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Abstract— Associative Skill Memories (ASMs) were formu-
lated to encode stereotypical movements along with their stereo-
typical sensory events to increase the robustness of underlying
dynamic movement primitives (DMPs) against noisy perception
and perturbations. In ASMs, the stored sensory trajectories,
such as the haptic and tactile measurements, are used to
compute how much a perturbed movement deviates from the
desired one, and to correct the movement if possible. In our
work, we extend ASMs: rather than using stored single sensory
trajectory instances, our system generates sensory event models
and exploits those models to correct the perturbed move-
ments during executions with the aim of generalizing to novel
configurations. In particular, measured force and the torque
trajectories are modelled using Parametric Hidden Markov
Models, and then reproduced by Gaussian Mixture Regression.
With Baxter robot, we demonstrate that our proposed force
feedback model can be used to correct a trajectory while
pushing an object with a mass never experienced before, and
which otherwise slips away from the gripper because of noise.
In the end, we discuss how far this skill can be generalized
using the force model and possible future improvements.

I. INTRODUCTION

Learning from Demonstration (LfD) [1] has been sug-
gested as an efficient and intuitive way to teach new skills
to the robots, where the robot observes, learns and imitates
the actions demonstrated by the human tutors. LfD has been
applied to various robotic learning problems including object
grasping and manipulation [2]–[6]. Among others, learning
methods that are based on dynamic systems [7] and statistical
modeling have been popular in the recent years.

Dynamic Movement Primitives (DMPs) [7], for example,
encode the demonstrated trajectory as a set of differential
equations, and offers advantages such as one-shot learning
of non-linear movements, real-time stability and robustness
under perturbations with guarantees in reaching the goal
state, generalization of the movement for different goals, and
linear combination of parameters. The parameters of the sys-
tem can be learned with different advanced algorithms such
as Locally Weighted Regression [8] and Locally Weighted
Projection Regression [9]. Statistical modeling, which can
model the statistical regularities and important features of the
demonstrated motions, has also been influential in learning
the skills [2], [10].

After encoding the action, the robot is generally required
to refine the parameters of the learned control policy [11].
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Fig. 1: Experimental setup showing Baxter robot pushing
7.5 kg battery pack.

Memorized force and tactile profiles can also be used to
modulate learned Dynamic Movement Primitives (DMPs)
[12], [13]. Memorized force and tactile profiles have already
been successfully utilized in modulating learned movement
primitives in difficult manipulation tasks that contain high
degrees of noise in perception such as flipping a box using
chopsticks However, we believe that rather than memorizing
one single haptic profile for a skill, learning general multi-
model sensory models might provide us with more general-
izable and robust manipulation skills.

Chu et al. learned such multi-modal models based on
Hidden Markov Models from temperature, pressure and fin-
gertip information for exploratory object classification tasks
[14], however the learned models were not used to adapt
any further action execution. Latent Drichlet Allocation [15]
and recently deep networks [16] were used to learn multi-
modal models from different sensory information such as
temperature, pressure, fingertip, contacts, proprioception, and
speech; however these models were used only to categorize
the sensory data without any effect on action execution. More
recently, Kramberger et al. investigated the same problem
of generalization of force/torque profiles for contact tasks
[17]. In their work, these profiles are modeled by Locally
Weighted Regression (LWR) which has local generalization
capabilities, hence successful at intermediate query points.



However, the learned models did not extrapolate from the
training queries.

In this paper, our system generates sensory event models,
and exploits those models to correct the perturbed move-
ments during executions with the aim of generalizing to
the novel configurations. In particular, measured force and
the torque trajectories are modeled using Parametric Hidden
Markov Models (PHMM), and then reproduced by Gaussian
Mixture Regression (GMR). PHMM was previously used
in robotics application for a liquid pouring task to create
a model that links the joint space and sensory feedback
information of the robot to the amount of the liquid [18].
However, their work consisted of learning the position and
force trajectory together by PHMM and therefore was not
robust to dynamical changes as is DMP. With Baxter robot
(Fig. 1), we demonstrate that our proposed force feedback
model can be used to correct a trajectory while pushing an
object of mass never experienced before, which otherwise
slips away from the gripper because of noise in perception.
The rest of the paper is structured as follows: Section II.
provides the proposed method that use PHMM to model the
force feedback term of DMPs, Section III. gives experimental
results of pushing of varying weighted objects task with some
analysis on the adaptation limitations of the chosen feedback
model and Section IV and provide discussion and conclusion.

II. METHODS

The formulation of DMP allows the robot to learn a
stereotypical skill from demonstration. Adding a sensory
feedback to the system enhances the capabilities of the robot
in the learned skill by sending corrective signals to low-level
controllers [4]. In an open-loop execution of the skill pushing
a cup, for example, the dynamics of the environment can not
be always known to the robot and also due to the noise in
perception and uncertainties in the environment, and the cup
can slide from its end-effector from time to time. The forces
that the robot should feel during the execution, namely the
desired forces, help the robot the orient and position its end-
effector so that it prevents sliding of the cup.

However, storing and using force trajectory instance does
not allow generalization to new situations in the long run.
Pastor et al. called this storage of data coupling with move-
ments as Associative Skill Memories [12]. In this paper,
instead of memorizing how to feel during each execution, we
propose to model the forces experienced by the robot during
its successful action executions for each primitive movement
by using PHMMs and reproduce them using GMR. For a
typical movement, we argue that the relation between pa-
rameters of the environment and experienced force feedback
can be learned via linking at least two obtained force models
by means of Gaussian centers of their hidden states, and that
the desired forces for a new movement at the proximity of
these demonstrations can be predicted from this parametric
model.

A. Dynamic Movement Primitives

For one degree of freedom, DMP is composed of the
following set of differential equations:

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s)

τ ẋ = v
(1)

where,

• x and ẋ are the position and the velocity,
• x0 and g are the initial and goal positions,
• v and v̇ are the velocity and acceleration scaled by the

duration of the demonstration τ ,
• K and D are the proportionality and the damping

constants,
• f(s) is a nonlinear function of the phase variable s

K and D are selected so that there is critical damping
and the damping constant is taken as D = 2

√
K. The phase

variable makes DMP temporal invariant by encoding time in
its canonical system defined as

τ ṡ = −αs (2)

where α is a constant representing the convergence rate of
the phase variable from 1 to 0. Starting each DMP with the
same phase variable and integrating with the same canonical
system ensures their simultaneous evaluation.

The shape of the trajectory f(s), is encoded as normalized
weighted sum of radial basis functions, (ψi) as in equation:

f(s) =

∑
i wiψi(s)s∑

i ψi(s)
(3)

where ψi = exp(−hi(s− ci)2) are the radial basis functions
and ci and hi are respectively the mean and the variance of
these functions. The weights wi specific to each movement
primitive are learned by linear regression [19].

B. Sensory Feedback Extension to DMPs

In ASMs, a coupling term is integrated into the original
DMP formulation Eq. 1 to compensate for the generalized
forces that the robot senses during the execution of a task,
since each movement primitive should capture the entire
dynamics of the skill. This coupling term is given by

ζ = K1JT
sensorK2(F− Fdes) (4)

where K1 and K2 are positive definite gain matrices,
JT
sensor is the transpose of the Jacobian with respect to

sensors by which the forces are measured. F and Fdes are
the current and desired generalized forces which, in task-
space, is the end-effector’s 6D wrench.

Coupling term incorporated in DMP formulation Eq. 1 is
then given by

τ v̇ = K(g − x)−Dv −K(g − x0)s+Kf(s) + ζ (5)



C. Encoding Force Feedback by PHMMs

In this paper, we propose to construct temporal probabilis-
tic models to encode force feedback trajectories measured
from the same movement primitive that is executed several
times. For this we propose to use PHMM.

Hidden Markov Model (HMM), λ, of N hidden states,
is composed of the prior distributions πi, the transition
probabilities aij and the observation probability distributions
bi, represented as: λ = {πi, aij , bi}Ni,j=1

When the observation data is continuous, we assume
generally that each state produces a multivariate Gaussian
distribution with mean µi and covariance matrix Σi. These
parameters are learned by an extension of Expectation Max-
imization (EM) Algorithm, called the Baum-Welch Algo-
rithm. For further explanations, reader is invited to refer to
the paper of Rabiner [20]. However, HMMs are ignoring the
environmental parameter information of the demonstrations.
Therefore, in this paper, we propose to use the paramet-
ric version of HMM, Parametric Hidden Markov Models
(PHMM). In these models, the observational probability
distributions are functions of the parameters θ = {θk}Kk=1

of the demonstrations k through the means of the Gaussian
distribution functions where K represents the number of the
demonstrations. Each of the Gaussian means produced by all
hidden states are linear functions of θk and can be expressed
as follows:

µ̂i(θk) =Wiθk + µi (6)

This way the Gaussians corresponding to a state in each
demonstration are tied linearly by their means. For further
information, refer to [21]. In PHMMs, to determine the
observational probability distributions, in addition to µi and
Σi, we also need to find Wi. However, in Baum-Welch
Algorithm, the drawback of updating the values of Wi

and µi separately is that while updating one, the non-
updated value of the other one is used. These values can
be written as in Eq. 7, so that we only need to update Zi

and Σi for observational probability distributions. For further
information, refer to [21].

Zi ≡ [Wi µi], Ωk ≡
[
θk
1

]
(7)

D. Trajectory Generation

The weights and values of the learned radial basis func-
tions and phase variable can be put inside the Eq. 3 to find
the value of the shaping function. With these values, Eq. 1
and 2 can be used to calculate the position and the velocity.

E. Desired Forces Generation

When a new parameter is given to the model retrieved by
PHMM, each hidden state produces new multivariate Gaus-
sian distributions. The mean vector of these distributions µi

and the covariance matrix Σi, can be expressed as partitioned
matrices by splitting the input x and output y as in:

µi =

[
µx

i

µy
i

]
Σi =

[
Σxx

i Σxy
i

Σyx
i Σyy

i

]
(8)

According to the GMR, the output vector can be found
by inserting the input vector and the Gaussian distribution
acquired from the PHMM into the following equation [22].

y =

N∑
i=1

hi[µ
y
i + Σyx

i (Σxx
i )−1(x− µx

i )] (9)

Here hi are the weights of the marginal distribution of
the input and are calculated according to the Eq. 10 where
N (x;µx

i ,Σ
xx
i ) is the multivariate Gaussian density function

of the input.

hi =
N (x;µx

i ,Σ
xx
i )∑N

i=1N (x;µx
i ,Σ

xx
i )

(10)

III. EXPERIMENTS

A. Experimental Setup

Our experimental setup is composed of a Baxter robot
which has two 7-DoF anthropomorphic arm, each actuated
by a series elastic actuators enabling to measure torque
output directly from the actuators (see Figure 1). The arm has
a electric, parallel jaw gripper that is used in closed state with
4 cm wide open during the experiments. The experiments are
conducted on a flat table, using 1.75 kg small batteries and a
2.25 kg big battery with enough surface area to avoid gripper
from slipping away in the execution phase. We successively
attached the small batteries to the big one with a tape and
let the robot interact with the surface of the large battery in
order to increase the interaction surface area.

B. Task: Push

The task of the robot is to push the box from an initial
position to a final position with approximately linear in
the x-direction at the robot’s frame, i.e. only the x-position
of the end-effector is changing with time. We selected the
task of “pushing an object to a goal position” task in the
experiments as this task requires exploitation of the learned
force feedback model when the object is not moving as
expected during the execution in response to the learned and
reproduced movement of the end-effector. Such unexpected
behavior can be observed through introducing different types
of noise and perturbations: by incorrect perception of the
intial location of the object and initiating the push trajectory
from a slightly shifted position; or by physically perturbing
the object while being pushed. In this paper, we simulated
noise in perception, initiated the push trajectory from a
slightly different position (around 6.25cm maximum), and
called this setup as ‘misplaced object’.

The movement is demonstrated by kinesthetic teaching,
using the gravity compensating mode of the Baxter arm.
Because holding the end effector while kinesthetic teaching
affects the force/torque measurements, the recorded trajec-
tory is re-executed without human intervention, and modelled



with a set of DMPs in task space. Note that even though
DMP in quaternion space has a different set of equations
[4] because of the unity constraints on quaternions, we still
modeled the trajectory with the standard DMPs.

TABLE I: Experimental conditions.

Condition Explanation
Misplaced-No-Force object is misplaced,

control with no force feedback coupling
term

Misplaced-Memory-Force object is misplaced,
control with closest memorized force
feedback coupling term

Misplaced-PHMM-Force object is misplaced,
control with PHMM model feedback cou-
pling term

C. Force feedback model

After the trajectory is encoded as DMP as described above,
the DMP model without force feedback is executed with 4
different object masses (2.25kg, 4kg, 5.75kg, 7.5 kg), three
times each, and the wrench data provided by the Baxter robot
are saved. The last object of mass 7.5 kg is used as test
data. The wrench data obtained from the original end-effector
trajectory were modeled by PHMM of 10 hidden states with
the parameters θk = mk (see Eq. 6) , where mk is the mass
of each object to push. Wrench data corresponding to these
executions with the PHMM model fitted, and the reference
forces for the novel environment is shown by Fig. 2 in
only x-direction since the position trajectory is not changing
much in directions other than x. This produces significantly
different forces in x-directions but slightly different ones in
other directions. With the new means of the Gaussians of
hidden states when the parameter of the novel environment
is given to the PHMM model, we can predict the desired
forces using GMR. The predicted desired force trajectory
is shown by solid black line in Fig. 2. The reference and
the predicted force trajectories are both around 15 N and
demonstrates our model’s generalization capability.

D. Robot Execution

Since the task is to push an object on a table, we
decided to neglect the effect of the forces orthogonal to
the table, i.e. Fz , and the corresponding torques, Tx and
Ty in the computations. We also did not consider the effect
of Tz to focus only on the 2D forces and left the torque
feedback analysis for future work with DMP quaternions.
Therefore, in the Eq. 4, we set the the first two diagonal
elements of K1 corresponding to x and y directions equal
to 80 and other elements to zero. K2 and Jacobian are
set to identity matrices since we worked on task space. In
experiments we used three different conditions for evaluating
our method: Misplaced-No-Force, Misplaced-Memory-Force
and Misplaced-PHMM-Force (Table I). Misplaced-No-Force
condition is the base condition, whereas Misplaced-Memory-
Force condition uses a memorized force feedback trajectory
that is obtained from the most similar environment con-
ditions, i.e. object masses. Misplaced-PHMM-Force is the
condition where our proposed model-based method is tested.

Fig. 2: PHMM model with GMR prediction and executions
with different mass objects. Blue, red, green and magenta
lines correspond respectively to the executions with 2.25
kg, 4 kg, 5.75 kg and 7.5 kg battery packs. Ellipses are
the PHMM model learned from the red, blue and green
executions. And the black line is the prediction obtained from
this model with the novel environment parameter 7.5 kg.

E. Results

We made a systematic evaluation that compares the perfor-
mance of push actions with PHMM model based force feed-
back terms against push actions that use memorized force
feedback trajectories, i.e. no model. The object is placed to
5 different positions for this purpose. For each initial object
position, three push actions are executed with and without
PHMM models. After each push action, the distance of the
final object position to the goal position is measured. Fig. 3
shows the results. Both with and without PHMM, higher
error was observed when the object is placed further away
from the position where push action was demonstrated. More
importantly, less error was observed with PHMM-based push
executions in all configurations compared to the executions
that do not use any model.

Fig. 4 provides final positions of the object that were
initially placed 3.75cm away from the demonstrated position.
In Fig. 3, we did not provide the result of push action that do
not exploit force feedback term, i.e. misplaced-no-force, as
those push actions failed in all cases as expected and visible
from even one snapshot, Fig. 4(a).

We have chosen randomly a specific misplacing distance
of 3.75cm to show the changing forces felt by the robot
during the execution and based on different experimental
conditions explained in Table I. The experiment snapshots
and corresponding force and positions plots (only in x and
y directions) are shown respectively by Fig. 4 and Fig. 5
and an accompanying video is attached to the paper. In Fig.
5, since each DoF of force feedback affects its position,
x and y plots should be interpreted separately. Seeing the



Fig. 3: The errors, i.e. distances to the goal position,
observed at the end of push actions when object is placed
to different initial positions.The bars show maximum, mean
and minimum errors obtained from 3 executions in the same
configurations.

execution video and verifying by looking at the plots for
the Misplaced-PHMM-Force condition,although the desired
values are not reached, as shown, the predicted force feed-
backs are followed better compared to other and resulting in
more successful push actions. The success lies in the fact that
while x position follows slowly while y position searches for
the right forces.

IV. DISCUSSION
Since our robot was barely pushing 7.5kg battery pack, it

was not possible to try to push heavier objects, neither was
interesting to push lighter ones since the force/torque feed-
back received was around zero, to analyze the limitations of
the generalization capability of the PHMM model. However
we argue that such linear model is sufficiently generalizable
in simple tasks like pushing or pouring [18] with robots that
have more payloads. Therefore, we leave the analysis of the
restrictions of the model as future work.

By assuming diagonal gain matrices K for the sensory
feedback coupling term, we underestimate the possible ef-
fects of some degrees of freedom on the others. For example,
we assume that only x-position is affected when there is
an error between the desired and actual generalized forces
in x direction. However, we should learn a K for specific
tasks rather than setting a constant value, by investigating
the synergies between the degrees of freedom.

Since we worked only on the x and y directions of the
robot end-effector frame, without any rotation, this did not
cause any problems. However, using quaternion DMPs to
analyze the generalization and adaptation capabilities of our
model is set as future work.

Instead of force feedback, visual feedback can be used
by keeping track of the object position. However, this is
challenging because of the high dimensional visual space
and difficulty in detecting the relevant features.

V. CONCLUSION
In this paper, we learned and exploited sensory event

models to correct ongoing movements that are affected from

Fig. 4: Final positions of the objects at the end of push
actions. Object is placed 3.75cm away from the position
that demonstrations were collected and its mass is different
from the objects in demonstrations. As shown, while push
action that did not use force feedback term completely failed,
action that exploited PHMM-based force feedback model
generalized best to the different configuration. The difference
between (b) and (c) is not that high, but still significant, as
observed from the object orientations in Fig. 3. The attached
video shows the push action of the robot and its interaction
with the object during action execution.

noisy perception and to generalize to novel environments.
Our system successfully exploited the learned force feedback
models in order to adapt to noisy situations in a object
pushing task with non-linear trajectory. We also showed that
the desired force/torque profile for the pushing task in a novel
situation can be predicted using PHMM models.
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