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Abstract—This study focuses on inferring a cost functions
pertaining to movement data using reward parameter search
and policy gradient based Reinforcement Learning (RL). The
behavior data for this task is obtained through a series of
squat-to-stand movements of human participants under dynamic
perturbations. The key parameter searched in the cost function
is the weight of total torque used in performing the squat-to-
stand action. An approximate model is used to learn squat-to-
stand movements via a policy gradient method, namely Proximal
Policy Optimization(PPO). A behavioral similarity metric based
on Center of Mass(COM) is used to find the most likely
weight parameter. The stochasticity in the training result of
PPO is dealt with multiple runs, and as a result, a reasonable
and a stable Inverse Reinforcement Learning(IRL) algorithm is
obtained in terms of performance. The results indicate that for
some participants, the reward function parameters of the experts
were inferred successfully.

I. INTRODUCTION

Recent Reinforcement Learning methods have been proven
successful for solving challenging artificial and real life prob-
lems. With Q-Learning fundamentals, [1] surpassed the capa-
bilities of humans in several environments in the Atari game
console by learning from images and acting on top of a discrete
action space. Although this approach was a big success, one
thing it did not cover was how to deal with environments
with continuous action spaces. This fundamental problem
was tackled by moving towards direct policy approximation.
[2], [3], and [4] proposed different modifications for vanilla
actor-critic systems, and all of them reported good results
for obtaining policies that perform the task at hand to a
satisfactory level.

Although the aforementioned approaches find impressive
policies, there is no guarantee about the optimality of the found
solution. As deep neural networks are employed as function
approximators, each training session finds a different solution
-albeit maybe slightly different- due to the stochastic nature of
learning and randomness-based exploration. This is not usually
an issue for many reinforcement learning problems that does

not require strict optimality as in game playing, and qualitative
task descriptions.

For example, experimentation conducted in study [4],
mainly focuses on tasks of walking with several different
variations of the dynamic body. The main goal focuses on
either reaching to some point B, starting from another point
A, or being able to run freely and not falling down. Their
results show that the method they propose is sufficient enough
for their goal as they mainly focus on feasibility instead of
complete optimality. If, however when optimal solutions are
strictly needed, for instance when finding the parameters of
a parameterized reward function associated with an optimal
behavior by using an RL solver within a search loop, the
variability of the solution found by the RL method becomes
critical. In general, finding a reward or cost function that
best describes an observed (optimal) behavior is called Inverse
Reinforcement Learning (IRL).

Recent focus on IRL research addresses two main research
directions. The first one is policy extraction and imitation. In
this process, the aim is to focus on a faithful imitation rather
than understanding the underlying reason of the demonstrator,
as such the focus is on directly searching/learning a policy
to generate a behavior similar to the observed one. These
processes try to directly search and learn the policy [5] [6] [7].
These approaches have been proven successful in a range of
both artificial and real life based tasks for imitation of an
expert.

Another focus is towards extracting a reward function
with an inner solver for generating policies according to the
extracted function. generation [8] [9] [10]. These studies does
not address behavior imitation only; but, they also aim to
understand the reason behind the demonstrations from the
expert, sometimes described as understanding or uncovering
the optimality principles of the expert. These studies tested
their frameworks in a wide range of environments. Since IRL
is an ill-posed problem, these approaches naturally come with
several assumptions to constrain the solution space. However,



there are some fundamental assumptions which should be
emphasized. The fundamental assumption for IRL is that
the demonstrations given are optimal, although to ensure the
validity of this assumption is not always possible. This is a
problem for all IRL methods. The assumption for RL based
IRL methods (such as [8] [9] [10]), is that the inner RL solver
will always converge to a single optimal policy with respect to
the current structure of the reward function. While sometimes
this assumption can be true for basic environments, it can also
become invalid if there are multiple optimal policies or the
task is too complex for the RL solver to reach to one solution.
These cases usually end up with the RL agent converging into
a near-optimal policy.

Due to the assumptions described, policy gradient methods
seem to be the winner for continuous state and continuous
action based RL problems. However, it is not clear how they
must used as the RL solver in the reward parameter search
loop to obtain a robust IRL algorithm. In particular, it is of
interest to know the applicability of policy gradient based IRL
algorithms for analyzing human sensorimotor data. Note that
these methods can be successfully applied to non-trivial imita-
tion learning problems(e.g [7]), but, the application of reward
function extraction based IRL techniques for real life tasks is
scarce. One reason for this is, the amount of IRL methods
that can be applicable to continuous action and state space
problems are very few.(e.g. [11], local method, need to take
the derivative of the dynamic system). There are very limited
amount of studies which utilizes the concept of parameter-
search based IRL.(e.g [12]). Such straightforward methods are
attractive in the sense that they can provide baseline solutions
without any strong assumptions or approximations. However,
the RL method used in the inner loop, is often a stochastic
method which does not always find the optimal solution. This
case is especially present for continuous state and continuous
action based systems. So it is critical to know how much
variance the inner RL solution induces on the reward function.

This study proposes a parameter-search based IRL method
that aims to tackle the second issue of these systems by
analyzing multiple training sessions and trying to extract
meaningful information from them. For this study, we have
defined a parameterized reward function for our inner RL
solver and tried to obtain reward function parameters to yield
behaviors similar to the demonstration. We test our method
by reproducing the human experiment setup in a simulation
environment and compare our results with a human squat-
to-stand data under perturbation and try to understand how
much the subjects value the effort(amount of torque they
used) they need to spend standing up while at the same
time compensating for the perturbation and keeping their
balance. The perturbation was given in the form of a backward
continuous pull with a force relative to the vertical speed of
the subjects center of mass.

II. METHOD

A. Simulation Environment and Task Definition

We have implemented a basic 3-DOF dynamic system using
PyDy [13]. In the start of the simulation, the agent is in a squat
pose as can be seen in Figure 1. The task is to turn the pose
of the dynamic system to a stand pose by providing “correct”
torque values to each joint at each time step. The agent is
given a limited amount of time and additional constraints
including joint limits and height constraints in order to repro-
duce a realistic dynamic model. The addition of perturbation,
aims to deliver a smaller solution space for the environment
defined. The state and action of the system is defined as
s = [x1, x2, x3, ẋ1, ẋ2, ẋ3] and u = [u1, u2, u3], where xn
and ẋn represent the angle and the angular velocity of the nth

joint; and un denotes the torque applied to the corresponding
joint.

B. Data Collection for Analysis

In order to test the applicability of our system for real
behavioral data, we used Center of Mass(COM) trajectories
of human subjects, from an experiment consisting of a squat-
to stand task with external perturbations. The setup of this
experiment can be found on Figure 1. This tasks extends
the generic standing up task with an additional backwards
perturbation to assess the change in behavior. In this task, the
subjects must learn to stand up without making a corrective
step while regulating their effort. We tried to quantify this
effort by defining a composite reward function explained in
the next section.

Fig. 1: Left: Initial setup of human experiments, Right: Initial setup
of the 3-DOF dynamic system

C. Reward Function

Reward function aims to guide the agent to the goal of
stand-up, i.e. bringing the system to the maximum height
with minimum torque and minimum final velocity. In case
the system reaches 99% of the maximum height with a COM
velocity smaller than 0.1 m/s, the episode ends in success
condition. If the joint limits are exceeded or the height of the
agent drops below 50% of the maximum height, the episode
ends in fail condition. Otherwise, the agent receives reward
depending on its height. Overall, the reward function is defined
as:

rterminal(s) =

{
1000− 10× t success

−100− 400× ht fail



rrunning(s, u, w1) =

{
+ 1 ht >= 0.99× h

h− w1× norm(u) else

where s, u, t, h, ht, w1 denote the state, the action, the
current time, the total height, the current height and the cost
coefficient of the torque, respectively. The system is provided
+1 reward when its height is close to the maximum but
its COM velocity is still above 0.1 m/s, in order to narrow
down the search space while guiding it towards the success
condition. The step reward in our reward function aims to
reward the increase in height while punishing the amount of
torque used.

D. Inverse Reinforcement Learning via Parameter Search

For our IRL experiments, we have defined our behavior
parameter as the trade off of torque usage during the task of
standing up. As described in the reward function, we have
defined a parameter called w1 which indicates this trade off
and tried to mimic the expert by searching for the w1 which
produces the most similar COM trajectory with the expert.
The system focuses on a multiple trial approach in order to
induce the stochasticity of the inner RL loop. We have used
the search loop as given in Algorithm 1

Algorithm 1 IRL via Grid Search

weights = [0.1, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0]
for each w1 ∈ weights do

for trial = 1 to 20 do
π∗ = solveRL(w1)
τ = extractTrajectories(π∗)
for τs ∈ subjectTrajectories do

calculateCost(τ , τs)
end for

end for
end for

E. Inner Reinforcement Learning Loop

For our inner RL solver, we have used the algorithm
proposed by [4]. Proximal Policy Optimization(PPO) is an
on-policy RL method which works well with continuous state
and continuous action based problems. We have decided to use
PPO due to ease of implementation and validity of the results
presented. As you can observe from Algorithm 1, our RL
solver takes w1 as a parameter in order to pass this value to the
reward function and search for the optimal policy accordingly.
Since PPO is also a policy gradient based approach, it is a
stochastic system which converges to different near-optimal
policies at each iteration. By solving the RL multiple times(20
in our case), we tried to decrease the variance as much as
possible which will lead to comparable results.

F. Result Analysis

In order to evaluate our results, we have focused on the vari-
ance produced by our inner RL solver. 1000 successful trajec-
tories have been sampled for 140(trial count∗# of weights)
different policies generated during their training phase. We

have selected the top 10 trajectories(in terms of reward) from
each policy and extracted COM trajectories for each of them.
So for each weight, we have generated 20 groups that contain
10 trajectory samples each. In order to narrow down these
trajectories into 1, first we have fitted a spline on each of
them and sampled same amount of points. Afterwards, we have
calculated the average trajectory for each group by taking the
mean of the trajectory points. Finally, only a single trajectory
was obtained by taking the mean of the group trajectories.
During this process, we have also calculated Standard Mean
Error(SME) values for torque usage and trajectory areas in
order to use them in our inner RL loop analysis.

G. Trajectory Preprocessing

Before conducting the trajectory comparing process, a pre-
processing have been done on the the expert and RL trajecto-
ries in order to make them comparable. As it was mentioned
in the previous sections, our RL setup consists of 3 joints
whereas the humans use 4 main joints during the process of
standing up. This difference causes the expert COM trajectory
to shift towards the back during the process of standing up.
In order to resolve this issue, we have rotated both expert and
RL trajectories and made sure they both start and end in the
same horizontal location. Another preprocessing was done by
fitting all vertical coordinates between 0 and 1 so that the
heights will be identical and available for comparison. These
techniques we have applied allowed us to fairly compare the
trajectories generated by RL and experts.

H. Comparing Trajectories

The trajectory of both the RL trials and behavioral data
is defined as the COM trajectory they follow while accom-
plishing this task thus, behavior similarity is defined as COM
trajectory similarity. We have implemented 2 different cost
metrics in order to compare the trajectory results. In both
of these metrics, we have focused on capturing different
behavioral similarities between. It should be noted that both
of these systems factors into our IRL via Parameter Search
method with the calculateCost method in Algorithm 1.

1) Signed Area Difference: The first metric we have fo-
cused on was based on direct one-to-one correspondence
between RL and human trajectories. This metric is also known
to be used commonly in trajectory related studies [14] [15].
Since the ultimate goal is inferring reward coefficients while
replicating the behavior, this cost system focuses on strict
relations. The cost function is formulated as following:

area difference =

60∑
n=1

| x(n)− y(n) |

where x and y is the set of sampled horizontal locations from
the expert and the RL agent trajectories respectively and n is
the order of the point to be calculated.

2) Pearson Product-Moment Correlation: In order to cap-
ture some similarity behaviors which cannot be captured by
calculating one-to-one difference, we have implemented a
second cost function for our IRL system which also takes into



account the shape similarity of the trajectories. We have rep-
resented this second cost function suggestion as the following:

correlation =

∑n
i=1((xi − x)(yi − y))√∑n

i=1(xi − x)2
∑n

i=1(yi − y)2

where x and y is the set of sampled horizontal locations
from the expert and the RL agent trajectories respectively.
Then, we use softmax function over subject rows with a
scaling factor in order to rank the correlation results we have
achieved in a more understandable visualization.

III. EXPERIMENTAL RESULTS

We have decided to analyze our results in 3 different aspects.
First, instead of focusing on the expert data, we will analyze
the results obtained from our RL approach in terms of variance
and stochasticity. Later, we will analyze the trajectories in
terms of signed area difference and finally, we will compare
the trajectory correlations between mean human trajectories
and our RL trials

A. Analysis of the Inner RL Loop Results

Fig. 2: Analysis of our experiments. Left: Mean Area of Trajectories,
Right: Mean Torque Used by the Agent.

Since the algorithms we have conducted our studies on
are stochastic, our first aim was to achieve consistency on
our experiment results. Our first expectation was that when
the torque cost increases, the agent should start to obtain
”fatter” trajectories, thus having a greater area. We expect the
torque usage to decrease when the torque cost coefficient(w1)
increases. When we observe Figure 2, we observe the trends
we have expected occurs in our trials. The mean areas of the
trajectories generated increases when the torque cost increases,
and torque usage decreases respectively with the increase of
w1 torque cost. These results are not enough to fully conclude
the validity of our inner RL solver, but they indicate that our
technique, repeating 20 trials for each cost, is making the
system work in a less stochastic and more consistent way.

Fig. 3: Left: Trajectories for Top Trials for each W1 value(in terms
of reward), Right: Mean of Mean Trajectories Collected From 20
Different Trials

After we conclude the analysis of our inner RL solver, the
next step for validating our RL approach is to inspect the

trajectories obtained from them. The trend we have observed
from Figure 2 suggests that when the torque cost coefficient
increases, the area or the fatness of the trajectory must also
increase. In order to visualize this suggestion, we have plotted
the trajectories that performed the ”best” in terms of reward
in a single sheet and expect them to be ordered in a particular
way. When we inspect these trajectories, which can be found
in Figure 3, we observe an inconsistency. For example, the
best trial from w1 = 0.5 was expected to have a smaller area
than w1 = 1.0 but we can clearly observe that this wasn’t the
case. Since in Figure 2, the upward trend is present, it is true
to say that the average of the successful trajectories will form
the expected trend, but the most successful ones don’t. This
indicates a definite local optima situation in our RL trials and
a possible problem with our reward function. It also indicates
the crucial need to use the mean results from the trials instead
of best results, which is the technique we suggest throughout
this study.

B. IRL via Signed Area Difference

Fig. 4: The comparison between human subjects and RL trials in
terms of signed area difference. The outputs have been calculated
with softmax function using K=30 as smoothing factor in order to
visualize ranking easier

The next step in our experiment evaluation was to compare
the trajectories in terms of signed area difference. In order to
achieve this, we had to make sure each of our trajectories had
the same amount of data points. We have fitted a spline for
each trajectory and sampled 60 points from it. Since this cost
function focuses on one-to-one correspondence, The heat map
on Figure 4 indicates to us that our IRL system was successful
in inferring most of the subjects’ reward coefficients in an at
least near-optimal way.

Our main assumption about the reward function coefficient
of the experts was centered on trajectories capturing more and
more area, or in other words, getting ”fatter” and ”fatter” when
the torque cost increases so by looking at Figure 4, we can
make several deductions. For example, we can say that Subject
6 cares about torque usage more than Subject 12 when he/she
is completing our task. Also, we can say that most of the
subjects draw a fat trajectory which indicates they focus on
limiting their energy usage.

C. IRL via Trajectory Correlation

The final step of our analysis is to compare the trajectories
obtained from RL and real trajectories in terms of COM tra-
jectory correlation. Due to small differences between our RL
simulation setup and the setup used to collect the behavioral



Fig. 5: The visualizations of several subjects and the best fit
trajectories we were able to obtain in terms of signed area difference.
The shaded area for the RL trials indicate the standard deviation of
the trajectories formed. The subjects not given in this figure also
produced similar fits.

Fig. 6: The comparison between human subjects and RL trials in
terms of correlation. The correlation outputs have been sofmaxed
over columns with K=100 in order to visualize ranking easier

data, while calculating correlation, we have clipped the first
and last 10 data points from our samples. Different from the
first analysis we have conducted in the previous section, this
cost function focuses more on analyzing the tactics humans
use during standing up like following a hip first or head first
strategy. When we inspect Figure 6, it can be observed that
there are several direct matches found which indicates that
the shape of that RL trial trajectory and human trajectory are
similar. We also observe that our tests were not very successful
in inferring the reward function coefficients of some of the
subjects like 7, 9 etc.

Fig. 7: The visualizations of several subjects and the best fit
trajectories we were able to obtain in terms of correlation. The
subjects not given in this figure also produced similar fits.

Also, we have visualized some of these trials in Figure 7
and observed the similarities we have expected from Figure

6. Another thing we have observed was that our system was
unable to infer the rewards for human trajectories which
were very fat or straight but was successful in inferring
more than half of the human subject trajectories in terms of
correlation(shape matching). This indicates that these subjects
followed a different or a combined strategy that our simulation
could not dwell upon.

IV. DISCUSSION

When we analyze the results we have reported in Section
III, we observe several key points that needs to be discussed.
First of all, in Figure 3, we observe that although the mean
trajectories follow a certain trend, the top trajectories obtained
for each weight does not and this was the exact behavior we
aimed to address while structuring our IRL mechanism. We
believe that several reasons cause this behavior. The first one
revolves around using a policy gradient method as our inner
RL solver. Even with the advancements and modifications
suggested by PPO, this method still bounds to reach to a near-
optimal solution, which does not fully describe a policy which
maximizes the reward function and since the training sessions
are stochastic(in other words, end up in a different near-
optimal solution each time), the solutions found can produce
unexpected behavior with respect to our cost function. Another
reason for this behavior can be explained by our cost function
itself. In our terminal state Success, we have tweaked the
terminal reward with a time constraint so that the agent will
learn to reach the end point in the fastest way possible. This
generates a trade-off since although a fatty trajectory should be
more optimal for step reward, the terminal punishment from
time consumption can override the importance of it. That’s
why, further experimentation is needed in order to investigate
this issue.

During our experimentation’s, we have tried to avoid dis-
cretization techniques in our inner RL solver in order for our
system to be applicable to real life problems fully and we
have applied a grid search technique as parameter-search. We
believe that although grid search is not a state-of-art technique,
it is not in conflict with the concept of gradient-based outer
loop. The solutions found on the grids can be used to seed
gradient descent search, which would improve the solution
around the grid points. We believe this would be a better
approach if we have some prior knowledge on how to choose
the discrete grid values. Note that, the task we have used
is rather complex, therefore direct gradient descent with an
inner RL (which is not guaranteed to find an optimal solution)
becomes computationally expensive. One cost of grid search
is that, the precision of the ω value is bounded to the precision
of the grid. For example, if slices of 0.1 is taken, the system
cannot fully capture a subject with the ω value of 0.55.

From both of our comparison functions for our parameter-
search, we have seen very descent matches that indicate how
much the subjects care about the torque usage and how the
subject prefers to stand up. We have seen that the decision
of torque usage coefficient not only effects the fatness of the
trajectory but also the decision on the strategy to use during



standing up. Some of the subject trajectories we have obtained
were significantly fatter than the fattest trajectory we have
generated, or had a very different shape. This indicates that our
weight set for torque cost needs more adjustments in order to
capture a wider set of subjects. We also need to point out that
these differences can also be caused by the dynamic system
properties. Our RL setup was built with single human body
data(length, mass, inertia etc.) and subjects can and should
perform differently according to their own body. Also, the
experiment setup is conducted in a manner that the real life
experiments use 4 degrees of freedom but our RL setup only
includes 3. This difference, which can be explained as model’s
point-foot vs. flat contact of human feet may also cause the
discrepancies described in terms of area and shape.

Another thing we want to emphasize is the optimality
basis for RL trials and expert trials. Even if the dynamic
system is completely replicated and an inner RL loop is
found that reaches to a global optima point, IRL systems still
have no guarantee of perfectly inferring the reward function
coefficients of the experts. This is due to the fact that it is
unclear if the expert data collected is optimal according to the
reward function followed by the subjects.

V. CONCLUSION AND FUTURE WORK

In this study, we have proposed a parameter-search based
IRL model which takes the variance of the inner RL loop into
account in order to tackle the stochasticity problem of policy
gradient RL methods and tried to infer the reward function
coefficients for real life experts during motor control related
tasks. We believe that constructing a parameter-search based
IRL method on top of a grid is important, since it has the
capability to serve as a baseline solver for more advanced IRL
methods which will be applicable to real life problems. We
also believe that the findings and the methodologies we have
presented in terms of handling the variance generated by the
policy-gradient based RL loops are meaningful, and is a step
forward towards a robust IRL method that will be applicable
to continuous state, continuous action based environments.
Our findings suggest that for generating a robust IRL method
that uses policy gradient methodologies as a RL solver, the
converge properties must be studied in depth so that the final
IRL method can be regarded as a trustworthy system.

For future studies, we plan to address the issues presented
on Section IV including reward function modification, trying
to increase the determinism of RL trials and different dynamics
systems special to each subject. Also, we plan to dwell more
upon the idea of combining our grid with gradient based
approaches in order to create more precision on the predicted
ω value. With these additions, we believe that our IRL system
will have the ability to serve as a computational tool for
inferring the reward parameters of expert behavior in a state-
of-art manner.

Finally, in order to demonstrate our approach in a real
world environment, we plan to employ the reward parameters
we have extracted during our simulations to different types
of humanoid robots and try to match the trajectories we

have generated with RL setups and the expert data with the
trajectories humanoid robots generate during standing up.
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