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Abstract

Event is a fuzzy term that refers to bounded spatio-temporal
units. Events guide behavior to allow adaptation to complex
environments. The study of event segmentation investigates
mechanisms behind the ability to segment the continuous in-
formation flow into discrete units. Event Segmentation The-
ory states that people predict observed ongoing activities and
monitor their prediction errors for event segmentation. In this
study, inspired from the principles of Event Segmentation The-
ory and predictive processing, we introduced a computational
model of event segmentation and learning. In order to verify
that our method can segment ongoing activity into meaningful
parts and learn them via passive observation, we compared the
performance of our method with humans for fine and coarse
segmentation tasks in two psychological experiments. The re-
sults demonstrated that our model not only learned segmented
behavioral units accurately but also displayed similar segmen-
tation decisions with human subjects.

Keywords: event segmentation, event learning, point-light
displays, action segmentation, predictive processing

Introduction

Humans are subject to continuous flow of information, and
have to utilize it for robust, adaptive, and intelligent behav-
ior. In order to utilize this information, they discretize it into
meaningful units. Whereas in the spatial realm, this segmen-
tation transforms scenes into meaningful objects; in the tem-
poral realm, the transformation takes place from a sequence
of scenes into event units (Zacks, 2020).

Similarity across event segmentation decisions of humans
was firstly noted by (Newtson, 1973), who asked partici-
pants to segment a movie by pressing a button to detect event
boundaries in a procedure called unitization. The results of
the study showed that event boundaries had substantial agree-
ment and are stable across time. Furthermore, participants
were able to segment activities into small (fine-grained) or
large (coarse-grained) events with corresponding task instruc-
tions. Event Segmentation Theory (EST) aims to explain
mechanisms behind event segmentation (Zacks, 2020). Ac-
cording to the EST, event boundaries are determined by the
transiently increasing prediction error, which in turn triggers
another event model for the prediction of the next sensory
input. From the perspective of predictive processing frame-
work, which asserts that the brain generates models of the
environment to predict current sensory input by learning pre-
diction error signals (Wiese & Metzinger, 2017), event mod-
els are similar to mental models aiming to predict the current
sensory input and reducing the prediction error signals.

There are several computational models of event segmen-
tation developed in cognitive science (Reynolds, Zacks, &
Braver, 2007; Gumbsch, Kneissler, & Butz, 2016; Gumbsch,
Otte, & Butz, 2017; Franklin, Norman, Ranganath, Zacks, &
Gershman, 2019). For example, Reynolds et al. (2007) pro-
posed different sequence models for segmenting human be-
haviors. However, their proposed models are not able to learn
and segment human behaviors in varying hierarchies. Be-
sides, transitions between human behaviors used in modeling
purposes are unnatural. Additionally, Gumbsch et al. (2016,
2017) developed models aiming to chunk sensory-motor in-
teraction flow for robotic behavior learning and planning.
Representing events by a set of linear models, their models
cannot learn and segment non-linear relationships by only
one event model. Additionally, assuming the role of sensory-
motor interaction for learning and segmenting events, their
models do not aim to segment a sequence of activity by pas-
sive observation, which, however, is the usual way of inves-
tigating human event segmentation (Newtson, 1973; Zacks,
2020). To best of our knowledge, there is no event segmenta-
tion model whose segmentation decisions were directly com-
pared with those of human in psychological experiments.

Inspired by the models developed by Gumbsch et al. (2016,
2017), we propose a computational method of event segmen-
tation and learning. As our contribution to the literature, our
method is able to produce segments in varying hierarchies via
passive observation and learn those segments with the help of
multilayer perceptrons, called event models. For segmenting
the continuous information flow, our method utilizes predic-
tion error signals and aims to reduce them. By doing so, it
conforms to the principles of the EST and predictive process-
ing framework.

In order to test whether segmentation decisions of the pro-
posed method are meaningful, we conducted psychological
experiments that are based on unitization paradigm (Newtson,
1973). Psychological experiments involved human behaviors
involving complex motion trajectories expressed by point-
light displays (PLDs) (Johansson, 1973), which represent a
non-pictorial depiction of biological movements. Consider-
ing that change and detecting event boundaries are correlated
with each other (Hard, Recchia, & Tversky, 2011), we pro-
duced two types of videos, namely normal and noisy (i.e, a
smoothed version of normal human behaviors). In psycho-
logical experiments, we asked participants to segment these
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Figure 1: (A) The overview of the proposed method. In the
online prediction phase, the current event model makes pre-
diction and the current prediction error is calculated and sur-
prise threshold is computed. If the current prediction error is
more than surprise threshold, the system enters to the search
period where the best model is returned for online prediction.
(B) shows a point-light display representing a human figure.

videos in different hierarchies (i.e., fine and coarse-grained
segmentation) and examined whether the noisy video was
segmented into the less number of event boundaries than
the normal video. We run computational experiments on
the same conditions and assessed how well our method per-
formed in event segmentation and learning by the ground-
truth data from participants. We were also interested in ob-
serving whether our method showed similar biases with hu-
man participants against the reduction of the rate of change.

Results of computational experiments showed that, despite
occasional mismatches, our method performed well in seg-
menting human behaviors in varying granularities and learn-
ing them. Moreover, ground-truth received from psychologi-
cal experiments demonstrated that the segmentation decisions
of our method are largely consistent with those of humans.

Architecture

Before explaining our proposal, we will explain the compu-
tational model by which we are inspired. Gumbsch et al.
(2016, 2017) developed a computational model that can au-
tonomously divide a sequence of information and represent
events by event models. Event models are a set of linear mod-
els. Each of them is responsible from continuously predicting
the next sensory input given the current sensory input and cor-
responding motor command. In their models (Gumbsch et al.,
2016, 2017), each forward model generates a prediction for
a type of sensory input and calculates a threshold value (so-
called surprise threshold) by observed prediction errors. If the
prediction error of the current forward model is higher than
its surprise threshold (i.e., the current forward model is inef-
fective for prediction), the system enters into a search period
where there is a selection process which takes place between
different forward models. Changing the degree of surprise
threshold by a value named confidence threshold, they seg-
ment events in varying granularities (Gumbsch et al., 2017).

Proposed method

The general overview of our proposal is given in Figure 1A.
Rather than exploiting multiple forward models responsible
for one type of sensory information (Gumbsch et al., 2016,
2017), considering the complexity of events (i.e, in this con-
text, human behaviors), we decided to use multilayer percep-
trons capable of approximating to nonlinear functions. In de-
tail, our proposed architecture has one active model at time
t, which is named as event model. M; is responsible from
predicting the change observed in the sensory input. The pre-
dicted sensory observation is given by

Siv1 =58 +AS,

Given the observations, M, continuously makes predic-
tions, learns from prediction error by changing neural net-
work weights and stores prediction errors.

Search period: event model training and switching Sim-
ilar to Gumbsch et al. (2016, 2017), surprise threshold ® is
calculated by the rolling mean of stored prediction errors €y
and of the variance 6(y7). The event threshold © regulates the
coarseness of the event to be segmented. Phi(yy) is calculated
by

QD(M> =em+ O * O(m)

If the prediction error of an event model is greater than
D(yy), the algorithm enters into the search period, which
means that the current event model might not be suitable for
predicting the next sensory observation. At the start of the
search period, a potential new event model is generated, and
all available event models are trained for rehearsal duration
corresponding to the number of epochs used in the search pe-
riod. The training set is sampled from the list formed by S;.1+,,
and M;, representing timesteps that have been predicted by
M; to avoid from the catastrophic forgetting. In short, op-
erations done in the search period finds/generates the most
suitable model for corresponding timesteps.

Memory range and replay At the end of each epoch, event
models are removed if they were not used for m epochs
(i.e, memory range). A replay phase is added at the end of
each epoch to avoid catastrophic forgetting, reduce training
time, and foster memory consolidation. In the replay phase,
all event models, which are used in the recent epoch, are
trained by M;; and @ is updated. Replay phase is observed in
hippocampal regions for memory consolidation (Olafsdéttir,
Bush, & Barry, 2018), and suggested as a technique to sta-
bilize the training process of reinforcement learning agents
(Andrychowicz et al., 2017).

Method

Dataset

To assess the capability of the proposed method in segment-
ing and learning events, we prepared a sequence of human
actions depicted by PLDs.



Point-light displays (PLDs) Animals have a strong ten-
dency towards biological movements (Troje, 2008; Johans-
son, 1973) and humans can perceive biological motion even
from moving dots (Johansson, 1973). With the help of rel-
ative movement of points, humans perceive various kinds
of human movements, emotions, actions, and gender (Troje,
2008). An example point-light display is given in Figure 1B.
Representing data as PLDs brings efficiency by reducing the
dimensionality of data and processing time.

Human behaviors We took behaviors used in our exper-
iments from the KIT Motion-Language Dataset (Plappert,
Mandery, & Asfour, 2016). The activity includes 12 human
behaviors, such as walking, jumping, picking an object, sit-
ting on a chair, searching for an object. X and Y dimensions
of 14 markers were used to represent behaviors as PLDs, and
min-max normalization operation was applied to each behav-
ior taken from the dataset. Behaviors were added back to
back through interpolating the marker positions in the point-
light display. Thus, a 24 Hz and 270-second video of complex
human behavior represented by PLDs was created.

Psychological experiments

In this study, we used the unitization paradigm and deter-
mined two experimental conditions, event granularity and
sensory reliability. For fine-grained (smaller) events, we
asked participants to detect the shortest, natural and mean-
ingful events, whereas, for the latter, they were asked for the
longest (larger) ones.

There is an intrinsic relationship between the change and
event segmentation. Hard et al. (2011) found that changes
at event boundaries are more numerous than those at other
frames. Thus, a reduction in change should also decrease the
number of event boundaries. From the perspective of predic-
tive coding, the relative reliability of expectations and sensory
input determines perception. Ambiguous sensory input (i.e.,
noisy video) reduce the effect of prediction error (de Lange,
Heilbron, & Kok, 2018), from the perspective of the EST, and
therefore, decrease the number of perceived event boundaries.
In order to verify this, besides event granularity, sensory reli-
ability was determined to be an experimental condition, hav-
ing two levels as normal and noisy videos. For creating noisy
videos, we lowered the degree of change between frames by
applying Gaussian white noise, which results in very smooth
behaviors.

For both experimental conditions, namely sensory reliabil-
ity (normal input, noisy input) and event granularity (fine-
grained, coarse-grained segmentation), we recruited 19 par-
ticipants (9 female) for a within-subject design. Each par-
ticipant firstly attended to normal and then noisy level, where
the order of granularity was randomized. For each granularity
level, we showed participants the movie twice, referred to as
the first and the second observations. In the second observa-
tion, participants were asked to segment events in the shortest
or longest possible way in accord with the granularity level. It
is known that observing an activity more than once results in

Table 1: Hyperparameters of the computational model

Parameters Fine Coarse
Event threshold 1.5 4.0
Error window 5 50
Number of timesteps 5 15
Rehearsal 200 300
Replay 2000 2500
Number of epochs 10 10
Memory range 1 1
Activation functions  ReLu ReLu
Optimizer Adam Adam
Learning rate 0.0001 0.0001
Batch size 12 12
Hidden layers (256, 256, 128, 64) (1024, 512, 128)

coarser and finer segmentations (Hard et al., 2011). Through-
out the paper, we referred to two observations by numbers.
For example, the second observation of fine-grained segmen-
tation is called Fine 2. The experiment was prepared in Psy-
chopy3 (Peirce et al., 2019) and conducted on an online plat-
form named Pavlovia.

Computational experiments

We ran the same method four times (sensory reliability x seg-
mentation granularity) by changing the hyperparameters for
segmentation granularity condition and used the same hy-
perparameters for sensory reliability to observe the effect of
reduced change on segmentation decisions. Therefore, we
aimed at testing (1) whether our model captures human event
segmentation decisions and (2) is affected by the reduction of
the rate of change similarly.

The hyperparameters are given in Table 1. Since the pro-
posed method requires deciding between all available mod-
els, the computational requirements rise exponentially as the
number of events increases. For this reason, we decided to
apply the method to each coarse-grained segment separately,
which reduced the number of searching periods and events to
be considered.

Results
Results of psychological experiments

We checked whether the number of segmentation decisions
of participants were in accord with the granularity condition.
Whereas data of three participants were excluded because of
producing less segments in the fine-grained level, data of one
other participant was excluded as the outlier of Coarse 1 (the
first observation of coarse-grained level) (z >2.58). The num-
ber of segments produced by participants is given in Figure 2.
The results from the fine (M = 63.3, SE = 8.24) and coarse
(M =14.06, SE = 1.19) segmentation levels indicated that the
number of segments in fine- was more than in coarse-grained
segmentation, #29) = 6.25, p <.001, as expected.
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Figure 2: The mean number of boundaries detected in differ-
ent experimental conditions.

Participants whose data were excluded for normal level
were not considered for further analyses. The results from the
fine (M =55.23, SE =6.79) and coarse (M = 12.13, SE =1.48)
segmentation levels indicated that the number of boundaries
was smaller in fine- than in coarse-grained segmentation con-
dition, #(29) = 6.91, p <.001, as expected. As for the relation-
ship between normal and noisy levels, the two-way ANOVA
analysis revealed that the main effect of sensory reliability on
the number of segmentation decisions was insignificant (F(1,
112) =0.84, p = .2.

In order to make a comparison between psychological and
computational experiments, we need to find out group agree-
ments over event boundaries, which usually are found by de-
tecting bins receiving responses more than one standard de-
viation above the mean (Newtson, 1973). We observed that
group agreements were sensitive to different bins (1-sec or
2-sec bins) and data sources (whether Coarse 1 or Coarse 2,
or both of them are used together). To find the best parame-
ters for comparison, we need to compute a value representing
agreement of participants about their group-based segmenta-
tion decisions. For computing this kind of value, by varying
bin sizes and data sources, we firstly detected group-based
segmentation decisions. Secondly, for each group decision,
we computed the agreement of participants to that group de-
cision by Cohen’s Kappa score, resulting in different Cohen’s
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Figure 3: Group agreements over possible data sources and
bin sizes.
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Figure 4: (A) shows the number of boundaries computed
when Cohen’s Kappa scores are maximized and (B) shows
the number of boundaries when fine-grained responses of the
noisy video are separated into 0.5-sec bins.

Kappa scores for each participant for each group decision.
Thirdly, we computed mean Cohen’s Kappa scores of partici-
pants to evaluate the group decision. To find the best parame-
ters, we selected the bin size and data sources by maximizing
this value. The parameters maximizing mean Cohen’s Kappa
scores for normal and noisy videos are shown in Figure 3.

For the normal level, we found that the best mean agree-
ment scores were received in Fine 2 with 1-sec bins and
in Coarse 1 and Coarse 2 with 4.5-sec bins. For the noisy
level, scores were maximized by Fine 2 with 1-sec bins and
Coarse 2 with 5.5-sec bins. The number of boundaries de-
tected by groups is given in Figure 4A when their mean Co-
hen’s Kappa scores are maximized. Considering the slight
change in Kappa score and the importance of temporal res-
olution for detecting the true fine boundaries, we decided to
use 0.5-sec bins for fine-grained segmentation decisions of
both levels (Figure 4B). For the accepted parameters, for nor-
mal videos, the group detected 107 fine segments by mark-
ing bins receiving responses (cut-off =3.77, M = 2.0, SD =
1.76) more than one standard deviation above the mean and
12 coarse segments considering bins above the cut-off value
(cut-off = 13.90, M = 7.03, SD = 6.84). For noisy videos,
65 fine-grained boundaries (cut-off = 3.25, M = 1.66, SD =
1.59) and 8 coarse-grained boundaries (cut-off = 6.57, M =
3.16, SD = 3.41) were determined. Despite the statistical test
that does not reveal a significant difference between normal
and noisy videos, the difference in the numbers of group de-
cisions on fine-grained breakpoints is striking.

Results of computational models

We conducted a computational analysis over normal and
noisy videos. Figure 5 shows that our method successfully
monitors prediction error signals and used them to discover
natural, meaningful and identifiable segments. The number
of segments detected for each condition by humans and com-
putational model is given in Figure 6. For the normal video,
the computational method detected 24 coarse-grained and 87
fine-grained boundaries. For the noisy video, the method re-
vealed 17 coarse-grained and 95 fine-grained boundaries.
We also showed segmentation decisions of humans and
computational models on X and Y trajectories of markers of
PLDs (Figure 7A for normal and Figure 7B for noisy videos).



Figure 5: (A) represents the behavior as PLDs format that can be identified as locating objects from one place to another
(detected event segments: standing up, bringing hands to wrists, leaning right, leaning left, leaning right, small bending moves,
and occasional hand movements to pick up and place the objects), (B) Y coordinates of points. (C) shows event transitions
signaled by prediction errors and surprise thresholds (E), marked by blue and red, respectively.
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Figure 6: The number of boundaries detected by groups and
computational models.

Blue and red lines on Figure 7 represent locations of fine-
and coarse-grained boundaries, respectively. The lines at the
top of the graph represent segmentation decisions of humans,
while the lines on the bottom represent those of computa-
tional models.

Despite occasional mismatches between humans and our
model, the coarse-grained segmentation decisions are similar
to the decisions of humans for the normal video. On the other
hand, our method did not capture some fine-grained bound-
aries detected by humans. For example, between frames 380
and 600 where the walking behavior takes place were not
segmented similar to humans. At the same time, it overseg-
mented certain activities such as the push-upping behavior
between frames 580 and 820. Being familiar with the walk-
ing activity, participants might have tended to segment it into
finer segments compared to push-upping. For the coarse seg-
mentation of noisy videos, our model tended to miss some
boundaries and oversegmented certain behaviors. For ex-
ample, push-upping activity taken place from frames 580 to
820 was segmented into five events. When it comes to fine-
grained segmentation of noisy videos, despite the tendency
of oversegmentation, our model captured segmentation de-
cisions of participants. Despite slight differences in its re-
sponses, our model segmented both videos similarly. For
example, it generated occasional fine-grained segments from

frames 380 to 580 in the normal video compared to the same
range in the noisy video.

Despite the accurate and meaningful segments produced
by our model, we did not observe the expected effect of noisy
videos on segmentation decisions. The surprise threshold
based on the rolling mean of prediction errors might have
given rise to this situation. The reduced rate of change might
have led to a reduction in prediction error, which reduces the
degree of surprise threshold indirectly. Therefore, the relative
relationship between prediction errors and the surprise thresh-
old levels remain the same. Further research should investi-
gate the effect of the rate of change on boundary decisions of
already trained models.

Discussion

In this study, we proposed a self-supervised, predictive pro-
cessing based method of event segmentation and learning and
tested the model with human data collected from the psycho-
logical experiments. We showed that the hierarchical seg-
mentation decisions of our method largely match with the
results of psychological experiments. However, as we men-
tioned, our method does not capture the effect of change. Val-
idating the assumptions of EST, the proposed method showed
that observing prediction error is not only a plausible but also
a working explanation of event segmentation. Involving event
models updated by prediction errors, the proposed method
connects event segmentation and predictive processing (Butz,
Achimova, Bilkey, & Knott, 2020).

The proposed model has certain shortcomings. Firstly,
event models in our proposed method are distinct entities used
for prediction, despite the fact that various configurations of
human behaviors are grouped in one type of action, such as
taking a step or raising a hand. Additionally, our method
did not consider temporal regularities between actions (or
events). Considering the relationship between prediction er-
rors and time perception (Basgol, Ayhan, & Ugur, 2020),
our method can be extended to a time perception model.
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Figure 7: The segmentation decisions of the group and the computational model for normal (A) and noisy (B) videos. The lines
at the top of the graph represent group event segmentation decisions, while the lines on the bottom represent the answers of

computational models.

Also, representing human behaviors by PLDs brings limi-
tations. For example, PLDs cannot represent human-object
or human-human interaction in detail. This problem can be
overcome by representing activities by the full-body RGB im-
age. To overcome the simplification of using PLDs, further
research can extend the proposed method with the transfer
learning approach. Rather than predicting the next sensory
input, event models might be trained to predict activations
of already trained object identification model like AlexNet
(Krizhevsky, Sutskever, & Hinton, 2012).
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