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Introduction
We are subject to a continuous flow of information and we
have to utilize it to show robust, adaptive, and intelligent be-
havior. For the utilization of continuous information, we dis-
cretize it into meaningful units. In the spatial realm, we seg-
ment scenes into objects; in the temporal realm, we segment
a sequence of scenes into meaningful events (Zacks,2020).

Newtson (1973) observed that there is a similarity between
where people segment ongoing activity into events. He asked
participants to segment a movie by pressing a button to de-
tect event boundaries in a procedure called unitization and
realized that event boundaries detected by participants had a
substantial agreement. Moreover, Speer, Swallow, and Zacks
(2003) demonstrated that the decisions of participants did not
change as time passed and showed stability. Also, they found
that participants were capable of segmenting an activity into
small (fine-grained) or large (coarse-grained) events. Event
Segmentation Theory (EST) tries to explain the mechanism
behind event segmentation (Zacks, Speer, Swallow, Braver,
& Reynolds,2007). According to EST, event segmentation
is a side effect of ongoing perceptual predictions, which are
made by event models. The theory asserts that transiently in-
creasing prediction error corresponds to event boundaries and
triggers the use of another event model for the prediction of
the next sensory input.

There are several computational models of event seg-
mentation developed in cognitive science (Reynolds, Za-
cks, & Braver,2007;Zacks et al.,2007;Gumbsch, Kneissler, &
Butz,2016;Gumbsch, Otte, & Butz,2017;Franklin, Norman,
Ranganath, Zacks, & Gershman,2019), artificial intelligence
and robotics (Nery & Ventura,2011;Butz, Bilkey, Humaidan,
Knott, & Otte,2019). Based on the assumptions of the EST,
we propose a computational model of event segmentation and
learning. Our proposed model was inspired from the mod-
els developed by Gumbsch et al. (2016) and Gumbsch et al.
(2017). The main incapability of these models is that they
cannot learn and segment non-linear relationships in a se-
quence of information (Gumbsch et al.,2016,2017). Addi-
tionally, these models cannot learn and segment an event by
passive observation because they assume the role of sensory-
motor interaction for learning and segmenting events.

We introduced a model that can segment ongoing activity
into meaningful parts and learn them through passive obser-
vation. We expect that the model can reliably segment human
behaviors that are depicted as point-light displays (PLDs) and
learn these behavior units.

Architecture
Before explaining the details of the model, we will explain
the model we are inspired. Gumbsch et al. (2016,2017)
developed a computational model of event segmentation.
The computational model assumes that event segmentation is
grounded on sensory-motor experiences and proposes a pro-
cess that can autonomously divide a sequence of information
into more than one event models that correspond to event
segments. Event models involve a set of active linear for-
ward models, each of which is responsible for continuously
predicting the next sensory input by taking the current sen-
sory input and the generated motor command. This complies
with the assumptions of the predictive coding (Gumbsch et
al.,2016,2017).

In the training phase, each forward model generates pre-
diction, calculates prediction error and memorizes the mov-
ing average of prediction error and its variance. If the pre-
diction error of a forward model is higher than an adaptive
value (so-called surprise threshold), the system enters into a
search period. In the search period, forward models coupled
with a new forward model developed for a sensory dimension
are trained within a number of timesteps and a new model
is generated if all models are ineffective for predicting the
next sensory input (Gumbsch et al.,2016,2017). Gumbsch
et al. (2017) introduced a new parameter named confidence
threshold to generate events with different granularities (fine-
or coarse-grained). When the confidence threshold is high,
the system starts determining coarser events because of the
reduced frequency of entering the search period. Forward
model transitions and the corresponding sensory inputs are
associated with each other by multivariate Gaussian distribu-
tion (Gumbsch et al.,2016,2017).

Proposed model
Normally, combination of forward models, each of which is
responsible from one type of sensory observation, constitute
an event model. Gumbsch et al. (2016,2017), sensory modal-
ities are handled independent of each other. In other words,



Figure 1: The algorithm used for training is given. A current event model makes prediction, if the error exceeds surprise
threshold, the system goes to search period in which all models are trained for given timesteps and rehearsal rate. With the
help of errors, the best event model is selected to be the current event model. If the new event model is the best event model, it
becomes the current event model.

each forward model is responsible from a single sensor and
its prediction. However, segmenting complex actions such as
human motions require processing of combination of sensor
modalities. Considering the complexity of event segmenta-
tion, we believe that linear models might not be able to make
successful predictions. For this reason, we changed the type
of an event model to be a multilayer perceptron that is able to
approximate to nonlinear functions.

In detail, our proposed model has one active model in a
time t, which will be mentioned as event model. While pre-
dicting a sequence of behavior in the environment, Mt which
is responsible from predicting the change of every points ob-
served. Mt receives current sensory observation vector St and
tries to predict sensory change vector ∆St+1, which further
gives the predicted sensory observation by

S′t+1 = St +∆S′t+1

For each prediction, Mt learns and updates its weights.
Then, Mt stores its prediction error.

Search period, event model training and switching
Each event model Mt stores its prediction error. From that
error, a threshold rate, namely surprise threshold Φ, is calcu-
lated. Φ(M) is calculated by the rolling mean of the prediction
error e(M) and of the variance σ(M). If the prediction error of
an event model is greater than Φ(M), the algorithm enters the
search period. That is, Φ(M) decides whether the current ob-
servation St is surprising. The event threshold Θ regulates the
coarseness of the event to be segmented and therefore learned
by an event model.

Φ(M) = e(M)+Θ∗σ(M)

If the current error e(Mt ) exceeds the surprise threshold
Φ(M), the model enters the search period, which shows the
possibility that the current event model is not suitable for pre-
dicting the next sensory observation. In the search period,
a new event model is generated. Then, the new event model
and all event models that are in the event schemata are trained
for a given timestep and rehearsal rate. Rehearsal rate corre-
sponds to the number of iterations that event models trained.
Errors generated by all models are accumulated during train-
ing. The model that has the least mean squared error in the
last rehearsal is used for prediction. If the best model does
not correspond to the new model generated at the beginning
of the search period, the new model is removed. Weights of
all models except the weights of the best model is restored.
With the help of the search period, new event models are gen-
erated and all event models are trained if they are eligible to
make prediction. The overview of the algorithm is given in
Figure 1.

Method
Dataset
To assess the capability of the algorithm in segmenting and
learning events, we prepared a training set involving hu-
man actions depicted by PLDs. Behaviors in the training set
are taken from the KIT Motion-Language Dataset (Plappert,
Mandery, & Asfour,2016). The training set involves a type
of behavior defined as “a person picks up and object and
place it on a surface in front of him” in the dataset. X and
Y dimensions of 14 markers were used for depicting human
movements as PLDs. Each behavior taken from the dataset
was normalized. Normally, in the dataset, each behavior has
120 frame-per-second, which is reduced into 12 frame-per-



Figure 2: The behavior sequence used for training.

second, considering the computational efficiency. Trajecto-
ries are formed by attaching the trajectories of the same be-
havior three times. For the second attachment of the behav-
ior, its trajectories are flipped (behavior + flipped version of
the behavior + behavior).The behavior sequence prepared for
training is shown in Figure 2.

Event models and hyperparameters
For depicting an event, we use PLDs, which are the way of
non-pictorial depictions of human movements. PLDs devel-
oped by Johansson (1973), who invented the famous point-
light walker, which is a depiction of human walking repre-
sented by several points. With the help of relative movement
of points, people can perceive various kind of human move-
ments, emotions, actions (Alaerts, Nackaerts, Meyns, Swin-
nen, & Wenderoth,2011), gender (Troje,2008). We believe
that using the marker positions displayed by PLDs provide
sufficient information for the underlying behavior and pro-
vides efficiency compared to the full-body RGB image.

Each event model has two hidden layers involving 64 and
32 neurons with RELU activation functions, respectively.
Since each timestep is represented by 28 values that are X and
Y positions of points and the input window is selected to be 5,
the input size of an event model is determined to be 140. The
output size of an event model is 28 and the activation func-
tion of the output layer is linear. The other hyperparameters
regulating the behavior of the algorithm is given in Table 1.

Results
We evaluated the capability of our method with the same al-
gorithm for the same sequence of information. The only dif-
ference in testing is that weights of event models are frozen
and they are not trained. That is, no weight changes occur in
the search period in the testing phase.

To check whether errors of event models in predicting the
change between the current and the next sensory observation
reduces, we calculated the cumulative error for an epoch by

Table 1: Hyperparameters of the computational model

Parameters Values
Event threshold 2.0
Error window 10
Number of timesteps to predict (Timesteps) 10
Rehearsal 50
Input window 5
Number of pochs 50

the mean of mean-squared error of all event models. Figure
3 shows the cumulative error the algorithm produces. It can
be seen that errors of events models reduce in average, al-
though they are not optimized cumulatively. Figure 4 shows
target and predicted change in X and Y locations of one point
representing the behavior sequence used in the training. It
can be seen that event models can approximate to trajectories
they are responsible from.

In addition to the learning events, our model can generate
finer segments for a given behavior. The segmentation results
of our method is given in Figure 5. It can be seen from the
figure that the algorithm can detect patterns in a behavior. To
explain better, we can symbolize the data such that the behav-
ior taken from the dataset is coded as b1. The flipped version
of b1 is coded as 1b. Then, we can represent the whole trajec-
tory used in training as b1 + 1b + b1. It can be seen from the
figure that b1 is composed of event models colored by green
(0), cream (1), red (2) and blue (6) colors. 1b (the flipped ver-
sion of b1) is composed of event models colored by purple
(3), green (0), and cream (1) colors. That is, for segmenting a
sequence of behavior, the same event model is used if needed
and this occurs in a reliable manner. Colors, labels and pos-
sible definitions of the fine-grained events segmented by our
method are given in Table 2.

Figure 3: The figure shows that cumulative error decreases.

Figure 4: The prediction of event models for one point.



Figure 5: The segmentation results produced by our method. The yellow lines in the first and second figures show the merging
points of the behavior. The color change in the fourth figure shows the point at which an event transition occurs. These points
correspond to points at which prediction error shows a transient increase.

Table 2: Events segmented by the computational model

Event Labels Colors Definitions
0 Green bending over to get something
1 Cream straightening up with something
2 Red putting something on the shelf
3 Purple taking something from the table
6 Blue waiting

Discussion and Conclusion
In this study, we introduced a computational model that is
able to segment a sequence of human behavior into verbally
definable and meaningful parts and generate events models
that learn them. In this application, the length of considered
event segments is short. In future, we aim to determine and
learn longer event segments with the same method.
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