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Autonomous robots: potential, advances
and future direction
S. Hangl, E. Ugur, J. Piater

Recent advances in machine learning, such as deep neural networks, have caused a huge boost in many different areas of artificial
intelligence and robotics. These methods typically require a large corpus of well-prepared and labelled training data, which limits the
applicability to robotics. In our opinion, a fundamental challenge in autonomous robotics is to design systems that are simple enough
to solve simple tasks. These systems should grow in complexity step by step and more complex models like neural networks should
be trained by re-using the information acquired over the robot’s lifetime. Ultimately, high-level abstractions should be generated from
these models, bridging the gap from low-level sensor data to high-level AI systems. We present first steps into this direction and
analyse their limitations and future extensions in order to achieve the goal of designing autonomous agents.
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Autonome Roboter: Potenzial, Fortschritte und künftige Richtungen.

Jüngste Fortschritte im maschinellen Lernen, wie tiefe Neuronale Netze, haben einen großen Schub in vielen verschiedenen Bereichen
der Künstlichen Intelligenz und Robotik bewirkt. Diese Methoden erfordern in der Regel einen großen Stamm an gut aufbereiteten
Trainingsdaten, welche die Anwendbarkeit der Robotik begrenzen. Unserer Meinung nach ist es eine grundlegende Herausforderung
in der autonomen Robotik, Systeme zu entwerfen, die einfach genug sind, um einfache Aufgaben zu lösen. Diese Systeme sollten
dann Schritt für Schritt an Komplexität zunehmen. Komplexere Modelle, wie Neuronale Netze, sollten schließlich durch das Auswerten
der über die Zeit gewonnenen Informationen laufend weiter trainiert werden. Letztendlich sollten aus diesen Modellen hochrangige
Abstraktionen generiert werden, die gewisse fehlende Informationen von Low-Level-Sensordaten hin zu High-Level-Systemen der
Künstlichen Intelligenz überbrücken können. Die Autoren stellen erste Schritte in diese Richtung vor und analysieren die Grenzen bzw.
künftigen Erweiterungen mit dem Ziel, autonome Agenten zu entwerfen.
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1. Introduction
The question about what constitutes human intelligence and what
enables them to act so effortlessly in our highly unstructured world
puzzled many of the greatest minds of humankind [1, 14, 22]. For a
long time this topic was mainly reserved for philosophers. However,
during the last century, groundbreaking discoveries in medicine, bi-
ology and developmental psychology disclosed principles involved
in the human brain [4, 8, 9, 15]. Even though many basic princi-
ples of the human brain are understood in a rudimentary way, un-
til recent years it was not possible to reproduce human-like perfor-
mance in most scenarios. This strongly changed with the increase of
computational power and the rise of machine learning approaches
such as techniques summarised under the term deep neural net-
works [17]. These methods caused a breakthrough in several disci-
plines that were assumed to be unsolvable for several decades to
come [11, 18]. Despite all these exciting developments, it is still not
possible to buy robots in a shop in order to let them work in house-
holds or other unstructured environments.

1.1 Burning questions in robotics
There is a large variety of reasons for the lack of functional house-
hold robots. The sensorimotor space is huge and it is impractical or
even impossible to learn complex skills from scratch by simple, un-
guided exploration of the whole space. We believe that a learning
agent needs to be equipped with biases that allow it to reduce the

problem complexity while still maintaining generality. An example of
such a bias is the definition of meaningful dimensionality reductions
like feature extractors on sensor data, limiting the controllable joints
or ignoring certain dimensions of the sensor data. Even human in-
fants exhibit such biases, for example in the form of the grasp reflex
or the change of importance and strength of certain senses. Abstract
concepts can be trained from experience which in turn can change
the nature of the used biases, e.g. by unlocking consideration of
additional dimensions of the sensor data. This enables the robot to
learn how to solve more complex problems and to use its complete
sensorimotor capabilities based on the learned abstractions.

Modern machine learning approaches typically require a huge
amount of training data. Currently this often requires massive hu-
man intervention, which is equivalent to providing the described
biases manually, e.g. by tagging images of objects or designing
simulated environments. This limits the applicability of the power-
ful learning machinery to isolated scenarios in which experts design
appropriate solutions by providing controlled learning environments
[12], by designing simulated environments for learning [16, 21, 25]
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Fig. 1. The goal of developmental robotics is to design robots that
learn like human infants. This can be done by life-long learning and
interaction with the environment [7]

or by adding reasonable domain-specific assumptions [10]. When
training is done, these methods generalise well to a large variety
of environments for the specific task. However, there is an infinite
number of tasks which makes it hard to follow this paradigm until
all relevant tasks are covered.

1.2 Developmental robotics
In recent years a sub-discipline of robotics tackling this kind of prob-
lems attracted increased attention, that is, developmental robotics
[2, 13, 24]. This branch treats the design of self-learning and au-
tonomous agents, often inspired by human or primate infants; cf.
Fig. 1. Stoytchev identified 5 key principles that most work in devel-
opmental robotics has in common in order to create autonomous
robots [19]:

1. Verification principle: Novel skills can only be learned au-
tonomously to the extent that robots can verify the success of
performed action autonomously [20].

2. Principle of embodiment: In order to be able to gain new knowl-
edge about the world the robot requires a body with which it
can interact with the environment, i.e. perceive (e.g. with sen-
sors) and act (e.g. by using motors).

3. Principle of subjectivity: During the lifetime of a robot, it makes
many observations and gains knowledge about the world. It
learns how to act in this world and how to achieve certain goals.
How the robot does this strongly depends on its subjective his-
tory. The robot is subject to sensorimotor limitations, i.e. there is
nothing to learn about the world if it cannot be accessed by sen-
sors or motors, and to experimental limitations, i.e. the knowl-
edge the robot is able to acquire is limited by the experiments it
performs.

4. Principle of grounding: Even though the verification principle
states that everything has to be verified autonomously, there
must be an atomic information entity in which the robot has to
trust. An example would be the low-level tactile feedback of an
artificial skin if the robot has no other possibility to check for the
correctness of the observed data.

5. Incremental development: Not everything can be learned at the
same time, because some problems are simply too complex for a
certain stage of development, e.g. humans do not learn integrals
before addition.

These principles enable robots to gather information over a lifetime
with which powerful learning techniques can be used. Robots can
interact with and improve their knowledge about the world. The
robot first gains simple knowledge and skills and simplifies when-
ever possible, e.g. by reducing the dimensionality of sensor data.

The more experience the robot gains, the more complex the models
get and the harder the task to solve can be. This represents differ-
ent stages of development in a robot’s life. In this work we sum-
marise the authors’ previous work that spans the transition from
simple random combination of learned behaviours to elementary
goal-based planning and finally to high-level cognitive capabilities.
We check this work for agreement with the principles of develop-
mental robotics and analyse the limitations and future challenges.

2. Robotic playing
Hangl et al. have presented work on robotic playing based on in-
sights in developmental psychology [7]. Piaget studied human in-
fants and identified different developmental stages [15]. An early
stage in infant development is the so-called coordination of sec-
ondary schemata, which is dominant during an age between 8 and
12 months. In this phase, infants try to reach certain goals by se-
quencing behaviours they learned earlier. A key point is that they
do not yet create sophisticated plans but rather learn that a certain
combination works well to achieve a desired goal without actually
understanding yet why.

2.1 Learning behaviour sequences
We followed this principle by learning combinations of so-called be-
haviours which are functions b : S → S, s �→ s′ that map (partially
observable) environment states s ∈ S to other states s′ ∈ S. A be-
haviour bσ ∈ B is part of a skill σ = (bσ , Successσ ) if the robot addi-
tionally holds a success predicate Successσ which enables it to verify
whether or not a goal was achieved. In this case the behaviour bσ is
called the basic behaviour of the skill σ . The domain of applicability
(DoA) Dσ = {s ∈ S |Successσ (bσ (s)) = true} is the set of all states in
which the goal can be achieved.

The idea is to train new skills by teaching a basic behaviour, e.g. by
kinesthetic teaching or simple programming, for a specific, restricted
DoA. The robot then increases the DoA by using other trained be-
haviours to prepare the environment such that the basic behaviour
can be executed successfully again. This is equivalent to learning be-
haviour sequences b◦bσ (ŝ) with Successσ (b◦bσ (ŝ)) = true for states
ŝ that were not in the DoA of the skill before, i.e. ŝ /∈ Dσ .

We illustrate this on the task of placing an object in a drawer. The
basic behaviour bσ is to place an object inside an open drawer with
a simple trajectory. If the drawer is open, i.e. the environment is in
state sopen, no preparation is required. If the drawer is closed, prepa-
ration is done by opening it with an opening behaviour bopen and
therefore the skill is executed by bopen ◦bσ (sclosed). Whether or not a
drawer is open can be determined either by using vision or, as done
in our framework, by analysing haptic feedback acquired by poking
the drawer. The robot identifies the haptic feedback corresponding
to relevant states, so-called perceptual states, by playing with the
involved objects, and tries out different combinations of behaviours
in order to achieve the task.

A perceptual state is characterised by task-relevant aspects of the
sensor data. This generally requires dimensionality reduction and
is done by training a classifier to decide which perceptual state is
present, e.g. sopen, sclosed. The necessary information is gathered by
playing with the object and exploring it with different sensing ac-
tions in the respective perceptual states. In the most basic version
this requires a human playing partner which prepares the environ-
ment such that the corresponding perceptual states are present. The
sensing action that is identified to be most effective to discriminate
between different perceptual states is used in the future to estimate
the state. Before executing a skill, the perceptual state is estimated,
and, depending on the state, an appropriate preparatory behaviour
is identified by autonomous playing.
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Fig. 2. Learning behaviour for a book grasping skill with different modes of the developmental robotic system described in Sects. 2 and 3. The
graphs are generated from experiments published in previous work [5]

When a skill is well trained, it can be used as preparatory be-
haviour for other skills by constructing skill hierarchies, in order to
solve more and more complex tasks. An example might be the task
of filling the drawer with objects and closing it again. Here, the basic
behaviour is to close the drawer, and the preparatory behaviour is
the placement skill described before.

2.2 Analysis
A typical skill that can be learned with this kind of learning approach
is how to grasp a book from a solid surface. The basic behaviour is
to grasp a book at the spine. The book is squeezed between both
hands (cf. Fig. 2). It is slightly lifted in order to get the fingers below
it and is grasped afterwards. If the book is placed on the table in
a different orientation, this does not work anymore. However, the
robot can still increase the DoA by learning that rotating the book
to the correct position is sufficient to achieve the goal. In this case,
the useful behaviours are rotate 90◦, rotate 180◦, rotate 270◦ and
the void behaviour (if the book is already rotated correctly). Each of
them solves the problem for one of the four possible rotations of
a book. The rotation of a book can be determined by sliding along
its edges. The learning rate in this typical manipulation scenario is
displayed in Fig. 2a and shows a continuous increase of the success
rate. The longer the robot plays with the object, the more situations
can be solved.

This kind of approach has some advantages that make it very easy
to fulfil the principles of developmental robotics and are therefore
well suited for autonomous robots.

A typical problem in fulfilling the verification principle is to gather
the data required for making a valid decision about success. This
is typically due to the large domain of applicabilities and strongly
varying sensor data for different states. For example, the joint or
Cartesian arm positions vary strongly for different object positions
in a grasping task. We strongly reduce this problem by transform-
ing the environment to the same state in which the basic behaviour
was trained. This drastically reduces the variety of sensor data en-
countered. For example, the book is always pushed into the same
orientation from which it is grasped, and therefore it is much sim-
pler to train the success predicate Successσ . In previous work we

demonstrated that such a predicate can be trained from successful
training data by using recurring neural networks [6].

Another important property is that the robot learns to ground rel-
evant perceptual states in the sensor data, i.e. haptic data in our
case. Here we make a pragmatic compromise by either having a hu-
man supervisor prepare the perceptual states or by telling the robot
how to prepare them autonomously. This can be viewed as super-
vised playing, just as it is done with babies as well.

We emphasise the support for incremental development in which
simple skills are trained first, which can then be used as preparatory
behaviours for other, more complex skills.

3. Transition to goal-driven planning
Even though the approach described in Sect. 2 supports au-
tonomous behaviour, cognitive capabilities and the expressive power
are limited. For example the robot does not understand the environ-
ment it is acting on in a sense that it knows the effects of its actions.
The autonomous playing is essentially based on trying out different
combinations of behaviours in order to achieve a task without re-
quiring a model of the environment, i.e. a function that predicts the
effect of a behaviour. In the spirit of the principles of incremental de-
velopment and subjectivity we extended this approach by learning
such an environment model in order to reach the next develop-
mental stage [5]. The idea arises from the insight that during the
autonomous playing the effects of executed behaviours can be ob-
served by estimating the perceptual state again after executing a be-
haviour. This way, a probability distribution p(s′ | s,b) over the effect
s′ ∈ S of the behaviour b ∈ B on the state s ∈ S can be learned over
time. Initially, without any knowledge, the distribution is uniform
because the outcome of certain actions is completely unknown. The
distribution is refined by updating the transition probabilities given
observations made. We do so by using an approach to autonomous
agents called projective simulation [3]. The environment model be-
comes more and more mature over time and can be used to unlock
higher-level cognitive capabilities instead of the undirected explo-
ration described in Sect. 2. As an example we enabled the robot to
feel bored and implemented creative behaviour.
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3.1 Bored robots
Experience showed that the robot wastes time if a perceptual state
is present in which the solution is already known very well. If the
goal is to learn how to achieve a task in general, there is no sense
in learning how to solve the specific situation even better; this is
boring. However, just rejecting a given situation is not enough in
an autonomous setting, as further learning requires a different and
more interesting situation. Here, we use the environment model to
compute the likelihood of being able to reach a certain interesting
and desired state sint ∈ S. An interesting state is a state in which the
solution is not known yet. The robot tries to reach the interesting
state sint ∈ S from the current, boring state sbor ∈ S. The likelihood

of a transition sbor
b1−→ s′ b2−→ s′′ ...−→ sint can be computed by using

the environment model, and the robot can change the state if it is
bored. We use the transition entropy H

(
s′ | s,b)

to measure how pre-
dictable the outcome of executing the behaviour b is in a state s. If
the entropy is high, the outcome is either unknown or highly unpre-
dictable. If it is low, the outcome is highly predictable respectively.
We normalise the transition entropies in order to obtain an entropy
value Ĥ

(
s′ | s,b)

between 0 and 1. This can be used to compute the

transition likelihood for a complete path sbor
b1−→ s′ b2−→ s′′ ...−→ sint by

multiplying the normalised entropies on the path. The robot then
selects goal states sint that it cannot solve yet but that have a high
transition likelihood.

3.2 Creative robots
Another application of such an environment model is to enable the
robot to show creative behaviour. In Sect. 2 the goal is to extend the
domain of applicability by selecting one preparatory behaviour with
Successσ (b ◦ bσ (ŝ)) = true. In many cases just one preparatory be-
haviour might not be enough. For example for reading a book that
is placed upside down, it has to be rotated and opened and there-
fore Successread(brot ◦ bopen ◦ bread(sup)) = true. In the basic version
described in Sect. 2, sequences of arbitrary length were forbidden
for good reason, namely to prevent an explosion of the space to ex-
plore. For example, if 5 behaviours are available, allowing at most 3
behaviours in a sequence would require the robot to try 125 differ-
ent combinations. However, if a model of the environment is avail-
able, not all combinations have to be tried out, but only those that
seem to be promising according to the model. As soon as the robot
has identified at least one perceptual state sgoal it can solve with the
original basic approach, i.e. Successσ (b ◦ bσ (sgoal)) = true, this state
is marked as a goal state. If another perceptual state scurr ∈ S is ob-

served and there exists a strong transition scurr
b1−→ s′ b2−→ s′′ ...−→ sgoal,

it is promising to try whether the sequence (b1,b2, . . . ,bL,b) yields
success. This way the robot can creatively generate novel behaviours
composed of more elementary behaviours in order to achieve in-
creasingly complex tasks.

3.3 Analysis
In the work described above we demonstrated the importance of
the principle of incremental development. The robot starts with the
very basic version described in section 2 and collects all the avail-
able data for later use. The only additional overhead is introduced
by requiring re-estimation of the perceptual state after executing a
preparatory behaviour in order to train the environment model. An
important property of our method is the incremental development.
The brute-force exploration of behaviour combinations is replaced
by higher-level planning in a natural way over time. There is no sharp
boundary between the different phases which can be observed in
Fig. 2b. Figure 2b shows the learning rate in the book grasping sce-
nario described in Sect. 2.2. However, in this case the behaviours

rotate 180◦ and rotate 270◦ are missing, which requires creative
creation of these behaviours. This can be done by composing them
out of rotate 90◦ behaviours. In the learning curve a first exploration
phase with a continuous increase of the success rate can be seen.
This is due to the fact that two situations can be solved with the
available rotate 90◦ and void behaviours. At some point the robot
reaches a plateau after around 30 attempts but shows a strong in-
crease of the learning rate again as soon as the environment model
is mature enough to creatively generate the behaviours rotate 180◦

and rotate 270◦. High-level planning becomes more dominant as
the environment model matures.

We demonstrated that our system mimics certain natural human
behaviours such as boredom or creativity. Humans refuse to perform
certain activities if they are monotonic and if there is nothing new
to learn anymore; they avoid boredom. In this case humans search
for different and more interesting tasks instead of simply being idle.

4. Bottom-up learning of high-level symbols
In Sects. 2 and 3 the goal is to equip the robot with the capabilities
to slowly perform a transition from very low-level skill learning to
more and more complex concepts in a smooth way. An approach
slightly different in nature tackles the problem of mapping low-level
data to high-level symbolic planning with logic planners [23]. The
goal is not to solve a task directly but to learn a symbolic repre-
sentation of action effects and object relations. If a task is to be
achieved, a logic planner is run on the symbolic representation.

4.1 Dimensionality reduction by abstract symbol learning
Each object o in the scene has a continuous object state fo. The
continuous object state is grounded in actual experience via the
robot’s sensors, and can consist of any sensor information avail-
able to the robot; in our work we use RGB-D sensors. Several ob-
jects can be present in the scene, and the continuous world state
(fo1 , fo2 , . . . , foN ) is a tuple combining all object states in the scene.
Similarly to the notion of perceptual states in Sects. 2 and 3, a di-
mensionality reduction of the high-dimensional state vectors is re-
quired. The robot holds a set B of behaviours. Each behaviour b ∈ B
gives rise to effect categories εb by observing the effect of execut-
ing it. For example, if a ball oball is poked from the side with the
behaviour bpoke, the ball rolls off the table and disappears, and the
effect category is εpoke = disappear. Given a set B of behaviours, the
tuple So = (εb1 , εb2 , . . . , εbM ) of effect categories of all behaviours
applied to the object o defines its object category.

The first goal is to learn the dimensionality reduction from the
continuous world state to the object category. This is done by ex-
ecuting each behaviour many times for all available objects (us-
ing a real robot or in simulation) and measuring the change of
the continuous object state (�fo)b. Given the set of state changes
{(�fo)bj }, the robot can perform unsupervised clustering in or-

der to identify relevant dimensionality reductions εb of the state
information. In order to be able to identify future effect cate-
gories, a classifier Predictb : fo �→ εb is trained for each behaviour.
In consequence, the estimated object category is given by So =
(Predictb1 (fo), Predictb2 (fo), . . . , PredictbM (fo)). Moreover, the same
procedure is done for behaviours involving multiple objects, e.g.
stacking, and multi-object effect categories are learned as well.

4.2 Bootstrapping complex skills by previous experience
In a final step, the idea of learning dimensionality reductions from in-
teraction is done for more complex actions like multi-object actions.
The basic idea is to relate pairs of single-object categories (So1 ,So2 )
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to multi-object effect categories, e.g. εstack. For example the single-
object categories So1 ,So2 might contain the effect categories εinside

and εon_top denoting the finger being inside a hollow object and the
finger stopping on top of a rigid object respectively. In such a case
stacking an object o1 on top of an object o2 with effect category
εinside is likely to cause o1 being inserted into o2. The effect cate-
gory εinside is again created by clustering visual features with data
acquired from interacting with different pairs of objects. Again, a
classifier is trained in order to predict the effect category given two
objects; however, in this case it is not trained on raw image fea-
tures but on the single-object categories So1 ,So2 and their relations
Ro1,o2 ,Ro2,o1 . This keeps the learning problem tractable and prevents
a state space explosion. Following this paradigm, logical rules mod-
elling object relations of the form {(So1 ,So2 ,Ro1,o2 ,Ro2,o1 ) → εstack}
can be represented in symbolic notation like STRIPS. The symbol

Ro1,o2 denotes relations between objects like o1
smaller−−−−→ o2 and are

hand-crafted by the designer and later automatically detected by
the system. This way, a logic planner can be asked to build towers
of objects or to insert objects into each other.

4.3 Analysis
The method described in the previous section is quite different in
nature to the approaches given in Sects. 2 and 3. Instead of slowly
performing a transition from rudimentary brute-force skill learning
to higher-level planning, high-level symbolic planning is learned di-
rectly. The level of abstraction is much higher compared to the au-
tonomous playing. This enables the robot to generate complex plans
for tasks that were never done before, e.g. building a tower of mini-
mal/maximal height. Moreover, this also works for objects that were
never used together for multi-object behaviours like stacking. This
approach even works objects that were never seen before if their
object categories can successfully be detected. This is possible be-
cause reasoning is based on single-object categories abstracted from
the sensor data, instead of using the raw sensor data directly. There-
fore complex object manipulations can be learned for unseen ob-
jects much faster by reusing the learned abstract object categories
compared to performing the clustering of effect categories on visual
features directly.

However, the direct bottom-up learning of high-level symbols
comes at a cost, as it requires a carefully-designed setup for the
acquisition of the symbolic world model. For example, identifying
single-object effect categories requires a large amount of data with
a well-prepared environment for each execution of a behaviour. This
is the reason why the learning of effect categories was done mostly
in simulation, which again requires some effort to design a simu-
lated model of the environment.

5. Future challenges
In this work we investigate the problem of applying modern ma-
chine learning technologies to autonomous robotics. We pointed
out that even though powerful supervised learning techniques are
available, they cannot directly be applied to robotics. The required
large amount of training data needs to be gathered autonomously
in order to design robots that can act in unstructured environments.

Developmental robotics is one way to design robotic systems that
addresses the problem of autonomous acquisition of the required
data. The expressive power of the involved approaches, and there-
fore the complexity of the solvable tasks, shifts from simple to com-
plex in a developmental paradigm. At each stage, this keeps the
search space small enough to keep the problem solvable, and in-
creases the complexity after certain basics have been acquired.

We presented two tracks of work, (i) robotic playing (Sects. 2
and 3) and (ii) bottom-up learning of high-level symbols (Sect. 4).
Approach (i) starts from low-level, simple sequencing of behaviours
and slowly develops goal-driven planning capabilities. In this set-
ting, the level of autonomy is high and the required interaction with
a human supervisor is very limited. Approach (ii) on the other hand
reaches a much higher level of abstraction by using simulated scenes
and well-founded priors at the cost of a reduced autonomy during
learning.

We believe that one of the future challenges in autonomous
robotics will be to combine such methods to provide an integrated
life cycle of autonomous robots. This life cycle should start from low-
level paradigms such as approach (i), and should lead to high levels
of capability such as approach (ii). This might require additional, in-
termediate developmental stages like learning more sophisticated
environment models than those presented in Sect. 3. From these
detailed models powerful abstractions such as the high-level sym-
bols introduced in Sect. 4 can be learned. This could involve mimick-
ing typical human-like concepts such as intuition in order to create
abstractions from strong environment models.
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