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I. INTRODUCTION

An articulated human body consists of coupled multiple
links whose motions affect each other. The effects generated
on body parts by the muscles propagate through the body
and influence other parts depending on the kinematic and
dynamic relations. In this work, we propose to use graph
neural networks, propagation networks [1] in particular, to
investigate the problem of modelling full-body motion. Given
the real movement of one or multiple parts of the body, our
work aims to predict the movement of the rest of the body
exploiting the underlying graph structure that encodes the task.
The body parts and the relations between them are encoded
as the nodes of a graph and edges between these nodes. How
the nodes are related to each other is learned, and how the
effects of multiple nodes on each node should be accumulated
is computed in graph structure. A publicly available whole
body motion data set is used to train our network. Preliminary
results showed that the system could predict motion of body
parts given ground truth motion of a subset of hand, foot and
head.

Previously, [3] and [4] developed deep recurrent neural
networks to model human motion, and learned time-dependent
short-term representations of human body. [5] and [6] devel-
oped vision dependent models which are not time-dependant
and they used the model to synthesize new trajectories. Our
propagation network model is not time-dependent, the pre-
dictions are made through time by chaining predictions back
to back. We further explicitly represent each link and let the
system learn to propagate the effects of chain of links in each
single step.

II. PROPOSED MODEL

Figure 1 gives a graphical illustration of the framework that
is used, in this section this illustration will be clarified.

In this environment we represent articulated human bodies
with a graph structure G =< O,R > where nodes are
represented by objects (links) O = {oi}i=1...No

where oi
represents the attributes of the object i (No is the number
of objects in the scene) and edges are represented by relations
(connections between the links) R = {rj}j=1...Nr

where rj
represents the attributes of relation j (Nr is the number of
relations in the scene).
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Object attribute extraction differs, according to whether the
corresponding link is a reference point or not. If it is, then
only its’ actual position is given as the object attribute, more
formally oi,t =< xi,t, >, on the other hand if a link’s
position is aimed to be predicted then its’ object attribute
oi,t =< ẋi,t, v̇i,t > consists of its’ predicted position ẋi,t
and predicted velocity v̇i,t in time t. Each relation attribute
rj =< δxj > consists of the relative positions difference
of the objects that the relation j connects, more formally
δxj = xi−xk where object k and i has the relation j between
them.

In propagation networks the main aim is to calculate the
propagating effects of object and relation attributes. This is
done by having two subsequent MLPs that are connected
with each other, which evaluate these effects and use them
at the same time in a loop. The attributes are first encoded by
encoders for objects and relations, fencO and fencR , relatively, in
order to be processed more efficiently (effects of the encoders
are explained in [1]).

crk,t = fencR (rk,t), k = 1...Nr (1)

coi,t = fencO (oi,t), i = 1...No (2)

where oi,t and rk,t represent object and relation attributes
in given time t. Object encoder fencO is an MLP with 3 hidden
layers of 150 neurons and relation encoder fencR is an MLP
with 1 hidden layer of100 neurons.

After encoding, in order to predict the future state of the
environment, encoded attributes are given as input to the
MLPs. f lO and f lR represent these propagators for objects and
relations relatively, and outputs of these propagators are given
as input to each other in the next propagation step, as shown
in figure 1.
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where Ri represent the set of relations that the object i is a
part of, and elk,t and pli,t represent the propagating effects of
relation k and object i in propagation step l and given time
t. Object propagator f lO is implemented as an MLP with 1
hidden layer of 100 neurons and relation propagator f lR is an
MLP with 2 hidden layers of 150 neurons.



Fig. 1. The graphical illustration of the framework. Right hand is given as the reference point and other links are predicted and chained through k timesteps.
One iteration of the attributes through propagation network gives the attributes in subsequent time.

Fig. 2. Example prediction of a walking movement. Green lines represent
the predictions, red lines represent the ground truth postions.

This process goes on until number of set propagation steps
L is reached, the number L is decided according to the com-
plexity of the environment. After the number of propagation
steps is satisfied the object and relation attributes in time t+1
are extracted from the final propagating effects.

oi,t+1 = pLi,t (5)

Also with a similar approach by chaining the predictions,
state of the environment in time t+k is estimated. More about
graph neural networks can be found in [2] and similar usage
of propagation networks was also introduced in [7].

III. RESULTS & CONCLUSION

We trained and examined the developed model with the KIT
Whole Body Language dataset [8]. The dataset consists of
recorded joint positions for multiple timesteps for different
movement trajectories. Two trajectories with walking move-
ment are selected and used for training and testing the model.

The accuracy of the model differs according to the number
of reference points and the number of propagation steps
that are used while training. As the number of reference
points increases and their positions cover a larger area, it is
expected the model to have better accuracy since propagation
can effect more variate positions easier. Also as the number
of propagation steps increases, the number of links that are
accurately evaluated is likely to increase. Figure 3 shows
average difference between the actual and predicted positions
of the links with the model trained with differing number of
reference points and propagation steps.

Fig. 3. Average errors of the positions of the joints with different points given
and different propagation steps used.

In figure 4 the models are trained with the right hand
given as the reference point, and the other links’ positions are
predicted. The figure shows the predicted and actual positions
of the links in left leg and right arm. It can be seen that
while the average error in right arm is around 10mm the
average error in left leg is around 100mm. This shows how the
network’s information propagates starting from the reference
point and how its’ affect decreases in the links that are further
from the reference.

Fig. 4. Positions of the links (horizontal and vertical positions in mm) of
right arm and left leg with the model trained with right hand as the reference
point. RELB, RHND represent right arm elbow and hand, LKNEE, LFOOT
represent left leg knee and foot links relatively.

In this study, we investigated use of graph neural networks
in encoding whole body motion, representing links with nodes
and relations with the edges in the graph. Our preliminary
experiments show that after learning, our system can predict
motions of various body parts given motion of a single hand
or leg, with different accuracies. We additionally showed that
number of propagation becomes important in relating body
parts that are far away in the kinematics chain.
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[8] C. Mandery, Ö. Terlemez, M. Do, N. Vahrenkamp and T. Asfour, “The
KIT Whole-Body Human Motion Database”, International Conference
on Advanced Robotics (ICAR), pp. 329 - 336, 2015


	Introduction
	Proposed Model
	Results & Conclusion
	References

