro-cognitive mechanisms
underlying several distinct affordance compatibility effects.
Specifically, the study of Caligiore et al. [272] investigates the
affordance competition between target-distractor objects with
the iCub robot, reproducing the experimental results of Ellis et
al. [60] (see Section III-B). The neuro-robotics model explains
these results on the basis of the detailed neural mechanisms
that could underlie the interference/facilitation effects caused
by the perception of the distractor contextually with the target.
This explanation is based on a novel idea according to which
the prefrontal cortex might play a double role in its top-down
guidance of action selection: (a) producing a positive bias
directed to trigger the actions requested by the experimental
task; (b) producing a negative bias directed to inhibit the action
evoked by the distractor.

3) Cognitive architectures: A number of robotic cognitive
architectures that model a wide range of abilities explicitly ad-
dressed affordances in encoding perception-action relations. In
LIDA (Learning Intelligent Distribution Agent [273]), which
models a broad spectrum of cognitive capabilities, affordances
are encoded in the connections that link objects, object cate-
gories and actions in the Perceptual Associative Memory that
is used in the understanding phase, prior to the attending and
the action phases. In CLARION (Connectionist Learning with
Adaptive Rule Induction On-line [274]) the actions effects
are observed to learn low-level connectionist representations
using reinforcement learning, and to refine high-level rule-
based symbolic representation. The OACs framework [235],
described in Section V-E, is part of the three-levels cog-
nitive control architecture that was realized in the PACO-
PLUS project [275]. The affordance model proposed in [184],
reported in Section V-B3, is used to keep object-action-effect
triplets in the Procedural Memory Module of the cognitive
architecture [276, p. 156] of the iCub robot [277]. More
recently, this architecture has been extended to allow the iCub
robot to perform tasks requested by a human user with natural
language (as outlined in [242], see Section V-E), bringing to-
gether action-centered language understanding [278], learning
and perception of the affordances of tools and target objects
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[221], [222], and complex action execution routines [218].

H. Summary and discussion

Overall, most of the reported works implement an idea
which is central in Ecological Psychology: that performing
actions is crucial for the visual perception of important object
properties. Actions can be performed either during percep-
tion (like in the early work of [166], discussed in Section
V-A, or in the more general approaches of active vision
[279] and active perception [280]) or, most interestingly for
the present discussion, before perception; indeed, this latter
approach is identified with affordance learning, i.e. learning
what is the most relavant visual information to pick-up, given
the sensorimotor abilities of the agent and its sensorimotor
experiences. Affordance learning is the necessary pre-requisite
for affordance perception and for prediction of the action
effects (as suggested also by the observations in developmental
psychology, see Section III-C); the challenge for roboticists is
to design systems that can perform this learning efficiently.
To do so, one important aspect is how to represent the data:
in Section V-B we discuss the evolution of such represen-
tations in the state of the art, which culminates in the use
of probabilistic representations (see Section V-B3) and in
the automatic discovery of the representations based on the
robot experiences (see Section V-B4). In Section V-C we
provide a brief discussion on grasp affordances; this is a
huge topic per-se, as it overlaps with robotic manipulation,
and what we do in this survey is to highlight what class of
approaches has borrowed more from the lessons of Ecological
Psychology. Clearly, the complexity of the robot learning
experiences determines the range of situations that the robot
will be able to deal with: scaling from single-object to multi-
objects experiences is an important step beyond, that can
permit efficient and flexible robotic tool use, as described
in Section V-D. The works reported in Sections from V-A
to V-D deal with the learning of increasingly complex af-
fordances; the learned models endow robots with the ability
to i) perceive affordances and ii) predict the effects of the
afforded actions. But how to put these abilities to use in real
tasks? In Section V-E we examine works in which these abil-
ities are employed for action planning, allowing for problem
solving in real scenarios. Then, in Section V-F we explore
another dimension in which affordance knowledge can be
useful for robots: i.e. to better interact with people through an
enhanced understanding of verbal communications and of the
experienced situations. Finally, in Section V-G we discuss the
efforts in the robotics and computer science communities to
include affordance learning and perception into more general
frameworks. Affordance learning in humans is made efficient
by the combination of different learning strategies (e.g. self-
exploration, observation, imitation), as discussed in Section
III-C; moreover, as pointed out in Section II-D, affordance
perception is integrated with several other cognitive processes.
Apart from the results in psychology and neuroscience, an
important computational support to these hypothesis has been
provided by robotics studies as well, that either replicated
specific experiments (compare Section V-G2 to Section III-B)

or included affordance perception into developmental (see
Section V-G1) and cognitive (see Section V-G3) architectures.

VI. DISCUSSION

Perhaps the most important insight made explicit by the
affordance concept is that perception is deeply influenced
by action; notably, this is a consequence of the fact that,
indeed, the ultimate goal of perception is not to re-construct
the environment, but to allow the agent to effectively act on
the environment. Therefore, from a computational perspective,
the goal of a robot vision system should not be to create a
fully detailed representation of the environment, but instead
to understand what is the minimal information that has to be
extracted from the visual stream to allow the robot to success-
fully perform actions and achieve tasks. Because such minimal
information depends on both the agent (i.e. the robot, in this
case) and the environment, to discover what that information
is (or in other terms, to find out the most appropriate data
representations) the agent needs to do actions and to perceive
the effects through its own sensors: i.e. affordance learning
is necessary. Interestingly, the associative mechanisms that
result from affordance learning are tremendously-powerful en-
ablers of sophisticated sensorimotor interaction and cognition
because they can shortcut (expensive and brittle) reasoning
processes. Initially, it takes a child some effort to learn how
to properly grasp a cup by the handle. With time, the child
stops thinking about it. On seeing the handle of a cup, a
motor schema related to the grasping of that specific type
of handles will be subconsciously activated (or, in neuro-
physiology terms, activated sub-threshold), before she even
realizes that the object is a cup; the motor system prepares for
action, allowing for a fast execution in case she consciously
decides to grasp the cup. Moreover, these perception-action
couplings that are progressively learned during development
allow the children to predict action consequences, leading to
the emergence of action planning and problem solving skills.
Evidence supporting these insights comes from experiments
and observations in both psychology (see Section III) and
neuroscience (see Section IV).

In robotics, the theory of affordances has been widely
used as a source of inspiration. However, only certain aspects
have been used, and typically in isolation. Although large-
scale projects have studied the application of affordances to
robot control and numerous meetings on the topic have been
organized in vision and robotics conferences, there is yet no
unified view on how (i.e. at what level and to what extent)
the theory of affordances should be applied in autonomous
robotics. Indeed, a number of open issues are still present.
Should affordance-based controllers be considered only at
the reactive level of a robot architecture? Or should they
be fully integrated in the cognitive architectures, directly
affecting more complex behaviors such as imitation, problem
solving and verbal communication? Also, how to represent
affordances so that they can be effectively used in complex
scenarios? Should the sensory percepts be directly linked to
the motor coding, or they should be first grouped into symbolic
categories? Should the output of affordance perception be



IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. XX, NO. XX, XXXX 16

the afforded action (or a set of afforded actions), or the
effects generated by the action, or both? And how to represent
those effects? Some effects might be salient changes in the
environment (e.g. motion of an object), but how to represent
the effect of sitting on a chair? How different affordances (e.g.
traversability of a space, rollability of an object, sit-ability of a
chair) can be represented within the same model? Moreover,
it is commonly agreed that affordance relations have to be
learned by the agent through interaction with the environment
to be really representative of its sensorimotor capabilities. But
how? Many different learning algorithms have been applied in
different studies; however, it is still not evident whether any of
them provides clear advantages with respect to the others. A
more interesting dimension, indeed, is that of the exploration
strategies employed by the agent (e.g. motor babbling, active
learning, reinforcement learning, internal motivation and cu-
riosity, staged developmental learning).

Although we do not dare to provide any conclusive answer
to these very broad and challenging research questions, we
do hazard to suggest a few promising directions. The first
is related to the use of probabilistic representations, which
seem to be the best candidate to model the intrinsic uncertainty
which characterize robot actions and perceptions. The second
is the idea of staged developmental learning, in which what
is learned in one stage informs the subsequent stage, both
in terms of the exploration strategy to adopt and on how to
organize the collected sensorimotor information. The third is
the use of affordance predictions to ground the rules of logical
reasoning systems, that could lead to effective action planning
and problem solving in real robots; in more general terms, this
seems to be an interesting direction to bridge the gap between
AI and robotics approaches to complex problem solving.

VII. CONCLUSIONS

The concept of affordances has inspired multidisciplinary
research in many fields, and the findings have been explored
in many diverse (not always consistent) ways. This paper
puts many of such research endeavors and results in per-
spective, particularly in the fields of psychology, neuroscience
and robotics, and establishes connections across such diverse
disciplines. We offer a structured and comprehensive report
of works from these different fields; short summaries and
discussions can be found in each section, to help the reader to
extract the related core information. Moreover, we conclude
the paper with a general discussion in which we also outline
a number of open questions related to the use of the affor-
dance concept in robotics and we suggest a few interesting
research directions. Overall, from a robotics and computational
perspective, the studies of affordances in psychology and
neuroscience do once again reveal the extremely tight coupling
between perception and action, that is reflected in the existence
of shared representations that also integrate goals and effects.
Such representations provide a bridge between sensorimotor
loops and more abstract and symbolic knowledge, enabling
sophisticated cognitive processes that support complex behav-
iors, learning and memory.

For the future, we believe there is still a lot to be gained
from this challenging and multidisciplinary dialogue between

psychology, neuroscience and robotics. Indeed, research on
affordances can have a considerable impact on society in mul-
tiple domains: it can lead to a better understanding of human
behaviors and neural functions, it can improve the design of
intelligent robots to be employed in human environments,
it can offer a new perspective for the realization of agent-
centered automated reasoning systems. Despite the important
results achieved in the different communities, there are still
many open questions; we are confident, however, that the tight
collaboration between experts in these different scientific areas
can lead to a better understanding of the core principles behind
affordance learning and exploitation, that will in turn facilitate
the development of useful applications based on this concept.
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[143] V. Raos, M. A. Umiltá, A. Murata, L. Fogassi, and V. Gallese, “Func-
tional properties of grasping-related neurons in the ventral premotor
area f5 of macaque monkey,” J Neurophysiol, vol. 95(2), pp. 709–29,
2006.

[144] A. Murata, V. Gallese, G. Luppino, M. Kaseda, and H. Sakata,
“Selectivity for the shape, size, and orientation of object for grasping
in neurons of monkey parietal area aip,” J Neurophysiol, vol. 83(5),
pp. 2580–601, 2000.

[145] S. Rozzi, P. F. Ferrari, L. Bonini, G. Rizzolatti, and L. Fogassi, “Func-
tional organization of inferior parietal lobule convexity in the macaque
monkey: electrophysiological characterization of motor, sensory and
mirror responses and their correlation with cytoarchitectonic areas,”
Eur J Neurosci, vol. 28(8), pp. 1569–88, 2008.

[146] J. Grezes, M. Tucker, J. Armony, R. Ellis, and R. E. Passingham,
“Objects automatically potentiate action: an fmri study of implicit
processing,” Eur. J. Neurosci., vol. 17, no. 12, pp. 2735–2740, 2003.

[147] G. Buccino, M. Sato, L. Cattaneo, F. Roda, and L. Riggio, “Broken af-
fordances, broken objects: A {TMS} study,” Neuropsychologia, vol. 47,
no. 14, pp. 3074–3078, 2009.

[148] M. Franca, L. Turella, R. Canto, N. Brunelli, L. Allione, N. G.
Andreasi, M. Desantis, D. Marzoli, and L. Fadiga, “Corticospinal
facilitation during observation of graspable objects: a transcranial
magnetic stimulation study,” PLoS One, vol. 7, no. 11, 2012.

[149] E. Bartoli, L. Maffongelli, M. Jacono, and A. D’Ausilio, “Representing
tools as hand movements: early and somatotopic visuomotor transfor-
mations,” Neuropsychologia, vol. 61, pp. 335–44, 2014.

[150] P. Cardellicchio, C. Sinigaglia, and M. Costantini, “The space of
affordances: a tms study,” Neuropsychologia, vol. 49 (5), pp. 1369–
1372, 2011.

[151] ——, “Grasping affordances with the others hand: A tms study,” Social
Cognitive and Affective Neuroscience, vol. 8, no. 4, pp. 455–459, 2013.

[152] A. E. Patla and M. A. Goodale, “Obstacle avoidance during locomotion
is unaffected in a patient with visual form agnosia,” NeuroReport,
vol. 8, no. 1, pp. 165–168, 1996.

[153] G. Vingerhoets, K. Vandamme, and A. Vercammen, “Conceptual and
physical object qualities contribute differently to motor affordances,”
Brain and Cognition, vol. 69, no. 3, pp. 481–489, 2009.

[154] M. A. Goodale, “Action without perception in human vision,” Cognitive
Neuropsychology, vol. 25, no. 7-8, pp. 891–919, 2008.

[155] G. Humphreys, “Objects, affordances ... action !!!” The Psychologist,
vol. 14, no. 8, p. 5, 8 2001.

[156] V. Gallese, L. Fadiga, L. Fogassi, and G. Rizzolatti, “Action recognition
in the premotor cortex,” Brain, vol. 119, pp. 593–609, 1996.

[157] S. Treue, “Neural correlates of attention in primate visual cortex,”
Trends in Neuroscience, vol. 24(5), pp. 295–300, 2001.

[158] P. Cisek and J. F. Kalaska, “Neural mechanisms for interacting with a
world full of action choices,” Annu. Rev. Neurosci., vol. 33, pp. 269–98,
2010.

[159] A. Clark, Being There: Putting Brain, Body, and World Together Again.
Cambridge, MA: MIT Press, 1997.

[160] V. Gallese, “A neuroscientific grasp of concepts: from control to
representation,” Philosophical Transactions of the Royal Society of
London B: Biological Sciences, vol. 358, no. 1435, pp. 1231–1240,
2003.

[161] R. A. Brooks, “Elephants don’t play chess,” Robotics and Autonomous
Systems, vol. 6, no. 1&2, pp. 3–15, June 1990.

[162] R. C. Arkin, Behavior-based Robotics. Cambridge, MA, USA: MIT
Press, 1998, iSBN:0262011654.
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