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Abstract—In robotics, objects and body parts can be rep-
resented in various coordinate frames to ease computation.
In biological systems, body or body part centered coordinate
frames have been proposed as possible reference frames that
the brain uses for interacting with the environment. Coordinate
transformations are standard tools in robotics and can facilitate
perspective invariant action recognition and action prediction
based on observed actions of other agents. Although it is known
that human adults can do explicit coordinate transformations,
it is not clear whether this capability is used for recognizing
and understanding the actions of others. Mirror neurons, found
in the ventral premotor cortex of macaque monkeys, seem to
undertake action understanding in a perspective invariant way,
which may rely on lower level perceptual mechanisms. To this
end, in this paper we propose a novel reference frame that is
ecologically plausible and can sustain basic action understanding
and mirror function. We demonstrate the potential of this
representation by simulation of an upper body humanoid robot
with an action repertoire consisting of push, poke, move-away
and bring-to-mouth actions. The simulation experiments indicate
that the representation is suitable for action recognition and
effect prediction in a perspective invariant way, and thus can be
deployed as an artificial mirror system for robotic applications.

Index Terms—Mirror Neurons, Perspective Invariant Action
Recognition, Robotics, Reference Frame

I. INTRODUCTION

How infants learn to develop the skill to detect equivalence
(parity) between their own action and the observed ones is still
an open scientific question [1], which is interesting not only
for biological sciences but also for robotics. One idea proposed
for the development of this skill is that infants first learn how
to perform ‘coordinate transformation’, which is the skill of
rotation and translating of a 3D object so as to predict how it
would look from the infant’s own perspective. In robotics this
is a common operation; one can obtain the self-perspective
3D pose of an object given in any arbitrary coordinate frame
by using a straightforward transformation. Although adult
humans seem to have this ability as an explicit skill (usually
called metal rotation) [2], it is unknown how this develops
and whether it is directly related to action understanding. To
be concrete, it is unknown whether it is the precursor of
perspective invariant action understanding although often it is
accepted as such.

Animals necessarily are aware of the effects of gravity and
thus it is reasonable to postulate that one of the axes they

would use to assess action and effect is formed by the direction
of gravity. In fact, it is shown that monkey brain uses gravity
direction dependent representations of object orientations [3].
For primates who are equipped with dexterous hand use ability,
it is critical to monitor moving hands for error correction in
the case of self execution and for predicting others’ action goal
for appropriate social behavior. This intuition is supported by
neurophysiological findings showing that a special brain area
in the superior temporal cortex is evolved for hand movement
detection regardless of the actor [4]. Therefore it makes sense
that the prediction of the effect of an action be defined with
respect to the movement of the hand.

Combining these two pieces of information, in this paper we
propose a novel reference frame that is ecologically plausible,
and present our results on its suitability to sustain action
understanding and mirror neuron function. We call this the
Action Reference Frame or Action Frame (AF) in short.
We further propose that predictive learning can use AF to
represent the data generated by self-action and self-observation
so that generalization to others is possible, without rejecting
the possibility of parallel predictive systems that employ other
reference frames. To complete the reference frame definition,
it is also necessary to state the origin of the AF. Two main
possibilities exist: either AF is placed on the moving hand
or on the object that is the target of the action. Although, in
the multiple object scenarios, the latter might bring ambiguity
during the initial portions of an action, in the current report
we took this approach due the more straightforward analysis
it allows.

In addition to the biological relevance of this idea, we are
interested in implementing an action recognition capability for
a self-learning robotic system. To this end, all of the work is
implemented on an upper body humanoid robot, TOROBO1

simulation and the processing steps are kept at a feasible level
for physical robot deployment. Also to show that the results
obtained are not due to the high fidelity information available
from the simulator, a depth camera based color coded object
and hand detection system is integrated into the prediction
network. Overall, the results indicate that the proposed AF
based prediction system can undertake action recognition and

1Tokyo Robotics, https://robotics.tokyo/products/torobo/
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effect prediction in a perspective invariant manner. Thus, it
may serve as a mirror neuron system architecture that is
amenable to robotic implementation.

The paper is organized as follows. The next section briefly
describes the related work in the literature. Then, the con-
struction of AF, the simulation environment, robot actions and
learning details are given. Finally, the results of simulation
experiments and conclusions with a brief discussion on limi-
tations and future directions are given.

II. RELATED WORK

Action recognition is a widely studied area which attracts
interest from a wide range of fields including computer vision
and robotics [5], [6], as it facilitates human behaviour analysis
[7] and human-robot interaction [8].

In computer vision, action recognition, in particular, pose
estimation is a well studied topic with approaches including
monocular [9] or stereo-vision, and depth camera based point
cloud approaches [10]. These approaches can either be based
on manually designed feature matching with pose search or on
gradient based learning. For example, Keskin et al. [11] esti-
mated hand positions with high accuracy using pose estimators
that exploit multi-layered randomized decision forests.

Keeping this in mind, multiple studies of the first person
(egocentric) perspective human action recognition studies have
been conducted. In [12] authors used Convolutional Neural
Network (CNN) [13] architecture to predict executed actions
which are learned from hand motion cues. Ma et al. [14] also
utilized a CNN architecture to learn scene and hand motion
information. Garcia-Hernando et al. [15] used RGB-D images
to train multiple state of the art recurrent neural networks with
a large corpus of video and mo-cap data to recognize different
hand actions such as tearing, flipping and pouring.

In some robotic applications it may be possible to apply
state estimation techniques to map observed behavior into a
sequence of state descriptions compatible with the observer.
This allows behavior understanding through estimating the
value function of the demonstrator with the aid of adopting a
reinforcement learning framework as exemplified by Takahashi
et al. [16]. In general, in such scenarios, a range of methods
from dynamic time warping (e.g. [17]) to inverse reinforce-
ment learning can be applied (see [18]). In our work, we
consider raw perceptual input and do not assume the existence
of any state estimation capability.

Research in neuroscience has shown that primate brains
are endowed with multi-modal neurons (mirror neurons) that
become active during the execution of hand actions as well
during the observation of a similar actions when executed
by a conspecific or experimenter [19]–[21]. It is generally
accepted that mirror neurons encode goal directed actions and
play a significant role in understanding of observed action
of others’ [22]. However the underlying mechanisms and
representations are still far from clear [23], [24]. Several mirror
neuron models exist in the literature which may be considered
as biologically realistic action recognition models (e.g. [25]–
[28]). For example Oztop and Arbib [25] achieves perspective

invariance by defining a ’hand state’ that describes the relation
of hand with respect to an object, which may be considered
as a special case (as it focuses only grasping and not other
actions) of the proposal pursued in this paper.

Besides the existence of mirror neuron mechanism for
perspective invariant action understanding, additional line of
research lends strong support to the proposed Action Frame
concept. Experimental evidence shows that the brain uses
multiple spatial representation and reference frames for action
production [29] and location recognition [30]. These reference
frames are used to encode spatial information with respect
to a collection of reference frames, including the egocentric
ones such as head, eyes, hand and body, as well as the
allocentric ones such as the position of an object in attention.
Finally, a more specific support to the proposed Action Frame
is provided by the recent findings showing that the gravity
direction is well incorporated in the parietal representation
of object orientations [3] suggesting that reference frames
incorporating the gravity direction exists in the brain.

III. METHOD

With the goal of realizing an action recognition system
based on the proposed action frame and assessing its feasibility
for perspective invariant recognition, we designed a robotic
simulation setup. The following subsections describe this setup
and the experiments conducted throughout this study.

A. Simulation Environment and Task Setup

We used the Gazebo simulator [31] for the dynamic sim-
ulation of the TOROBO robot and Robot Operating System
(ROS) [32] robot control architecture for communicating with
the robot. TOROBO is an upper body humanoid robot which
has bi-manual manipulation capability with 22 degrees of
freedom. In this study, we used only single hand manipulation
and considered a single object, i.e. a cylinder with radius of
3cm and height of 13cm that the robot can interact with. For
modeling the case of action observation from different per-
spectives, we assumed that there are virtual observers around
the table that might be observing the actor. The perception
of those observers were either emulated by direct access
to the simulator data (using an appropriate homogeneous
transformation matrix to calculate observer view points), or
obtained by simulated depth cameras around the table. The
latter aimed at assessing the applicability of AF based action
recognition in physical robotic setups.

B. Action Repertoire of the Robot

To test the development of AF-based action recognition
capability based on self-observation, we focused on four
predefined parameterized actions. Out of the four, the two
were simple actions of push and poke, and the other two were
relatively more complex actions of move-away and bring-to-
mouth. The trajectory and outcome of each action type were
determined by two parameters: the angle of the robot gripper
with respect to the object (action angle) and the location of
the object prior to interaction. The execution trajectories of
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these actions were assumed to start from a fixed initial robot
configuration. Given the action type and its parameters, the

Fig. 1. Table top simulation environment used is shown. Top-left: Push, Top-
right: Poke, Bottom-left: Bring-to-Mouth, Bottom-right: Move Away.

joint trajectory to be followed by the robot is constructed
and then communicated to the robot through ROS. First, four
Cartesian space via-points are determined in an action specific
way, which are then converted into joint angles by using the
inverse kinematics of the left arm of the robot. Then the
obtained set of joint angles are fitted with cubic splines to
obtain smooth continuous curves for each joint of the robot.
Finally, these curves are sampled at 20 equal intervals and
fed to ROS to drive the robot arm and gripper. For all the
actions considered, the robot is assumed to start its action
at the same initial joint configuration determining the first
via-point (P0); the second via point (P1) is determined by
the angle parameter, which specifies a point on an imaginary
circle (r=6cm) centered on the object. The next via-point (P2)
is taken to be the center of the object, and the final via-point
(P3) is determined according to the action type as described
below.

1) Push and Poke: For these simpler actions, the object is
assumed to be at a fixed location in front of the robot (see
Fig 1). The via-points for push and poke are formed by the
initial gripper position (P0), and two symmetrical points (P1,
P3) on the imagery circle centered at the mid-point of the
object, which serves also as the middle via-point (P2). The
only difference between the push and poke is that the vertical
(z) coordinates of the P1, P2 and P3 are set differently. The
z-coordinate is taken as 6.5cm for the push and 11.5cm for the
poke actions. Since the object has a height of 13cm, the push
action stably translates the object while the higher contact with
the poke action often knocks over the object. While executing
these actions the gripper is kept fully closed and the side
of the gripper is used to form the contact with the object.
This facilitates a more robust contact and generates repeatable

effects compared to using the tip of the gripper for establishing
contact.

2) Move-away and Bring-to-mouth: For these complex
actions, the goals of the actions are taken as specific locations
that the object must be brought. In the case of bring-to-mouth
action, the target of action is a fixed point in the proximity of
the facial area of the robot, which determines the last via-point
(P3). Likewise, in the case of move-away action the P3 is a
fixed point which is away from the robot, near the boundary
of the workspace of the robot (see Fig 2). As in the push
and poke actions, the first via point (P1) is determined by the
angle parameter of the move-away and bring-to-mouth actions.
Similarly, the second via-point P2 is taken as the mid-point of
the object. To enable grasping and transportation of the object
to the desired target location, the gripper is commanded to
enclose when the robot hand reaches P2.

C. Data Generation and Collection

As discussed in the previous section each action takes two
parameters: action angle and position of the target object. For
the Push and Poke actions, action angle is sampled uniformly
at random within a range of [-75, -105], and object position
is taken as a fixed position in front of the robot ([0.47, 0,
1.08]). The angle parameters for the Move-away and Bring-
to-mouth actions are sampled within the range of [-35, -110],
and the object position parameter is sampled uniformly from
the interior of a circle (r = 7cm) that is parallel to the table
and centered at [0.47, 0, 1.08] in world coordinates.

The simulated robot executed each action in 1000 different
settings. While executing the actions, the robot is commanded
through ROS and the desired joint angles are send to the robot
at 20Hz for one second (i.e. actions are assumed to take one
second to complete). Data collection is carried out using the
same interval, and the final object position is recorded after the
action ends. The arm and torso joint angles are also recorded
to be able to recreate the results of the experiments later.

In order to overcome computational limitations in synchro-
nized data collection, observer experience (i.e. positions with
respect to the Egocentric Frame of each observer) are calcu-
lated after the action is completed by using the data of the actor
via appropriate homogeneous coordinate transformations.

D. Object and Hand Localization via Emulated Depth Camera

Since we plan to deploy the developed perspective invariant
action recognition system in the real world, and explore its
possible use cases in robotics as a functional mirror neuron
architecture, we designed a simple color-based perception
system so that the robot can ‘see’ and track the target object
and the hand in action. This way, it would be easier to
transfer the learning and prediction to the real world. During
action execution in the simulator, we also performed data
collection of hand and object positions by using the emulated
Kinect depth cameras. In order to gather this data, the depth
camera outputs are processed with the help of OpenCV library
[33]. For computational convenience, the processing for object
detection is based on 3D color segmentation. Consequently,
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Fig. 2. Sample object and gripper trajectories for each action. Top-left: Push,
Top-right: Poke, Bottom-left: Bring-to-Mouth, Bottom-right: Move Away.

the object and the gripper are given distinct colors, red and
green, respectively. Given an image frame for color filtering is
applied using the ‘inRange’ method of OpenCV which gives
a set of points for each color. The centers of the extracted
point clouds are then found by using the ‘findContours’ and
‘moments’ methods. In order to accelerate the computations,
both image and point cloud data are down-sampled by 8. One
limitation of using object detection in this fashion is that view-
dependent occlusions may create offsets in the point-cloud
centers corresponding to the gripper and the target object.

E. Action Coordinate Frame (AF) Construction

The AF is constructed based on the Gravity vector (g)
and the velocity vector (v) pertaining to a hand in action.
The velocity vector is in general a function of time over
the action period. In this study, we take the velocity vector
of the hand at the moment when it enters the vicinity, i.e.
20cm proximity of the target object. The velocity vector is
estimated by numerical differentiation, and its projection to
the horizontal plane (vproj) is used for setting up the Action
Reference Frame (AF). Fig 3 shows the AF overlaid on the
initial position of the object. In detail, AF is calculated as
follows: xaxis = vproj/||vproj ||, zaxis = −g = [0, 0, 1],
yaxis = xaxis × zaxis.

F. Predictive Learning Network

To model a predictive system that can be trained by self-
observation, we formalized the problem as learning to predict
the action-code, action-parameters and the effects given an
object and hand in action. In particular, the input for the pre-
dictive system is taken as 3D hand positions of 5 consecutive
frames represented in either EF or AF. The output, on the other
hand, corresponds to the effect that would be generated, the

Fig. 3. Illustration of the Action Frame (AF). Gravity and hand velocity
vectors are used to construct the AF (red:x-axis; green:y-axis; blue:z-axis).

action type and action parameters corresponding to the action
being observed. Thus, the size of input to the neural network
is 15 (5 positions) and the size of the output size is 11 (the
effect encoded as a 3D offset vector (3), the one-hot action
code (4), and the action parameters encoded with the action
angle (1) and the initial position of the object (3)). The system
starts storing hand positions after the hand approaches to the
vicinity of the target object (enters within 20cm range of the
object), and after 5 observations are done, the system produces
its prediction.

With this input-output specification the prediction system is
implemented with a three layer fully connected Artificial Neu-
ral Network (ANN) with 16 neurons in each layer. We used
rectified linear units (Relu) [34] for the network activations.
The size of the network is empirically tuned to be small yet
capable of learning the prediction problem targeted.

The training and testing data is scaled between 0 and 1
using a min-max scaler. For every experiment the network
is trained 4000 epochs with learning rate 1e-3, batch size
of 64 and the same random seed is used in training to
exclude randomness. Finally, ADAM-optimizer [35] is used.
No regularization technique is used since the networks are
already pretty shallow.

G. Experiments conducted

By using self-observation data, we trained two separate
networks: one that represents the data in the Action Frame
(AF), and one that uses the Egocentric Frame (EF) repre-
sentation. After we ensured that the predictions with self-
collected data and both representations are successful (Results-
A), we switched our attention to contrast the capabilities
of AF- and EF-based predictions when they are used to
make predictions of others’ actions (Results-B). Note that, in
general, an egocentric reference frame has an origin aligned
with the observing agent. However, training a system with
self-observation and then attempting to do prediction based
on the observation of others would create large offsets in hand
positions due to the simple fact that one’s own hand is often
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much closer than others’ hands. Therefore, to improve the
prediction capability of EF-based prediction, we translated the
origin of EF to the object center, as we did for the case of AF.

Every action is sampled 1000 times as described in the Data
Generation and Collection section. We used a %20 train test
split on the data. The training set includes 800 randomly se-
lected samples from 1000 samples generated during simulation
for every action, therefore the size of the training set is 3200.
Test set has 2400 samples gathered from each observer and
the actor (12 observers in total). The network prediction error
is calculated using mean squared error (MSE) loss function.

Finally, to test the performance of both EF- and AF-
based predictions of others’ actions, we repeated the latter
experiment by using the emulated depth camera image.

IV. RESULTS

In this section we present the predictive learning results
based on self-observation learning by using representations in
Egocentric and Action Frames. Then we present the results
showing the generalization ability induced by these reference
frames for observation actions of others. Finally, towards
a real world implementation we present the learning and
generalization results based on depth camera based object and
hand perception.

A. AF and EF based learning of self-generated data

Figure 4 shows the RMSE error for predicted action angle
and Euclidean distances of effect throughout the training
process for both AF and EF networks. It is evident that both
networks show a convergent learning regime with the loss
approximately stabilizing towards the final epochs. So we can
deduce that the networks designed are suitable for learning the
data derived from our setup.

Fig. 4. Test RMSE loss for action angle and effect distance for both networks.
AF is Action Frame and EF is Egocentric Frame losses.

B. Observing Others via AF- vs EF-based Prediction System

After training is completed on self observations, both AF
and EF networks are tested on previously unseen data per-
ceived by the observers. Each observer perceives the world
through its eyes (or cameras), thus the eye-centered/egocentric
representation is dependent on the pose of the observer. Note
that in the stage we are considering, each observer can only
learn from its own actions. Therefore, a change in the pose
of the observer considerably affects the prediction capabilities
of the observer’s prediction if it is based on an Egocentric
representation. For understanding the actions of others, addi-
tional mechanisms or different representations seem necessary.

We took the latter alternative and proposed the Action Frame.
When the actions are seen through the Action Frame, what
the observer and the actor ’see’ is very similar, and indeed
in a noise-free simulation environment it is identical. In the
real world, there would be perceptual noise, occlusions and
distortions that would create imperfections. The results in this
section, shows these arguments quantitatively.

The leftmost plot in Figure 5 shows the action prediction
accuracy of the network trained with data using the EF repre-
sentation. As can be seen in the graph, the more the observer
wanders away from the viewpoint of the actor (i.e.position
around the table), the worse the prediction accuracy gets. This
is outcome expected since the observer has no experience
related to the other viewpoints. Still, the generalization capa-
bility of the neural network generates somewhat correct pre-
dictions related to the observed action for neighbor observers
(i.e. viewpoints); but, for most of the actions, the accuracy goes
to zero when the observer is for example, directly opposite
from the actor. In the same Figure, rightmost graphs show
the action angle prediction error for each action as root-
mean-square error (RMSE) with standard-deviation. Similar
to the action recognition performance, the further the observer
wanders away from the actor’s perspective, the more the loss
increases. Note that, for error calculation, only the action
samples that were correctly predicted were used. The low
angle errors and standard-deviation at viewpoints where action
recognition error is high indicates that for those observers only
a few actions can be recognized but when they are recognized
their action parameters could be reliably retrieved.

When the network is trained with AF representations, we
get perfect prediction accuracy since the network is trained
with noise-free data and thus the observer experience is the
same as the actor in AF representation. Similarly, the action
angle error is close to zero. The similar contrast between AF
and EF effect prediction can be seen in Figure 6.

Fig. 5. Action understanding performance with EF based representations by
using noise-free data. Left: recognition accuracy as a function of viewpoint
difference. Right: Action parameter (angle) prediction accuracy for those
actions recognized correctly. The shades indicate standard deviation.

C. Observing Others via AF- vs EF-based Prediction System
using Depth Camera Input

We conducted the same experiments of the previous section
by using object and hand position data obtained via the
Kinect based perception system. Figures 7 and 8 show action
recognition performance for EF and AF based learning respec-
tively. As expected, the networks trained with the emulated
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Fig. 6. Effect prediction performances with EF and AF based representations.
Left: accuracy based on EF, Right: accuracy based on AF as a function of
observer viewpoint difference. The shades indicate standard deviation.

Kinect data show a poorer performance compared to the
results obtained by using noise-free data from the simulator.
Even though depth-sensing is itself a simulation, there are
certain perceptual biases and occlusions depending on the
viewpoint. The results from our experiments suggests that
with non-perfect perception still a high level of perspective
invariant action recognition capability can be obtained if we
use AF-based representations. This observation is also valid
for effect prediction as shown in Fig 9). It is worth noting
that the asymmetric performance drop seen in Figure 7, when
compared with the symmetric performance drop of Figure 5,
indicates that the imperfections in the implemented hand and
object perception system manifests itself differently for each
action.

Fig. 7. Action understanding performance with AF based representations for
emulated Kinect data. Left: recognition accuracy as a function of observer
viewpoint difference. Right: action parameter (angle) prediction accuracy for
those actions recognized correctly. The shades indicate standard deviation.

Fig. 8. Action understanding performance with EF based representations for
emulated Kinect data. Left: recognition accuracy as a function of observer
viewpoint difference. Right: action parameter (angle) prediction accuracy for
those actions recognized correctly. The shades indicate standard deviation.

V. CONCLUSION AND DISCUSSION

Mirror neurons found in the ventral premotor cortex of
primate brain encode goal directed actions in a multi-modal

Fig. 9. Effect prediction performances with EF and AF based representations
for emulated Kinect data. Left: accuracy with EF, Right: accuracy with AF
as a function of viewpoint difference. The shades indicate standard deviation.

way, discharging both during the observation and execution of
similar actions [21]. Most of these neurons show perspective
invariant responses, thereby forming a basis for perspective
invariant action understanding [36]. Although it is accepted
that the brain employs several reference frames for interacting
with the environment [3], [37], it is not clear whether the
mirror neuron system is linked to a representation that use a
particular reference frame. In this study, we proposed ’Action
Frame’ (AF) which is an ecologically and biologically plau-
sible reference frame that represents action predictions and
effects with respect to the gravity and the approach direction
of a manipulator, i.e. hand. AF facilitates development and
learning of perspective invariant action recognition based on
self-observation. Since primates are endowed with special neu-
ral circuits for visually processing hands [38] and representing
gravity [3], AF may form the basis for mirror neuron system
development.

To show the efficacy of AF in action understanding, we
conducted experiments in a simulation environment with a
humanoid robot equipped with the actions of push, poke,
bring-to-mouth and move-away. To be concrete, we trained
a prediction network based on the robot self-observation of
executed actions by using either AF or EF based represen-
tations. Then, the network was asked to make predictions
for observations from different perspectives. As expected, the
prediction system based on EF gave declining performance
as the viewing angle deviates from the self-action view. In
contrast, with AF, observed actions, their parameters and the
effect that would be generated could be accurately predicted.
To verify that the results obtained were not simply due to the
noise-free simulator data, similar experiments were conducted
by using emulated depth-cameras to serve as the ’eyes’ of
the actor and the observers. Thus, the training and testing
results were subject to the imperfections of the proof-of-
concept visual processing employed. Although the results were
affected by the imperfections, capability of the perspective
invariant action recognition system stayed at an acceptable
level. This suggests that (1) The mirror neuron system may
be the result of the development of a predictive system based
on such a reference frame, and (2) development of a predictive
capability based on self-observation can be readily realized as
part of a real robotic system.

One limitation for the current system is that the tested en-

CONFIDENTIAL. Limited circulation. For review only.

Manuscript 63 submitted to 2021 11th IEEE International Conference on Development
and Learning (11th ICDL-EpiRob). Received March 17, 2021.



vironment uses few actions and a single object. To strengthen
the results, the experiments should be expanded to include dif-
ferent objects with different poses, and more complex actions
must be introduced. Although the current actions can generate
infinitely many movements since the actions are parametric,
the learning task for the prediction network is not demanding
as the actions used can be differentiated with a low number of
features. A more complex realistic environment would require
more robust visual processing and more powerful prediction
networks. With these in place, for physical robots, it would
be possible to naturally interleave action learning with action
understanding, i.e. mirror neuron development for emergent
human-robot interaction.
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