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Abstract—“Developmental robotics” proposes that, instead
of trying to build a robot that shows intelligence once and for
all, what one must do is to build robots that can develop. These
robots should be equipped with behaviors that are simple but
enough to bootstrap the system. Then, as the robot interacts
with its environment, it should display increasingly complex
behaviors. In this paper, we propose such a development scheme
for a mobile robot. J.J. Gibson’s concept of “affordances”
provides the basis of this development scheme, and we use
a formalization of affordances to make the robot learn about
the dynamics of its interactions with its environment. We show
that an autonomous robot can start with pre-coded primitive
behaviors, and as it executes its behaviors randomly in an
environment, it can learn the affordance relations between the
environment and its behaviors. We then present two ways of
using these learned structures, in achieving more complex,
intentional behaviors. In the first case, the robot still uses its
pre-coded primitive behaviors only, but the sequencing of these
primitive behaviors are such that new more complex behaviors
emerge. In the second case, the robot makes a “blending” of its
pre-coded primitive behaviors to create new behaviors that can
be more effective in reaching its goal than any of the pre-coded
behaviors.

I. INTRODUCTION

The objective of this work is to propose a robotic develop-

ment scheme which is based on the concept of affordances.

Starting from a set of simple pre-coded behaviors/actions,

through interaction and experience, we aim to realize a

transition from these unintentional behaviors to intentional

behaviors for the robot. This development should also re-

sult in demonstration of novel/enriched behaviors that are

different from the pre-coded existing behaviors. On a more

conceptual level, our objective is to contribute to the view

which suggests that robots, just like human beings and other

animals, should go through a developmental process, where

they shape their “intelligence” through their own experience.

In proposing the behavioral development of a robot, we

placed the affordance concept, which provides us with a tool

to deal with robotic problems in terms of agent-environment

interactions, at the core of our study. Using affordance

representations and a recent formalization of the concept [1],

the robot learned generic relations about its behaviors and its

interaction with the world.

II. BEHAVIOR DEVELOPMENT

How behavior develops in humans and other animals have

been the subject of many scientific studies. Theories of de-

velopment have been proposed in the area of psychology. At

the level of the central nervous system, and motor neurons,

neuroscience has investigated behavior control, motor skills,

and motor development. In robotics also, there have been

efforts to make robots learn and develop behaviors.

A. Behavior development in psychology

In developmental psychology, Piaget is one of the most

influential figures, with his theory of cognitive development.

According to this theory, during cognitive development, ex-

isting structures called schemata are transformed by the pro-

cesses of assimilation and accommodation through interac-

tion with the external world [2]. For Piaget, the development

of behavior also occurs in this framework [3]. The newborn

baby has existing structures in the form of innate reflexes.

It executes and tries these reflexes and primitive behaviors,

trying to accommodate them to the environment. As the

baby experiments with these behaviors, they differentiate into

more complex behavioral structures [4].

E.J. Gibson was the first one to investigate affordances in

the context of development [5]. She studied the mechanisms

of the learning of affordances and used the ecological

approach to study child development. For E.J. Gibson “learn-

ing” is discovering the critical information in the perceptual

input. It is “narrowing down from a vast manifold of (per-

ceptual) information to the minimal, optimal information that

specifies the affordance of an event, object, or layout” [6].

E.J. Gibson suggested that babies have innate exploratory

activities, such as mouthing, reaching and shaking, and they

use these to gain this perceptual data. She suggested that

these activities bring about “information about changes in

the world that the action produces” [7]. As development

proceeds, exploratory activities become performatory and

controlled, executed with a goal.

B. Motor control in neuroscience

In executing a motor behavior, the central nervous system

commands the muscles through the motor neurons. It is a

very complex process including driving multiple muscles in a

synchronized way, in the correct timing and order. To achieve

this, the central nervous system must map the motor goals

to neuron signals controlling the muscles. This is a difficult

problem, since it constitutes a mapping from a small number



of variables to a large number of variables that drive multiple

muscles [8].

An approach that tries to solve this problem and explain

how complex patterns of motor behavior emerge says that,

these complex patterns are actually the result of combining

more simple primitive actions [8]. For example, in [9] Mussa-

Ivaldi et al. found that when separate modules in the spinal

cord of a frog are stimulated one-by-one, they correspond

to a limited number of force patterns and motor actions.

But when two modules are stimulated simultaneously, the

resulting force pattern corresponds to the vector summation

of the individual force patterns of each individual module.

Through this, they showed that using a linear combination

of a set of simple pre-coded force patterns, it was possible

to generate a different complex motion. Mussa-Ivaldi et al.

viewed this as a support to the view that “central nervous

system may generate a wide repertoire of motor behaviors

through the vectorial superposition of a few motor primitives

stored within the neural circuits” [9]. According to Bizzi, this

set of motor primitives may be viewed as “representing an

elementary alphabet from which, through superimposition, a

vast number of movements could be fashioned” [8].

Another study that supports this position is the influential

work of “population coding” by Georgopoulos et al. [10].

Through experiments they conducted on rhesus monkeys

Georgopoulos et al. found that the arm movements of the

monkey can be predicted using the activation values of a

population of neurons in the monkey brain. In this population

of neurons, it was observed that each individual neuron has

a preferred direction, and when it fires it makes the monkey

arm move towards that direction. But when multiple of these

neurons fire together, it was seen that the resulting direction

of the monkey arm was a weighted sum of each individual

neuron’s preferred direction. Moreover, these weights were

given by the activation values of each neuron. Therefore, the

more a specific neuron fires, the closer is the direction of the

monkey’s movement to the preferred direction of that neuron.

That means each neuron contributes to the resulting direction,

and the contribution is proportional to the activation value

of that neuron.

C. Behavior learning and development in robotics

In robotics, there have been increasing interest in behav-

ioral development and learning in recent years. There are

studies that makes a robot learn behavior parametrization

[11], learn to use behaviors purposively [12], [13], and

demonstrate stages of development through the usage of a

fixed set of behaviors [14].

In [15] Lee et al. use case-based reasoning in selecting

parameters for their behaviors, for goal-directed navigation.

In this study the robot has a “case-library”, where each case

is indexed by environmental features and outputs a set of

behavioral parameters. In [15], the “case library” is created

manually, but in [11], Likhachev et al. extends this work by

making the robot populate its case library through its own

experience. In this work the robot starts with cases which

output random behavior parameters. Then, by the help of

an explicit performance evaluator, the performance of each

case is computed, and a gradient-ascent search is made over

the output behavior parameters of these cases. As the robot

experiences more in the environment, the cases converge to

the correct behavior parameters.

Another study that uses reinforcement learning is Asada

et al.’s work on “purposive behavior acquisition” [12]. In

this study, the robot has a fixed set of behaviors, and using

these navigational behaviors it aims to shoot a ball into a

goal. At the beginning the robot does not know when to

execute which behavior in scoring goals; that is, it does not

have any idea what its behaviors are good for. But through

a reinforcement learning process, the robot learns using its

behaviors purposively. Therefore, after training, the robot

manages to select the correct behaviors in different situations,

so that it gets closer to scoring goals.

In robotics, there are also studies that aims to mimic de-

velopmental stages that animals go through. In [14], Oudeyer

et al. made a robot show different phases of cognitive

development. In what they called “playground experiments”,

Oudeyer et al. placed a robot-dog in a playground that in-

cluded various simple toys. In this environment, by executing

some primitive behaviors randomly, the robot learned the

dynamics and relation between its behaviors, and the events

in the environment. When Oudeyer et al. also provided an

external motivation to the robot to show interest in situations

which are “neither too predictable nor too unpredictable”, the

robot autonomously went through a developmental sequence.

During this development, the robot’s complexity of activities

increased at each stage.

III. AFFORDANCES AS A FRAMEWORK FOR ROBOTICS

J.J. Gibson [16] introduced the concept of affordances

to refer to the action possibilities offered to the organism

by its environment. For instance, a horizontal and rigid

surface affords walk-ability, a small object below a certain

weight affords throw-ability, for a human. The concept of

affordances, with its implicit but central emphasis to the

interactions between the organism and the environment,

is highly relevant to developmental/epigenetic robotics as

has already been noted [17]. Developmental robotics treats

affordances as a higher level concept, which a developing

cognitive agent learns by interacting with its environment.

In [1] we proposed a formalization for affordances such

that it can provide a view of affordances from the perspective

of the robot and lay a framework over which affordances can

be utilized at different levels of robot control. Our formaliza-

tion is based on relation instances of the form (effect, (entity,

behavior)), meaning that there exists a potential to generate

a certain effect when the behavior is applied on the entity by

the agent. The entity represents the state of the environment

(including the perceptual state of the agent) as perceived by

the agent. The behavior represents the physical embodiment

of the interaction of the agent with the environment, and the

effect is the result of such an interaction. For instance, the

lift-ability affordance implicitly assumes that, when the lift

behavior is applied on a stone entity, it produces the effect
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lifted, meaning that the stone’s position, as perceived by the

agent, is elevated.

A single (effect, (entity, behavior)) relation instance is

acquired through a single interaction with the environment.

But this single instance does not constitute an affordance

relation by itself, since it does not have any predictive abil-

ity over future interactions. Affordances should be generic

relations with predictive abilities. Such generic relations are

extracted from a collection of (effect, (entity, behavior))

triples of interaction experiences, by combining multiple of

these instances into predictive affordance relations [1], [18].

Based on the formalization of affordances presented in

[1], we investigated several problems in robotics. In [19],

we made a robot learn the “traversability” affordance in an

environment. In this study, the features in the environment

that specify if a specific behavior of the robot will succeed or

not was learned by the robot. Using these learned structures,

the robot was then able to traverse in an environment suc-

cessfully, perceiving the affordances of the objects. In [20],

we extended this learning system with an on-line learning

process, and a curiosity measure that provided the robot

the opportunity to select the most interesting interactions

in the environment. In [21], we presented the integrated

view of our experimental studies towards using affordances

as a framework for robot control, and also presented our

preliminary results in using learned affordance relations in

planning.

Lastly, in [18] we made the robot learn to use a set

of primitive behaviors goal-directedly. But in that study,

the robot made use of only the existing set of primitive

behaviors in its interaction with the environment. Whereas, a

behavioral development scheme should also propose a way

for the demonstration of novel/enriched behaviors. In this

current study, we extend this previous work, first, by formally

defining two different ways of using learned affordance

relations in developing behaviors. Second, we show how

new behaviors can be created from the pre-coded primitive

behaviors, borrowing ideas from the work on population

coding in neurophysiology [10].

We have seen that both in the studies of developmental

psychology and in the studies of motor control and learning

in neuroscience, the idea of starting from pre-coded primitive

behaviors, and through training and development, achieving

more complex behaviors is accepted as a possibility. If we

combine the approach of developmental psychologists Piaget

and E.J. Gibson (which says that a baby starts from innate

primitive reflexes and enriches them through experience until

they become voluntary action) with the approach of neuro-

science (which says that complex patterns of motor behavior

can be explained using combination of simple pre-coded

behaviors), then we believe that this presents a very good

research potential for robotic behavior development. In this

kind of research, one should investigate how robots equipped

with simple pre-coded(innate) behaviors can develop to

achieve more complex behaviors through the usage of these

simple behaviors. This actually constitutes the grounds where

this work aims to make its contribution.

IV. EXPERIMENTAL FRAMEWORK

A. The Kurt3D robot platform

Kurt3D is a medium-sized (45cm × 33cm × 47cm), dif-

ferential drive mobile robot, equipped with a 3D laser range

finder1. The 3D laser scanner is based on a SICK LMS 200

2D laser scanner, rotated vertically with an RC-servo motor.

The 3D laser scanner has a horizontal range of 180◦, with a

maximum resolution of 0.25◦, and is able to sweep a vertical

range of ±82.8◦ with a resolution of 0.23◦. The scanner is

capable of taking full resolution (720× 720) range image in

approximately 45 seconds.

Kurt3D is simulated in MACSim[22], a physics-based

simulator, built using ODE (Open Dynamics Engine)2, an

open-source physics engine. The sensor and actuator models

are calibrated against their real counterparts.

B. Primitive behaviors

We implemented and used three primitive behaviors on the

robot for our experiments. These are move-forward, turn-left,

and turn-right behaviors. The move-forward behavior drives

the robot straight ahead that places the robot approximately

40cm away from its initial position, if the move is not

obstructed by any obstacles. The turn-left, and turn-right

behaviors turns the robot in place for approximately 55◦.
The wheel speeds are set to either −0.25 m/s or +0.25 m/s

for each behavior.

C. Interaction environment

In the learning phase each trial is performed with a single

object in the environment. Objects with simple geometries

such as rectangular boxes, spheres and cylinders are placed in

random orientations and random locations within a proximity

of 70cm to the robot, in the frontal area spanning 180◦. After
learning is completed, developed behaviors are tested in an

environment cluttered with randomly distributed objects.

D. Perception and representation of entities and effects

The robot perceives its environment mainly through its 3D

scanner. It uses the range images from the scanner to extract

a set of features which consists the robot’s perception of the

environment. This feature-extraction process was first used

in [19]. Here, we use the same process to extract shape and

distance related features from the range image.

The feature set is obtained in three steps as shown in

Fig. 1. The robot makes a full resolution scan of 720× 720.
First, the image is down-scaled to a resolution of 360× 360
pixels. Then, it is split into grids of size 12×12 pixels. This

means that there are 900 such grids (since (360/12)2 = 900),
in total. Then, for each grid, distance and shape related

features are extracted. The distance related features are the

distance of the closest point, distance of the furthest point,

and the mean distance of all the points within a grid. The

shape related features are computed from the normal vectors

in the grid. A normal vector for each point in a grid is

1URL: http://www.ais.fraunhofer.de/ARC/kurt3D/
2URL: http://ode.org/
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Fig. 1. Phases of perception. Distance and shape features are extracted
from the scanner range image. Also three displacement values are extracted
from the encoders.

computed using the range values. Then the direction of each

normal vector is recorded in two base-dimensions, ϕ and

θ, in latitude and longitude. Two angular histograms are

computed for each of these dimensions. The histograms are

sliced into 18 intervals of 20◦ each, and the frequency values

in each of these slices of the histograms are used as the

shape related features. Since there are two channels of 18
values each, there are 36 shape related feature for each grid.

Adding the three distance related features of a grid, there

are 39 features to represent a single grid. We mentioned that

there are 900 such grids. So the total number of features to

describe the scene becomes 900 × 39 = 35100. In addition

to the scanner features, values from the wheel-encoders are

also recorded.

V. LEARNING AFFORDANCE RELATIONS

In this section, how affordance relations are learned from

a number of affordance relation instances obtained during

robot’s interactions with the environment will be described.

A more detailed explanation of the method was provided in

[18].

In our formalization, entities are defined as the perceived

state of the environment before robot’s behavior execution,

and effects are described as the change in the perceived state.

Suppose that B is the set of primitive behaviors and b ∈
B is a behavior in this set. Let g

i
s be the scanner features

of grid i in situation s, and ps / p
′

s,b corresponds to the

entities (feature vectors) obtained before / after execution of

the behavior, respectively. Then g
i
s and ps are defined as:

g
i
s = [di

min, di
mean, di

max, ϕi
1, ϕ

i
2, ...ϕ

i
18, θ

i
1, θ

i
2, ...θ

i
18]

ps = [g1
s, g

2
s, ...g

900
s ]T

where 1 ≤ i ≤ 900 is the grid index, and s denotes which

sample situation is dealt with. Effects are represented as

changes in robot’s perception of the world including changes

in proprioceptive sensors:

es,b = [(p′

s,b − ps)
T ,△x,△y,△a]T

where es,b is the effect obtained during execution of the

behavior. △x, △y, and △a corresponds to forward and

side displacements, and change in orientation of the robot,

respectively.

As described in Section III, in order to learn affordances

and develop generic affordance relations, a number of (effect,

(entity, behavior)) relation instances are acquired through

interactions with the environment. In data collection step, for

each behavior b, the robot makes 3000 interactions with the

environment, and stores the entities (ps) and effects (es,b)

in a training sample set. For simplicity, from now on, the

method will be described over one behavior and es,b will be

replaced by e
b
s. The training set (Strain) stores affordance

relation instances, which are represented as nested triples of

entities, effects and behaviors:

Strain = {(eb
s, (ps, b))}

where e
b
s is the effect observed when behavior b is executed

over entity ps in situation s.
Using effect instances in the training data ({eb

s}), effects
that are similar to each other are grouped together to get

a more general description of different kinds of effects that

behavior can create. This is achieved by clustering the effect

instances in an unsupervised way. K-means algorithm is used

for this purpose where k parameter is experimentally set to

10.

The prototype effect-id (effect-ids) to which any effect e
b
s

belongs to can then be found by:

effect-ids = argmin
1≤i≤10

(eb
s − c

b
i )

where 1 ≤ i ≤ 10 is the cluster index, and c
b
i is the mean

of ith cluster and corresponds to the effect prototype of that

cluster. An interpretation of the effect classes obtained for

primitive behavior move-forward has been provided in [18].

After identifying a number of different effect prototypes,

the robot learns the mapping from the entities to these

prototypes (or effect-ids), for the execution of a behavior.

This is achieved by training classifiers with the collected

affordance relation instances. A separate Support Vector

Machine (SVM) classifier is trained for each behavior, us-

ing the set {(ps, effect-ids)}(1≤s≤3000), where ps (which

includes only the relevant features3) is given as the input,

and the corresponding effect-id of each instance (s) as the

target category. These SVM classifiers are then used in the

execution phase, to predict what kind of effect a behavior

will generate, given a perceptual representation (ps′) of the

current environment:

effect-id
predicted
s′ = svmPredict(ps′ , b)

where s′ denotes the current situation.

The effect predicted when robot encounters with a situa-

tion s′ would be the prototype (mean) of the corresponding

cluster that was generated for behavior b:

e
b,predicted
s′ = c

b

effect-id
predicted

s′

(1)

3Original size of entity vector (p
s
) is 35100 and most of the features

in this vector are irrelevant for affordance of any behavior. Thus, a feature
selection method, ReliefF is applied in order to select the 2000 features in
the entity vector, that are most relevant to and have determining roles in the
effects created.
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Fig. 2. Representation of the entity and the effect. Distance and shape
features extracted from the scanner image, taken before the execution of a
primitive behavior, constitute the entity. The difference between the features
extracted after the execution of the behavior and features extracted before
the execution of the behavior constitute the representation of effect, together
with the displacement values extracted from the encoders (see Fig. 1).

VI. USING LEARNED AFFORDANCES FOR BEHAVIOR

DEVELOPMENT

In creating new more intelligent behavior from the prim-

itive behaviors, the primitive behaviors (that the robot has

learned about, and has done its training with) can be used in

two ways as the result of development. In the first case, the

primitive behaviors can be used as they are, therefore there

will be one single primitive behavior active at an instant. But

the cumulative effect of the execution of these behaviors will

form a goal-directed intelligent behavior on a wider time-

scale. In the second way of using the primitive behaviors

in behavior development, the primitive behaviors can be

blended, such that, at an instant it is not any of the primitive

behaviors that is executing, but a new behavior that has never

been seen or demonstrated by the robot before, yet is used

by it intelligently to create effects in the environment that are

more in accordance with its goals than any of the primitive

behaviors.

A. Developing behaviors through the sequential usage of

primitive behaviors

In this first approach, the robot will use its primitive

behaviors in a sequential manner to achieve goal-directed

behavior. The robot uses the learned affordance relations

to select the primitive behavior in achieving goal-directed

behaviors. Given the perceptual representation of the current

environment as an entity, the trained classifiers will predict

an effect-id which indicates the effect class that the behavior,

for which the classifier was trained, will produce in this

environment. Then the robot can select the behavior which

predicts the effect prototype that is most similar to the desired

effect determined by its current goal. Therefore the selected

behavior will produce the most useful effect in achieving

its goal. Formally the behavior selection mechanism can be

expressed as:

bselected = argmin
b∈B

(

e
b,predicted
s′ − edesired

)

where e
b,predicted
s′ is the predicted effect of applying behavior

b in situation s′ (Eqn. 1) and edesired is the desired effect.

In [18] we showed that using this strategy, our robot was

able to develop different higher-level behaviors using its

three primitive behaviors and the learned affordance rela-

tions. First our robot demonstrated the “traverse” behavior,

using which it was able to wander around perceiving the

“traversability” of the environment. Executing this behavior,

our robot is able to move over objects like spheres, or

cylinders in an appropriate orientation that can be rolled

away; but avoid non-rollable objects like boxes. As a sec-

ond example, the robot demonstrated a classical obstacle-

avoidance behavior. Here, it avoids contact with any object in

the environment while wandering around. The third behavior

was the “approach” behavior, where the robot approaches and

drives towards the objects.

The robot demonstrated these three different behaviors

(“traverse”, “approach”, “avoid”) using the same learned af-

fordance structures. Using the same structures, we were able

to make the robot demonstrate different behaviors, through

the specification of the desired effect for each behavior. For

example, for the “traverse” behavior, we set the “desired

effect” so that the “forward displacement” features in the

effect-prototypes has values greater than a certain threshold.

This means the robot should not select the effect-categories

corresponding to the cases where the robot got stuck to an

obstacle, but executes move forward when there is an empty

space or a rollable object in front. We achieved the avoid

behavior by specifying the desired effect as having a high

increase in the mean distance features of the grids in the

middle portion of the range image. This results in a behavior

where the robot avoids contact with any object by turning

away whenever something appears on its front. When the

desired effect is changed to a high decrease in the mean

distance, an approach behavior emerges. The robot moves

forward towards an object on its front, and turns towards an

object on its side, to obtain the desired decrease.

Note that, rather than aiming to make the robot learn a

specific behavior, our work proposes a generic development

scheme. This becomes obvious when one notices that, the

training our robot goes through is independent from the

behaviors that it is able to display at the end. That becomes

possible, because during training, our robot learns generic

relations about the interactions of its body and the envi-

ronment. These structures are task-independent, and holds

the actual information about the effects the robot can create

in its environment, using its primitive behaviors. Therefore

these structures can then be used to achieve several different

behaviors.

B. Behavior generalization through the blending of the prim-

itive behaviors

In the previous section the robot was able to use a set

of primitive behaviors such that when viewed on a wider

time-scale the robot’s behavior corresponded to goal-directed

intelligent behaviors. But while we claimed that in achieving

such kind of goal-directed behavior the robot made use

of a generalization over the effects it can create, and a

generalization over the features of the entities it interacts
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with, it can not be said that the robot made use of a

generalization over the behaviors. At any given moment

the robot executed a single primitive behavior, and these

primitive behaviors were the same behaviors that it also used

during the training interactions, and they were programmed

into the robot.

In this section we will try to achieve behavioral general-

ization (or more correctly, a generalization over the motor

control parameters of the behaviors), so that, after training,

the robot will not be constrained with the fixed set of

pre-programmed behaviors but will be able to demonstrate

novel behaviors. While the robot will still have a limited set

of behaviors during training, after training it will react to

situations with new behaviors, that are more effective than

the primitive behaviors in creating the desired effect in the

environment. To be able to do that, the robot needs to make a

generalization over the motor parameters that it uses for the

behaviors, and relate these to the effects it can create with

these parameters. Then, when it needs to create a specific

effect in the environment, the robot can choose the correct

set of parameters to create the effect.

The robot will use its primitive behaviors simultane-

ously to achieve goal-directed behavior. We achieved this

generalization using a weighted sum of the motor control

parameters of the primitive behaviors, where the weights

are determined according to the similarity of their effects

to the desired effect. Practically, this will again correspond

to feeding in the current entity representation to the trained

classifiers, of which there is one for each action. Then the

predictions of each classifier, which are effect-prototypes, are

compared with the goal representation to see how similar

each behavior’s effect prediction is to the desired effect.

The similarity values will then be used as weights for the

behavioral parameters, in blending the primitive behaviors

so that a new behavior emerges. The inspiration for this

approach comes from the work on population coding (See

Section II-B).

Method: Suppose that there are n primitive behaviors

B1, B2, ..., Bn, and each behavior Bi has a set of motor

parameter values vi1, vi2, ..., vim for each of the m motors

M1,M2, ...,Mm. Further suppose that D is the desired effect

prototype, and p1, p2, ..., pn are the predicted effect-category

prototypes in the current environment for each of the n
behaviors. Also, let’s say that there is a similarity function S
that takes two effect prototypes as arguments and returns a

value indicating the similarity between these two prototypes.

Then, in an arbitrary environment, we can find the new value

v′
j to be passed to motor Mj as:

v′
j =

n
∑

i=1

S(D, pi)
∑n

k=1 S(D, pk)
∗ vij (2)

That is, the resulting motor parameter value is the sum

of each behavior’s contribution for that parameter, and this

contribution is proportional to the similarity of the predicted

effect for that behavior to the desired effect. Note that,

other than the learned affordance relations, we also need to

Fig. 3. The object is placed 20◦ to the right of the robot, at a distance of
30cm. When using only the primitive behaviors to approach the object,
the robot chooses to execute MOVE FORWARD behavior. When using
the behavioral generalization method, the robot makes a smoother motion
towards the object which approaches the object more successfully. Actually
this movement is a blending of the MOVE FORWARD and TURN RIGHT
primitive behaviors, where the contribution of the MOVE FORWARD
behavior is more than TURN RIGHT behavior.

Fig. 4. The object is placed 45◦ to the right of the robot, at a distance
of 30cm. When it uses only the primitive behaviors, the robot chooses
the TURN RIGHT behavior to approach the object. When it uses the
behavior generalization method the robot again makes a smoother motion
towards the object which approaches the object more successfully. This
movement is also a blending of the MOVE FORWARD and TURN RIGHT
primitive behaviors, but different from the case in Fig. 3, this time the
contribution of the TURN RIGHT behavior is more than the contribution
of the MOVE FORWARD behavior.

define a similarity function that would indicate how similar

a predicted effect is to the desired effect.

VII. EXPERIMENTAL RESULTS

In this section we will present the results of applying the

two strategies of using the learned affordance relations for

the “approach” behavior. Fig. 3, and Fig. 4 shows the robot’s

reaction to different situations for the two strategies of using

only primitive behaviors, and using behavioral generaliza-

tion. It can be seen that the behavior generalization approach

enables the robot to discover new behaviors different than the

primitive behaviors, and these new behaviors improves the
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Fig. 5. Comparison of the two methods of behavioral generalization and
using only the primitive behaviors for the “approach” behavior. Each boxplot
in the figure shows the distribution of the errors (in radians) the robot
made at that angle for different distances of the object. At each angle, the
boxplot on the left and the boxplot on the right refers to the errors made by
behavioral generalization, and using only primitive behaviors, respectively.
The box is bounded by lower and upper quartile values, and the whiskers
show the extends of the data. The red line refers to the median, the outliers
are shown by gray plus (+) signs.

robot’s reaction in situations where the primitive behaviors

are not good enough.

These two methods were further analyzed in systematic

experiments, where the object to be approached was placed

in different positions. The object was placed at angles

{−60◦,−45◦,−30◦,−15◦, 0◦, 15◦, 30◦, 45◦, 60◦} in front of
the robot, and the distances of the objects changed between

20cm and 70cm. The robot executed the behavior (or the

blending of the behaviors) it selected for each object in front

of it. After the execution of the behavior, the relative angle

of the object with respect to the robot’s heading direction

was recorded as the error for that case. The results of the

experiments conducted at 50 different distances for each

angle can be seen in Fig. 5. Each boxplot in the figure

shows the distribution of the errors (in radians) the robot

made at that angle for different distances of the object. The

two boxplots at each angle corresponds to the two different

methods: behavior generalization (on the left) and using only

primitive behaviors (on the right).

When the object is placed 60 degrees to the left/right

(−60◦/60◦), or directly ahead (0◦) of the robot, and when

the robot approaches to the object using only its primitive

behaviors, the error is very close to zero. This is an expected

result, since these three angles are exactly the ones that

the three primitive behaviors turns/drives the robot to. The

fact that the errors are very close to zero at that angles

also proves that the robot is really able to choose the

correct behaviors for the approach behavior: turn left when

the object is on the left, turn right when the object is on

the right, and move forward when the object is ahead. The

behavioral generalization method gave relatively high error

(a) (b)

Fig. 6. Robot’s reaction to different situations using the two different strate-
gies of using only primitive behaviors, and using behavioral generalization.
The arrows show the robot’s position and heading direction after executing
the behavior. The circles denote the object’s position in each different case.
If a circle and an arrow are of the same color, this means that when the
object is in the location indicated by the circle, the robot’s heading direction
and position after executing the chosen behavior is indicated by the arrow
of the same color. In (a) the robot uses only the primitive behaviors in
approaching the object. Therefore, in the figure, there are only three arrows,
representing the robot’s position and heading direction after executing each
of these three behaviors. It can be seen that the robot is able to approach the
object and select the correct primitive behavior. But one can also notice that
these primitive behaviors are very crude in turning towards the object. In
(b) the robot uses the behavioral generalization strategy in turning towards
the objects. In this figure there are eight arrows, corresponding to eight
different reactions of the robot to different situations. Here again the robot
is successful in turning towards the object, but this time it makes more
detailed movements towards the objects showing an improvement over the
case of using only the primitive behaviors.

rates at these angles, because using this strategy the correct

behavior’s purity is tempered by some contribution from the

other behaviors. When using the behavioral generalization

method, the average errors made at the angles in between

the extremes (−45◦,−30◦,−15◦, 15◦, 30◦, 45◦) are smaller

than the cases where the only the primitive behaviors are

used. This shows that, using the behavioral generalization

method, the robot is able to turn to the angles in between,

that it can not approach using only the primitive behaviors.

This can be seen more clearly in Fig. 6. Here, it can

be seen that, when compared with using only the primitive

behaviors, the behavioral generalization approach spans the

same angular range in turning towards the object, but it

does so in a more finer manner, spanning whole of the

angular range. The trade-off is some lose of precision in

the directions of the original primitive behaviors.

The behavior development scheme and the trained clas-

sifiers were also transferred to the real robot and tested.

We placed real world objects in front of the robot and

tested to see if it was able to approach to the objects. We

also compared the results for the behavioral generalization

method, with using only primitive behaviors. In Fig. 7 a

box shaped object is placed slightly to the left of the

robot, and the final situations after the execution of the

behaviors are shown. It can be seen that the behavioral

generalization approach is more successful than the case of

using only primitive behaviors in which the robot executes

the MOVE FORWARD behavior.

VIII. CONCLUSION

In this paper we proposed a behavior development scheme

for a mobile robot. J.J. Gibson’s concept of “affordances”
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Fig. 7. Real robot’s reaction to a situation where the object is placed
slightly to the left of the robot.

[16] provided the basis of our proposed development scheme.

We used a formalization of affordances [1] to make the

robot learn about the dynamics of its interactions with

its environment. In this formalization, every interaction of

the robot with the environment are represented as (effect,

(entity, behavior)) triples. Collecting such affordance relation

instances from the environment, our robot was then able

to extract generic affordance relations pertaining to the

relation between itself and the environment. Using these

learned affordance relations our robot displayed higher-level

behaviors.

In exploration phase, using three pre-coded primitive be-

haviors (move forward, turn left, and turn right), our robot

interacted with simple objects like boxes, cylinders, and

spheres. Then, using the data it collected during its interac-

tions with the environment, our robot formed affordance re-

lations. In our implementation this practically corresponded

to training SVMs that can predict the effects that will be

created in the environment if a certain behavior is executed,

in the current environment. Then, these trained SVMs were

used by the robot to display more intelligent behaviors in the

environment.

We tried two different methods in achieving more complex

behaviors using the three simple pre-coded behaviors. As

the first method we used the sequential execution of the

primitive behaviors. In this case, the robot uses its pre-coded

primitive behaviors only, but the sequencing of these primi-

tive behaviors were such that new more complex behaviors

emerged. As the second method we used the simultaneous

execution of primitive behaviors. Here, the robot uses its pre-

coded primitive behaviors to create new behaviors that are

more effective in reaching its goal than any of the primitive

behaviors. This is achieved by driving the motors of the

robot using a value which is equal to the weighted sum of

the motor parameters of each primitive behavior. The weight

(contribution) of each primitive behavior is proportional to

the similarity of the predicted effect for that behavior to the

desired effect the robot wants to create.
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Sim: Physics-based simulation of the KURT3D robot platform for
studying affordances,” 2006. MACS Project Deliverable 1.2.1.

8


