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Abstract—In the context of manipulation of dynamical sys-
tems, it is not trivial to design controllers that can cope with
unpredictable changes in the system being manipulated. For
example, in a pouring task, the target cup might start moving
or the agent may decide to change the amount of the liquid
during action execution. In order to cope with these situations,
the robot should smoothly (and timely) change its execution policy
based on the requirements of the new situation. In this paper,
we propose a robust method that allows the robot to smoothly
and successfully react to such changes. The robot first learns a
set of execution trajectories that can solve a number of tasks in
different situations. When encountered with a novel situation,
the robot smoothly adapts its trajectory to a new one that
is generated by weighted linear combination of the previously
learned trajectories, where the weights are computed using a
metric that depends on the task. This task-dependent metric
is automatically learned in the state space of the robot, rather
than the motor control space, and further optimized using using
reinforcement learning (RL) framework. We discuss that our
system can learn and model various manipulation tasks such as
pouring or reaching; and can successfully react to a wide range
of perturbations introduced during task executions. We evaluated
our method against ground truth with a synthetic trajectory
dataset, and verified it in grasping and pouring tasks with a
real robot.

I. INTRODUCTION

One open problem in robotics is to design controllers that
are robust to the unexpected changes in the environment during
complex object manipulation tasks. Even humans struggle to
cope with this kind of unexpected changes; e.g. a tennis
ball can change its predicted trajectory due to external forces
such as wind while the tennis player already started striking
the ball, forcing the player to adapt the strategy. There are
several issues that have to be solved for handling a wide
range of external disturbances while ensuring successful task
achievement. First of all, the robot should quickly adapt to the
new situation. For this, we propose to change the execution
policy by switching to a new trajectory that is valid for the
new observed situation. This raises the problem of how to
formulate a control policy such that the method has the ability
to switch between trajectories for different situations on the fly
in reaction to extraneous changes in the system state. This has
to be done in a smooth and robust way such that the robot does
not undergo high velocities or forces which may cause danger
to humans as well as to the robot itself. Another key aspect is

the ability to generalize to novel situations, as it is not possible
to provide training data for all situations that may occur. The
policy should be able to generate trajectories which can be
used to solve a problem in an unseen situation (e.g. different
initial states).

The contribution of this paper is a control policy model
that meets these requirements (smooth adaptation and gen-
eralization) while still preserving conceptual simplicity. We
first learn a database of execution trajectories that solves
the task in a number of situations, i.e. system states. When
encountered with an unseen situation, the model estimates a
new trajectory by computing a weighted linear combination
of these trajectories, where the weights depend on the task.
Another major contribution is the automatic learning of these
weights which makes the method applicable to several different
manipulation tasks. The method is able to reuse arbitrary
open loop controllers such as splines or Dynamic Movement
Primitives (DMPs) [13], or even closed loop controllers.
This makes it easy to reuse existing methods (and their
advantages) with our new approach. The weighting of the
individual database trajectories (and therefore their importance
for the current situation) is measured using a metric on the
environment state space. This utilizes the assumption that
trajectories with similar initial conditions (environment states)
have similar shape as well. Under this assumption, a metric
measuring the similarity of the initial system state can be
used to generalize to unseen situations. It cannot be assumed
that a single metric can be used for any kind of manipulation
problem. Therefore, to make the model applicable to a wide
range of manipulation problems, we propose metric learning
to determine an initial guess of the appropriate metric for a
specific task. The automatic (unsupervised) learning of the
task specific metric is one of the major contributions of this
paper. Furthermore, we show how reinforcement learning (RL)
can further improve the performance of the proposed metric
learning algorithm. We argue that our system fits well with
the popular control policy representations such as DMPs, and
RL methods such as PI2 [15], PoWER [6] and Policy Gradient
Descent [12], which have shown good performance in robot
applications. Therefore, our method has the advantage that
it can easily be used with the current systems in robot labs
without significant re-implementation effort. Additionally, our
method uses a low number of open parameters that have to
be learned, by assuming an implicit low dimensionality of
the manipulation task (low-dimensional environment space).978-1-4673-7509-2/15/$31.00 2015 IEEE



In section VI we show that this indeed is the case for rather
complex problems (e.g. pouring corn/water in a moving cup).

II. RELATED WORK

A lot of research on motor learning in recent years focused
on ways to adapt motor skills to external perceptual informa-
tion, which is often related to the goal of an action. Perceptual
queries and (local) regression methods are used to generate an
appropriate dynamic motor primitive (DMP) from a database
of example movements by learning a mapping from the
environment state to the DMP parameters, which is executed
afterwards (2-step process). [17], [3] use Gaussian Process Re-
gression, while [2] uses a mix of ISOMAP and Support Vector
Machines. A further extension of these methodis provided by
[14], where they merged the 2-step process to a single step
by making the DMP function approximator directly dependent
on the environment state. An approach which is similar to the
method proposed in this paper has been done by [8], where
lower-level policies are used for given contexts, while a higher
level policy generalizes in the context space. While DMPs can
be used to encode a single motor primitive, in [5] Gaussian
mixture models are used to encode multiple demonstrations
within a single, stable dynamic system. Similarly, the method
described in [9] encoded multiple demonstrations by shaping a
parametric attractor landscape in a set of differential equations.
A non-linear optimization problem had to be solved for this
purpose.

Motor primitives can be generalized to new situations also
by RL [7]. In contrast to these works, our research focuses
not only on generalization to unseen situation, but considers
reactive trajectory adaption explicitly as well. There is work
on control policies that are able to react on unseen situation
to some extent, such as DMPs [13]. However, these control
policies can only react in a very limited way by stretch-
ing/compressing the trajectory or by changing the attractor of
the system. On the other hand, the method described in this
work is able to handle a wider range of reactive behaviours
while still preserving advantages of control policies such as
DMPs as it reuses existing models in a simple way.

The most similar method compared to the one proposed in
this paper was developed by [10], where they use a weighted
combination of database trajectories as well for the specific
task of table tennis. This weighting is based on the current
environment state. However, our approach is more general as
they explicitly implement this weighting for the purpose of
table tennis. The major question for an approach with weighted
combination is how to determine the weights. In [10], they
provided these weights by supervised learning, which makes
it impossible to use it for other manipulation tasks. In our
approach, one of the major contributions is automatic learning
of a metric and therefore the weights for the trajectories,
while still preserving the general powerfulness of a weighted
combination approach.

III. CONTROL POLICY MODEL

The underlying idea of our method is to generate a database
of primitive trajectories solving the same task in different
environment states. The trajectories in the database can be raw
measured data or trajectories encoded by more complex base

control policies such as DMPs. This database is indexed by the
environment state described by the environment state qi. This
environment state is task dependent and should be selected
such that it captures all the information that is required to
perform the task. In a grasping domain this would be a library
of grasping trajectories of the same object at different locations
(environment states) q = (xi,yi).

Assuming that a slight change in the environment state also
results in a slight change of the corresponding trajectory, one
can generalize to an unseen situation (environment state) if
the current environment state is within the space spanned by
the samples in the database. However, depending on the task,
it is not obvious how important each database trajectory is for
the current situation (and therefore how strongly it should be
weighted). Suppose that in the grasping domain the success
of the grasp not only depends on the object location, but also
on the object weight. Then the environment state would be
given by (xi,yi,mi), where mi is the mass of the object. Not
every component of this vector is of the same importance for
the task (and some components may be correlated, e.g. the
reaching position might be more important than the mass). We
show that it is possible to determine the relative importance
of each single database trajectory for the current situation.
In our approach, we do this by learning a metric m(qk,ql)
which measures the distance between environment states. If the
distance is high/low, the importance for the current situation is
low/high. Generalization is done by interpolation where more
important database samples are weighted more strongly.

The advantage of this approach is that in case the environ-
ment changes, it is feasible to re-weight the sample trajectories
on the fly to achieve adaptive behaviour. This can be done by
measuring the new environment state B and computing the new
weight of each sample trajectory for the current situation. This
information can be used to adapt to an unseen situation even
if the current task is already under execution. In the grasping
example, this would for example be a change of location.
Assume that the initial object position is at qA = (5,5). While
executing the grasping motion, the object is moved to position
qB = (7,8). In our method, this only requires the re-estimation
of the weights and a smooth transition qA→ qB. Note that in
this specific application other control policies such as dynamic
movement primitives can produce similar results, as this task
only requires adapting the attractor point. However, in case
generalization is required at a different point in time (e.g.
in the middle of the execution), generalization and adaptive
manipulation with DMPs is not straightforward. One example
might be an obstacle avoidance task (see evaluation in section
VI), where in the case of DMPs generalization to obstacle
heights requires more complex algorithms such as a potential
field approach [11]. Our method provides this functionality
out of the box. On the other hand our approach is completely
data-driven and requires more data to achieve the same task.

Our method strongly relies on solid importance estimation
of the database trajectories, i.e. the metric which measures this
importance. The first important observation is that the metric
is task specific (the metrics for a reaching task and a pouring
task will be different as the environment state spaces differ as
well) which requires a metric learning algorithm. The biggest
problem is the lack of ground truth distances between the
environment states (which makes it impossible to use simple



regression). Therefore we propose to learn an initial guess of
the metric by comparing the database trajectories by them-
selves instead of the environment states, assuming distances
between trajectories directly map to distances between their
corresponding environment states. Note that this assumption
does not hold in the other direction in general, which is why
this approach is only valid for determining an initial guess for
the metric.

One further assumption is that a single metric is valid
to measure the distance of vectors in the whole environment
state space (see Table II for an evaluation of this assumption).
This means that if it is possible to learn a valid metric for
a single point within the environment state space, this metric
is (approximately) valid for the whole space. Therefore, the
initial guess can be learned by performing RL for a single
environment state (this state should not be part of the database
yet) to obtain a good metric estimate according to some task-
specific reward function.

A. Trajectory Blending

We assume a database set Z of M sample trajectories
associated with the environment state qk (environment state in
which the trajectory solves the task). There are no constraints
on the vector qk, it is assumed that it intrinsically captures
all required information about the environment to achieve the
task (e.g. if the problem is a reaching task, the environment
state would be a Cartesian goal coordinate vector). Hence, we
define the trajectory database

Z =
{

yk
d(tk, j), ẏ

k
d(tk, j), ÿ

k
d(tk, j);qk

∣∣
k = 1, . . . ,M; j = 1, . . . ,Tk

} (1)

where yk
d(tk, j), ẏk

d(tk, j) and ÿk
d(tk, j) are positions, velocities

and accelerations sampled from measured trajectories. Tk is
the number of points along trajectory k and qk ∈ RN is the
corresponding environment state. The choice of the environ-
ment state is essential for solving a specific task generalisation
and the exact definition is up to the engineer. For each sample
trajectory {yk

d(tk, j), ẏ,kd(tk, j), ÿ
k
d(tk, j) | j = 1, . . . ,Tk}, an arbi-

trary parametrized control policy πk (q, t,θ(t)) can be learned
by appropriate machine learning methods (e.g. regression).
Here, θ(t) denotes the vector of control policy parameters (the
learning method is policy specific). In our experiments, we
used DMPs as base control policy model.

We propose a novel control policy model given by a linear
combination of all trajectories in the database. Assuming Z
can approximate the manifold of all solutions for a given task,
an arbitrary task-specific trajectory ynew solving the task for
an unseen situation qnew can be approximated by

ynew (qnew, t,θ) =
1

sreg

M

∑
i=1

siyi (qi, t,θi) (2)

where sreg is a normalization term given by sreg = ∑
M
i=1 si

and yi is the result of the action ui(t) ∼ πi (qi, t,θi(t)). The
velocity ẏnew and acceleration ÿnew can be derived from the
positions, as the time steps t are given (e.g. using a KUKA
LWR only the positions at given time steps are submitted
to the robot). The computation of the coefficients si is non-
trivial in general, as it highly depends on the task. Given the
assumption that similar situations can be solved by similar

trajectories, it is reasonable compute the coefficients si with
some similarity measure on the environment state space. The
coefficients should have high values whenever a trajectory
is more important than others for solving the current task.
As it is assumed that the situation is fully described by the
environment state vector, the coefficients can be defined by
any strictly (with distance) decreasing function like

si (qnew,qi) = exp
(
−αmm(qnew,qi)

2
)

(3)

where m : Q×Q→ R+ denotes an arbitrary metric and αm is
a free parameter measuring how strongly distant trajectories
should influence the result. This parameter can be either hand
tuned or learned in the RL step (section IV-C).

As the environment states q can have arbitrary dimensions
and units, the metric has to be learned automatically for each
task. One subclass of metrics is given by a metric parametrized
like the Mahalanobis distance, defined by

m(q1,q2) =

√
(q1−q2)

T M(q1−q2) (4)

where M is positive semi-definite. It is important to note that
with our proposed control policy formulation it is possible
to generalize to unseen situations qnew by computing the
coefficients si (equation 3), given the learned metric (Section
IV). A simplified version of the proposed control policy is
summarized in Algorithm 1. If the environment changes during
execution, the coefficients can be re-estimated and smoothly
transitioned from old to new values (Section V).

Data: Control Policies πk, Corresponding environment
states qk, Metric m(qi,q j), Current environment
state qc

Result: Executed trajectory
Current time tc← 0;
initialize weights by si← exp

(
−αmm(qc,qi)

2
)

;
while tc < tmax do

qc← current environment state;
if qc changed then

Recompute weights (smooth transition) by
si← exp

(
−αmm(qc,qi)

2
)

;
end
π(tc)← 1

sreg
∑

M
i=1 siπi (tc);

Execute π(tc);
tc← tc +∆t

end
Algorithm 1: Control Policy Execution

IV. METRIC LEARNING

Learning Mahalanobis-style distances in high-dimensional
environment spaces has been studied extensively in computer
vision and recommender systems [1]. However, these ap-
proaches tend to require more samples than are available in
the robotics domain. One major contribution of this paper is
to provide an algorithm to learn a Mahalanobis-style metric
automatically from the database Z. We seek to learn a metric
for m(qi,q j) = mi j, where qi,q j are environment states and
mi j is the distance between these vectors. In order to do this
in a supervised fashion, the values qi, q j, mi j are required. A
summary of the algorithm can be found in algorithm 2.



Data: Control Policies πk, Corresponding environment
states qk, Reward function r()

Result: Metric m(qi,q j)
Compute mi j← d (qi,q j) for all (i, j) in database;
Compute initial guess for M0 by equations 8, 9;
Choose qrl randomly in environment state space;
Apply PoWER: M← PoWERM (π (qrl ,M0) ,r);

Algorithm 2: Metric Learning

A. Metric Initialization

To approximate the values mi j, we propose to compare the
trajectories themselves instead of comparing the environment
states. Therefore a similarity measure on trajectories needs to
be defined (see [19] for a comprehensive review of trajectory
comparison methods). We propose to use an adapted version
of the trajectory similarity measure in [4] where the Euclidean
distance between two F-dimensional trajectories a,b is given
by

d (a,b) =
1
F

F

∑
n=1

cn

T

T

∑
m=1

(an
m−bn

m)
2. (5)

F is the number of degrees of freedom and an
m and bn

m are
the joint positions of the n-th degree of freedom at time step
m. The free parameters cn denote the influence of the specific
degree of freedom on the final distance. These coefficients
highly depend on the robot and on the space in which the
trajectory is defined (e.g. Cartesian space or Joint space) and
on the manipulation task as well (not all degrees of freedom
are of the same importance). If the importance is not known
(as in our experiments), the weights can be defined as cn = 1.
As these values are only used for an initial guess of the metric,
the method is not sensitive to the selection of these weights.
Both trajectories are re-sampled such that samples at the same
time step are compared.

B. Supervised Metric Learning

Supervised metric learning is the problem of deriving the
coefficients of some metric model when a set of vector pairs
and their distance is given. In case the environment state
space is low-dimensional (which might be the case for many
manipulation problems), we propose to learn a metric that is
parametrized like the Mahalanobis distance (we will further
refer as Mahalanobis-style (MHS) distance), by reusing ideas
from multidimensional scaling (MDS) [18].

MDS is a method to reconstruct a matrix Q of coordinates
if the matrix D of pairwise squared distances between these
vectors is known. From the output of this procedure and by
knowing the vectors q already, the MHS distance can be
estimated by computing the Moore-Penrose Inverse, as we
describe next. Let D ∈ RK×K be the matrix containing the
squared distances of the pairs (qi,q j) for all i, j ≤ K, where
K is the number of environment states. The matrices D,Q are
defined by

Q =

 qT
1
...

qT
K

 , D =

 m2
11 . . . m2

1K
...

. . .
...

m2
K1 . . . m2

KK

 . (6)

Multidimensional scaling can only be applied in case the
matrix M of the MHS metric is an identity matrix, which
is not the case in general. Therefore, we use the identity
m2

i j = m(qi,q j) = qT
i Mq j = qT

i ZTZq j = kT
i k j to define the

feature vectors yi =Zqi, k j =Zq j (note that the feature vectors
k are not the same as the trajectory vectors k in equation
1). This can be done since the matrix M is positive semi-
definite and therefore can be decomposed as M = ZTZ. With
this feature vector, we can apply multidimensional scaling [16].
The cosine law is valid for vector spaces with standard inner
product and can therefore be used with the feature mapping.
Assuming a triangle with corners i, j,k, the angle θ jik between
edges (i,k) and (i, j) is given by

cosθ jik =
m2

i j +m2
ik−m2

jk

2mi jmik
. (7)

Further, we define b jik := mi jmik cosθ jik = kT
i k j, which is the

scalar product of vectors ki and k j within the triangle (i, j,k).
Therefore, the matrix Bi can be defined as

Bi = Ki
TKi (8)

for some arbitrary i, where Ki is a matrix containing the
vectors y j for all j excluding the vector ki. This matrix
can be computed by equation 7. As the known matrix Bi
(derived from the sample distances in the previously-described
way) is symmetric, it can be decomposed by singular value
decomposition (SVD) as Bi =UVUT, which yields the solution
Ki = V1/2U. Finally, by knowing the matrix Q, we can derive
M = ZTZ from

Z = Ki
TQi

(
Qi

TQi
)−1

. (9)

C. Metric Reinforcement Learning

The initial estimate computed in the previous section can
be refined using policy reinforcement learning methods such
as PI2 [15], PoWER [6] or policy gradient descent methods
[12]. However, these methods cannot be applied to refine the
coefficients of the matrix M without any adaptation, as they
do not preserve the metric properties. By using the property
that the positive semi-definite matrix M can be rewritten as
M = ZTZ, these properties can be preserved, by performing
the updates on Z. The matrix Z can be computed by SVD of
M = UVUT, where U is a square matrix and V is a diagonal
matrix. Then Z is given by

Z = UTV1/2. (10)

Z can be modified without sacrificing the positive semi-
definiteness of M. To improve the metric, a single random
environment state qrl from the environment state space has to
be chosen. The only constraint is that it should be neither at
the border of the environment state space nor already be stored
in the database. If this is ensured, reinforcement learning can
be performed in this state by optimizing the upper triangle
coefficients of the symmetric matrix Z (free policy parameters)
and copying these values to the lower triangle such that it is
symmetric again. These coefficients are changed by RL and a
new roll-out is then performed by Algorithm 1. Note that the
cost function r(π) has to be given by the user. In Section VI,
PoWER is used (Algorithm 2).



(a) q = (1.4,5.1) (b) q = (1.4,6.3) (c) q = (1.9,3.1)

Fig. 1. Synthetic data experiments: Generalization performance in simulation for selected environment states. Red trajectories show the ground truth; Green
trajectories show the initial guess by using trajectory comparison; Blue trajectories show the final proposed generalization after reinforcement learning

V. SMOOTH TRAJECTORY SWITCHING

With the trajectory blending in described in equation 2,
the policy provides a mechanism for adaptive manipulation if
the environment state changes during the execution. The agent
can continuously update the current environment state qnext and
re-estimate the coefficients snext

i . Directly replacing the current
coefficients by the new ones would yield dangerous accelera-
tions. Therefore, the transition has to be done smoothly. To be
more explicit, let

Scurr = S (qcurr, t0) =
{

st0
i (qcurr,qi, t0) | i = 1, . . . ,M

}
(11)

be the set of coefficients for the current environment state qcurr
at time t0, and qi the environment states of all trajectories in
the database. A smooth transition between the current state
and the new state is done by adapting the coefficients si used
in equation (2) as

st0+∆t
i = snext

i

(
1− e−αs∆t

)
+ st0

i e−αs∆t (12)

with the free parameter αs, which determines the speed of the
adaptation. Typical values for αs are between 0.5 and 1.5. It
is straightforward to see that

lim
∆t→0

st0+∆t
i = st0

i , lim
∆t→∞

st0+∆t
i = stnext

i , (13)

which means that the current weight st0
i vanishes, while stnext

i
becomes dominant for large ∆t.

VI. EVALUATION

In the first experiment, we analysed the generalization
performance of the proposed method along with an evaluation
of the adaptive mechanism using synthetic, 1-dimensional
trajectories that model obstacle avoidance. The second exper-
iment is a reaching task with a 7-DoF KUKA LWR robot
(see Fig. 4), where the underlying optimal metric on the
environment state space was already known. Finally, a more
involved pouring task was realized, where a predefined amount
of corn is poured from one cup into another while the target
cup was moving.

A. Evaluation by Synthetic Data

The first task was a synthetic 1D obstacle avoidance task
with a 2D environment space (obstacle of height h at location
p). No real robot was used in this example; this is a toy

example to evaluate the generalization performance in a task
where ground truth (given by an analytical function) is known.
Further we evaluated the assumption of a globally valid metric
(valid for the whole environment state space) and the adaptive
mechanism.

Experimental Setting: The obstacle avoidance trajectory is
modelled by an adapted Gaussian function where the obstacles
are located at the maximum (height given by amplitude h)

y(t) = he−(t−p)2/2 +0.2ht (14)

where the environment state is given by q = (p,h). The
function is chosen such that it avoids an obstacle of height h at
location p. The advantage of this approach is straightforward
database generation and the availability of ground truth. The
database included 18 sample trajectories that were gener-
ated from the set qph = (p,h) ∈ {0.5,0.9,1.3,1.7,2.1,2.5}×
{3,5,7}. We used DMPs as control policy with 16 Gaussian
basis functions. RL (PoWER) was performed with 8 roll-outs
per update step. The reward function used for reinforcement
learning was defined by r (π) = 1/exp(m(y,ydes)) where
m(yi,y j) is the trajectory metric described in Section IV-A,
and y is the trajectory generated by our proposed metric policy
π . Therefore, the highest reward will be given if the method
recreates the ground truth trajectory.

Results: Fig. 1 shows the generated trajectories for the sim-
ulated obstacle avoidance task, where each plot corresponds to
a different unseen environment state, i.e. obstacle configuration
in terms of its position and height. The green line visualizes the
prediction of the trajectory by using the metric initialization
algorithm in Section IV-A, while the red line shows the ground
truth trajectory. It can be seen that the initialization does not
provide any guarantees that the executed trajectory will be
appropriate for the current situation (e.g. Fig. 1(c)). However,
in many cases it provides a good starting point for the rest of
the algorithm as can be seen in Figs. 1(a) and 1(b) (both close
to optimum).

Table I provides details about the convergence behaviour
of the reinforcement learning step described in Section IV-C.
The first column lists the environment state on which the
reinforcement learning was performed to learn the global
metric. Please note that in a practical setting this learning
only has to be done for one single environment state within
the space to estimate the metric. Because of the intrinsic
low dimensionality of the problem, the reinforcement learning



(a) Update step 1: Initial trajectory
coincides with generalized trajectory

(b) Update step 2 (c) Update step 4 (d) Update step 6

Fig. 2. Reinforcement Learning: Convergence behaviour for constant environment state q = (1.9,3.1) through RL update steps; red (ground truth), green
(generated trajectory before RL), blue (generated trajectory at time step i)

TABLE I. SYNTHETIC DATA EXPERIMENTS: REINFORCEMENT
LEARNING PERFORMANCE FOR SELECTED ENVIRONMENT STATES

environment state Initial Reward Final Reward Required Updates
(0.6, 6.3) 0.42 0.82 5
(1.4, 5.1) 0.84 0.94 7
(1.4, 6.3) 0.84 0.91 9
(1.5, 4.5) 0.64 0.95 9
(1.9, 3.1) 0.16 0.96 6
(1.9, 6.3) 0.28 0.92 9

converged within less than 10 update steps. An example of the
convergence behaviour is shown in Fig. 2. It can be seen that
the method strongly improves already after the first parameter
update in Fig. 2(b) and converges within 4 more update steps
to a local maximum (see Fig. 2(d)).

Additionally, the good generalization results should be
emphasized, as all trajectories are executed with a reward of
more than 0.82 (where the maximum reward is 1.0). Note that
as this experiment is done with synthetic data, there is no
meaningful way to measure the error; we selected the reward
to measure if the ground truth trajectory was reproduced.

We next evaluated how adaptive our system is in the face of
external perturbations by changing the position and height of
the obstacle on the fly during trajectory execution where both
the initial and changed configurations were previously unseen.
The adaptive manipulation mechanism is illustrated in Fig. 3,
which shows a switch from ground truth trajectories 1 (green, h
= 6.0) to 2 (blue, h= 7.0) at 1.5 seconds. Both trajectories were
not in the database before. Note that the task-specific trajectory
shape (red) is still preserved while switching from green to
blue. Further, it is possible to set the transition speed - Fig.
3(a) shows a very smooth transition (αs = 0.8). However, if the
environment changes are fast, one might need to react faster as
well (Fig. 3(b), αs = 1.3). In Fig. 3(c) the smooth transitioning
is disabled. This results in very abrupt jumps which is not a
desirable behaviour (dangerous movement for humans and the
robot). Finally, it was evaluated whether the learned metric is

TABLE II. SIMULATED DATA EXPERIMENTS: PERFORMANCE FOR
UNSEEN ENVIRONMENT STATES

environment state Reward
(1.4, 5.1) 0.92
(0.6, 6.3) 0.93
(0.5, 3.0) 0.83
(2.5, 7.0) 0.77
(1.5, 5.5) 0.93

only valid for a limited region around the environment state the
reinforcement learning was performed on, or if it can be used

(a) Reaching Experiment (b) Pouring Experiment

Fig. 4. Experiment setting of real-robot experiments

globally (Table II). The metric is learned by the reinforcement
learning approach for the randomly selected environment state
qlearn = (1.4,5.1) and the performance of this metric with
other environment states was tested Three out of five tests
had a reward r ≥ 0.92, while reduced performance (r ≈ 0.77)
was only observed for environment states that were located at
the database border, e.g. q = (0.5,3.0). As the method needs
data around the requested environment state to be able to do
a proper interpolation, reduced performance at the borders is
not a problem.

B. Reaching task with the real robot

In this experiment, the environment state space as well
as the cost function are straightforward to define. Therefore,
the metric has an intuitive form and the result for the learned
metric can be checked for plausibility of the results. Further, it
is possible to perform evaluation in simulation as well as with
a real-world robot in an automated way, as the performance
is only given by the final reaching position, which made it
feasible to sample the environment state space densely and to
measure the performance with high precision.

Experimental Setting: The experiments were performed
with a KUKA LWR 4+ (see Fig. 4(a)). The environment
state space was the 2D reaching position on the table surface.
Sample trajectories were provided by kinesthetic guiding for
the environment states qxy = (x,y) ∈ {0.6,0.7,0.8,0.9,1.0}×
{0.5,0.6,0.7} m. A DMP was learned for each sample. Note
that these were learned in joint space; otherwise the reaching
movement can simply be done by a simple point-to-point
movement in Cartesian space, whereas in joint space the goal
state and trajectory would require forward kinematics which
was not used in the experiment. The trajectories had a length
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Fig. 3. Switching from green to blue trajectory for synthetic obstacle avoidance task

of up to 14 seconds, which required 30 basis functions. RL in
simulation was sufficient as the cost function only consists of
the final Cartesian position. The cost function used for the
trajectory generated by the metric policy π with Cartesian
goal position g and desired goal position gdes was defined
as r (π) = 1/exp‖gπ −gdes‖. Per update, 5 roll-outs were
executed in a simulator.1 While the learning was done in the
simulator, the performance was measured with the robot.

Results: In total 83 environment states were executed uni-
formly over the whole environment state space. The resulting
average generalization error was 0.013 m ± 0.009 m. As base-
line method we selected a nearest neighbour approach, where
the average error was 0.036 m ± 0.017 m. It should be noted
that without knowing the metric, it would not be possible to use
the nearest-neighbour approach for an arbitrary problem (e.g.
screwing a nut). However, because the trajectory database was
indexed by the 2D reaching position, for this specific problem
it was possible to select the nearest neighbour automatically.
Additionally, the resulting metric was very intuitive, as the
environment state space was the Cartesian space, where M
should be the identity matrix. Indeed, the learned metric was

M =

(
1 −0.1698

−0.1698 1.1672

)
. (15)

C. Pouring task with the real robot

A pouring task was performed, where m kg of corn had
to be poured from cup A to cup B at position x on the table.
As the environment state has components with differing units
(the amount to pour is measured in kg and the location of cup
B in meters) the metric cannot be intuitively guessed. Further,
in this case the learning had to be done with the real robot
as well. We also used our approach to show the power of our
reactive control policy by updating the target cup’s position
online during trajectory execution.

Experimental Setting: Cup A was mounted on the end-
effector of the KUKA LWR 4+, while cup B was placed on
a line on the table surface (Fig. 4(b)). Cup A was filled with
a fixed amount of corn. The environment state was chosen as
q = (m,x). Sample trajectories were provided by kinesthetic

1For the reinforcement-learning roll-outs we used the V-Rep robot sim-
ulation platform with the Bullet physics engine. As the cost function only
consists of the final Cartesian position, the simulated kinematics of the robot
was sufficient. Note that this only has been done because here it was not
required to run the experiment in the real world. In general, 2D query space
problems can be learned in real robot experiments as well (see pouring).

guiding for 12 environment states distributed non-uniformly
over the space with 0.044≤m≤ 0.38 kg and 0.9≤ x≤ 1.3 m.
The pouring success was measured with a balance located
below cup B. The sample trajectories had a length of at most
35 seconds, which required 74 DMP basis functions. The
reward function for reinforcement learning was selected as
r (π) = 1/‖mdes −mmes‖, where mdes is the desired poured
amount and mmes is the measured amount of corn respectively.
5 samples per update step were rolled out. For the adaptive
manipulation, the left arm in figures 5 was moved during
execution. The position data of the left arm was fed to the
system directly from the robot control software with an update
rate of 10 Hz to update the environment state.

Results: In total, 17 samples were performed (randomly
distributed over the environment state space), with a mean
error of 0.0216 kg ± 0.0171 kg. Again, we compared our
method to the nearest neighbour as baseline method, where
the nearest neighbour was selected such that the poured
amount of corn was optimal. This required execution of several
possible sample trajectories and selecting the best (average
error of 0.0425 kg ± 0.401 kg). This high standard deviation
reflects the observation that nearest neighbour worked very
well around sample points, while it failed in between (e.g.
all or a significant amount of corn was spilled on the table),
which is a highly undesirable behaviour. Contrary to this, our
proposed method spilled at most 0.003 kg in 2 cases. We also
evaluated the reactive behaviour of our approach by varying
the x component of the environment state within the range of
0.9 to 1.3 m (moving cup B) while pouring 0.3 kg of corn. This
experiment was repeated 3 times, where each trial succeeded
with a poured amount of corn between 0.291, 0.295 and 0.3
kg respectively2.

VII. CONCLUSIONS

We proposed a novel data-driven control policy method,
which generalizes to unseen situations and adapts to envi-
ronment changes. This is done by maintaining a task-specific
trajectory database indexed by (low-dimensional) environment
states. When a new situation is observed, these trajectories
are weighted according to their importance, which is done by
using a learned metric. It measures the distance (importance)
of the environment states in the database. This metric is learned
by using an initial guess and optimizing it by reinforcement
learning for a single environment state.

2https://iis.uibk.ac.at/public/shangl/pouring.mp4
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Fig. 5. Adaptive Manipulation in a Pouring Task

We evaluated our method in three different experiments:
synthetic obstacle avoidance, real-robot reaching and real-robot
pouring. The plausibility of the method’s base assumptions was
tested. The most restrictive assumption is that small changes of
the environment state result in small changes of the trajectory,
which holds for many manipulation problems. However, the
reader should be aware of the fact that this does not hold
in general. Further, the metric is assumed to be valid for
the whole environment state space, and the trajectories within
the database are assumed to span the subspace of trajectories
required for solving the task. This problem can be solved to
some extent by using base control policies that are able to
add a certain amount of generalization (e.g. DMPs as base
policies can be used to generalize in task where attractor point
generalization is sufficient). The third basic assumption is that
the problem’s intrinsic environment state is low-dimensional.
This assumption holds in many real-world manipulation prob-
lems, as a low number of important properties can be easily
identified by humans in many cases. However, in the current
version of the approach the state vector has to be selected by
the user. Future work will investigate automatic selection of
the required data.
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