
Reward Conditioned Neural Movement Primitives for Population Based
Variational Policy Optimization

M.Tuluhan Akbulut†, Utku Bozdogan†, Ahmet Tekden† and Emre Ugur†

Abstract— The aim of this paper is to study the reward based
policy exploration problem in a supervised learning approach
and enable robots to form complex movement trajectories
in challenging reward settings and search spaces. For this,
the experience of the robot, which can be bootstrapped from
demonstrated trajectories, is used to train a novel Neural
Processes-based deep network that samples from its latent
space and generates the required trajectories given desired
rewards. Our framework can generate progressively improved
trajectories by sampling them from high reward landscapes,
increasing the reward gradually. Variational inference is used
to create a stochastic latent space to sample varying trajectories
in generating population of trajectories given target rewards.
We benefit from Evolutionary Strategies and propose a novel
crossover operation, which is applied in the self-organized latent
space of the individual policies, allowing blending of the individ-
uals that might address different factors in the reward function.
Using a number of tasks that require sequential reaching to
multiple points or passing through gaps between objects, we
showed that our method provides stable learning progress and
significant sample efficiency compared to a number of state-
of-the-art robotic reinforcement learning methods. Finally, we
show the real-world suitability of our method through real robot
execution involving obstacle avoidance.

I. INTRODUCTION

In the last decade, robot learning has become a key
technology for equipping robots with dexterous robot skills.
Acquiring robotic skills requires learning of multi-modal sen-
sorimotor relations in connection with external parameters
and goals. An effective approach to equip the robots with
advanced skills is to first teach the desired skill via Learning
from Demonstration (LfD), and then enable the robot to
improve its skill by self-exploring the world and task space
via reinforcement learning (RL) [1], [2], [3]. LfD is generally
framed as a supervised learning (SL) problem where the
target sensorimotor trajectories are provided by an expert and
the model parameters are tuned to produce these trajectories.
On the other hand, the target trajectories are not directly
provided in RL, and the robot updates its policy parameters
to obtain maximal reward through trial-and-error exploration.
Sample efficiency is critical for RL when applied in the real-
world since experimenting with the real robot takes time,
and resources. Therefore, LfD approaches are widely used
to bootstrap this search, effectively giving a prior to constrain
policy search so that a solution can be found faster and safer
[4], [5], [6], [7].

*This work was supported by the European Union’s Horizon2020 re-
search and innovation programme under grant agreement no. 731761,
IMAGINE.
† Authors are with the Department of Computer Engineering, Bogazici

University, Turkey tuluhan.akbulut@boun.edu.tr

On the relationship of RL with SL, Barto and Dietterich
argued that solving RL problems using SL is not possible
because SL is supposed to use an error between desired
and produced output however RL settings only provide
evaluation signals based on the performance of the produced
output and do not provide direct knowledge about desired
output [8]. Recently, Schmidhuber [9] proposed to use the
environmental feedback (reward) as input together with time
horizon with Upside Down RL (UDRL) method to close the
gap between RL and SL. [10] realized this method in Atari
environments and showed that UDRL outperforms traditional
RL methods. On the other hand, robotic settings have further
challenges and requirements. While this method was shown
to predict discrete actions given the current state and the
desired future rewards, robotic tasks require the generation
of complex continuous sensorimotor trajectories. Moreover,
rather than receiving reward from state-action pairs, robotic
systems typically receive reward for the complete trajectory
after executing the complete action.

In this paper1, we also frame robotic reward-based learning
as a supervised learning problem. In order to address the
challenges listed above, we propose a reward-conditioned
neural policy architecture that is built on top of Neural
Processes [11] that can encode multi-modal distributions in
relation with non-linearly related external parameters in a
robust and effective way. After trained completely via SL,
given the desired reward and other relevant parameters, our
method exploits the formed robust latent representation, and
generates the complete motion trajectory in the correspond-
ing robotic task.

We benefit from Evolutionary Strategies (ES) [12] and
variational inference [13] in order to effectively explore the
challenging search space of the robotic problems that poten-
tially include multiple solutions and multiple local minima
difficult to escape. For this, we propose a novel crossover
operation, which is applied in the self-organized latent space
of the individual policies, allowing the temporal blending of
the trajectories of the corresponding individuals that might
solve different sub-goals or address different factors in the
reward function. We also use a mutation operation to increase
the diversity and make small movements in the search
space by applying Gaussian noise in the task space. Finally,
variational inference is used to create a stochastic latent space
to sample varying trajectories conditioned on rewards.

In summary, the contributions of this paper are as follows:

1The source code and data are provided to the community https://
github.com/mtuluhanakbulut/RC-NMP

• A novel reward conditioned neural movement primitive,
which generates trajectories by sampling from its latent
space conditioned on rewards, is proposed and imple-
mented. Our framework can generate progressively im-
proved trajectories by sampling them from high reward
landscapes, increasing the reward gradually.

• Variational inference in the latent space of movement
primitive is realized. The trajectory generation capa-
bility is compared against Conditional Neural Move-
ment Primitives (CNMP) [14] that does deterministic
sampling, and our system is shown to be effective in
producing multiple trajectories that cover the provided
demonstrations.

• A novel crossover operator in the self-formed policy
latent space is proposed, and its effectiveness in boot-
strapping learning of complex trajectories is validated
quantitatively.

• A complete learning and execution cycle is implemented
and its performance is compared against several state-
of-the-art RL methods [15], [16], [17]. Our method
is verified in a number of simulation tasks including
ones that provide sparse rewards, and verified through
real-robot execution that requires generation of complex
trajectories. It is shown to have a more stable learning
progress compared to [15] and provide significant sam-
ple efficiency compared to [16], [17].

II. RELATED WORK

Learning Movement Primitives: Bootstrapping the
movement skills via Learning from Demonstration (LfD) has
been effectively used in robot learning problems [3], [1].
Learning frameworks that are based on dynamic systems
[18], probabilistic modeling [19] and combination of them
[20], [21] have been popular in recent years. Dynamic Move-
ment Primitives (DMP) learned the demonstrated trajectory
as a set of differential equations, extending a spring-mass-
damper system with a non-linear function. While DMP
generated deterministic trajectories, Probabilistic Movement
Primitives (ProMP) [22] can encode a distribution of trajec-
tories and generates stochastic policies. Conditional Neural
Movement Primitives (CNMP) [14], built on Conditional
Neural Processes (CNP) [23], can also encode trajectory
distributions, and it can additionally learn non-linear relation-
ships between task parameters and complex trajectories from
few data. Our method is built on a similar neural network
model, namely Neural Processes (NP) [11]. Unlike CNMPs,
our network is conditioned with desired rewards and uses
stochastic sampling in the latent space.

Variational Inference in Movement Primitives: Varia-
tional inference has started being used to produce movement
primitives in recent years [24], [25], [26]. [24] used Deep
Variational Bayes Filtering (DVBF) [27] to embed DMPs
in Variational Auto Encoders (VAE). [25] used Temporal
Convolution Networks [28] to model trajectories and trained
VAE conditioned on task parameters. [26] used VAE with
continuous and discrete latent variables and conditioned the
decoder network on goal parameters. All these methods

require training trajectories in a scale of thousands. On the
other hand, our model can learn from a small number of
training trajectories because the underlying neural network
model [11] uses random observation samples to encode
trajectories.

Adaptation of Primitives: Encountered with novel en-
vironments, tasks or situations, the underlying parameters of
the movement primitives or policies are adjusted via trial-
and-error and reward based reinforcement learning (RL) [2].
RL is often bootstrapped by LfD to facilitate sample-efficient
learning [4]. In this approach, expert demonstrations are used
to limit the large search space in which RL looks for a
solution to manageable volumes by providing well perform-
ing initial experiences to the algorithm [5], [6], [7]. [29],
[30] also combined LfD and RL in Movement Primitives
framework, by exploiting ProMPs to encode demonstrations
and adapt to new task constraints. In [29], separate ProMP
models learned the task of pushing an object to different tar-
get positions from demonstrations. This skill is extended to a
new target position with a new ProMP using Relative Entropy
Search (REPS) [16], where KL divergence is used to preserve
shapes. [30] combined ProMPs and Gaussian Processes to
condition ProMPs with task parameters. RL is used to
learn the relations between the environment parameters and
parameters of the model, exploiting a trajectory relevance
metric. Adaptive Conditional Neural Movement Primitives
(ACNMP) [15] can also encode different task parameters in a
single model providing order-of-magnitude sample efficiency
compared to [29], [30]. Contrary to the previous models,
ACNMP does not require explicit optimization using metrics
such as relevance or KL-divergence. Instead, ACNMP is
trained together with the demonstrated trajectories and the
newly explored ones, automatically preserving the old skills
while extending the model to the new task parameters thanks
to the robust and flexible representations generated. In this
paper, we compare the performance of our population-based
approach with ACNMP in terms of learning stability and
performance.

Evolutionary policy optimization: Genetic algorithms
have recently gained popularity as their optimization pro-
cedures can effectively deal with challenging search spaces
with multiple local minima. They also scale well in some
problems compared to RL [31], [32]. Genetic-Gated Net-
works [33] used a chromosome vector, which is subject to
mutation and crossover, controlling the gating choices of the
policy network. Genetic algorithm is used for optimization
of this vector. The chromosome vector representing the best
choice is taken and the resulting network is subjected to
gradient based optimization. Genetic Policy Optimization
[34] utilized both imitation learning and deep reinforcement
learning within. Two parent policy networks are subjected
to crossover in the state space via applying imitation learn-
ing on their offspring in order to generate a state space
distribution similar to its parents’. Mutation operation is
modelled by policy gradient methods, and updated with high
variance gradients. Recently, Natural ES is applied directly
on network parameters [35]. The learning problem is tackled

Fig. 1: Training the RC-NMP by sampling observations from the demonstration set and predicting the trajectory value over
the queried time-step and generating a trajectory according to best reward parameter at the test time.

for dynamic environments unlike previously mentioned ap-
proaches and the process is regulated by instance weighting
which assigns higher weights to instances based on their
novelty and quality. [36] showed that their ES approach
performed better on dynamic tasks designed to be deceptive
compared to certain baseline RL, ES and meta learning
approaches, since it encouraged different behaviours more
through novelty search [37]. [38], [39], [40] combined ES
and Deep Deterministic Policy Gradient algorithms. In our
work, unlike the previous ones, a novel crossover operation
that allows temporal blending of the parents is applied
in the self-organized latent space of the policies, and the
individuals are generated in a dynamic process by our reward
conditioning mechanism.

Use of learning data with varying quality: Our ap-
proach encourages exploration in more rewarding states by
conditioning on higher rewards, similar to a directed explo-
ration. On the other hand, in order to improve exploration,
we use all experiences of the robot independent of the
quality of the instances. In Double REPS [17] the problem of
learning from bad experiences is specifically addressed. Their
approach improved upon REPS [16] by adding conditions to
constrain policy updates such that the policy stayed close
to high reward samples while also explicitly trying to stay
away from low reward samples. This is done via clustering of
samples based on their features and transformed rewards for
each rollout, which acted as attractive and repulsive fields,
respectively. In our paper, we compare the performance of
our approach with REPS and DREPS in terms of sample
efficiency and performance.

III. PROPOSED METHOD

We propose a framework that follows a learning and
policy update loop shown in Fig. 1, where the experience

of the robot stored in Replay Buffer (I) is used to train a
deep network that generates the required trajectories given
desired rewards (II). Then, a population of trajectories is
generated by this network to obtain maximal reward (III),
and evolutionary operations are applied to this population
intermixing the representations and increasing diversity of
the solutions (IV, V). Finally, the generated trajectories are
executed in the given environment and task, and added into
the Replay Buffer with the observed reward value (VI). In the
rest of this section, the architecture and proposed operations
are provided in detail.

a) Replay Buffer (I): The method starts from an ini-
tially demonstrated sensorimotor (SM) trajectory or a random
one and learns to generate motion trajectories that maximize
the reward function. The Replay Buffer stores the experi-
enced SM trajectories and the corresponding rewards. Next,
using the set of trajectories and reward values from the
Replay Buffer, our system learns a model that generates SM
trajectories given target reward values as follows.

b) Reward Conditioned Neural Movement Primitives
(RC-NMP) (II): 2 Fig. 1 (II) shows how our model is trained
using (SM, r) pairs. Our RC-NMP model has a specific deep
encoder-decoder neural network architecture built on top of
Neural Processes [11]. The encoder layer of the RC-NMP
learns a representation of trajectory points (z) conditioned
on the time and the corresponding reward. The decoder

2We are interested in problems where there is a reward function (R)
that maps trajectories (τ) to real valued rewards: R(τ) = r, r ∈ R.
Standard reinforcement learning algorithms maximize expected reward
Eτ∼pθ(τ)[R(τ)] with respect to parameters θ. Our model, on the other
hand, is designed to generate the trajectory distribution that gives the global
maximum or a satisfactory local maximum (r∗) as reward. To benefit
from supervised learning, we take a more direct approach by conditioning
the trajectory distributions w.r.t. rewards r and our model optimizes its
parameters to find the trajectory distribution conditioned on (r∗).

layer takes the learned representations with the reward and
outputs the trajectory as a function of time. Fig. 1 (II) shows
the training procedure using a hypothetical 1D scenario.
At each training iteration, random sensorimotor time and
value pairs (the green dots in the figure), named observation
points (O), are sampled from a trajectory randomly chosen
from the Replay Buffer. These (SM, t) points are processed
by a parameter sharing encoder network and transformed
into their corresponding latent space representations, and
then merged into a common latent representation with the
averaging operation. This latent representation space is mod-
elled as a Gaussian distribution N(0, I) and is optimized
using variational inference similar to β-Variational Auto-
Encoders (β-VAE) [41] and Conditional Variational Auto-
Encoders (CVAE) [42]. The log-likelihood of a trajectory is
composed of the log-likelihoods of individual data points:

log pθ(τ |t, r) =
T∑
t=1

log pθ(xt|t, r). Using the derivation in

[43], this log-likelihood can be expressed as:

log pθ(xt|t, r) = Eqφ(z|O,r)[log pθ(xt|t, r)]

= Eqφ(z|O,r)[log
pθ(xt, z|t, r)
qφ(z|O, r)

]

+ Eqφ(z|O,r)[log
qφ(z|O, r)
pθ(z|xt, t, r)

]

(1)

The first term before the plus is the evidence lower bound
(ELBO) and the second term is a KL divergence term, which
is non-negative. Therefore, ELBO is a lower bound on the
likelihood of data. By following steps in [41], ELBO can
also be expressed as:

L(θ, φ) = Eqφ(z|O,r)[log pθ(xt|z, t, r)]
− βDKL (qφ(z|O, r)‖pθ(z|t, r))

(2)

The prior pθ(z|t, r) can be replaced with a Gaus-
sian N(0, I) [44]. Our proposed model is different from
CNMPs[14], in the sense that the network is specifically
designed to be conditioned with target rewards. Furthermore,
the learned latent representations in our case are represented
stochastically contrary to deterministic representation forma-
tion in CNMPs. This change enables the model to represent
the trajectory distribution in latent space rather than in the
task space.

c) Generating population of individual solutions (III):
After training the RC-NMP with the Replay Buffer experi-
ence, our system undergoes a search for better solutions, by
sampling trajectories in the vicinity of the best trajectories.
For this, multiple solutions are generated by conditioning the
network with the maximum reward obtained until that point.
Stochastic sampling procedure generates different latent rep-
resentations, zi. In order to further maximize the diversity
of these solutions, two evolutionary operations are applied
as follows.

d) Crossover operation (IV): The decoder network, i.e.
Query Net, receives the latent representation, and target
reward and time-points in order to generate the trajectory
points. In order to intermix the representations of different

individuals generated in the previous step, we applied one-
point crossover through temporal blending on the corre-
sponding latent representations. For this, random pairs of
latent representations (zi, zj) are selected for crossover;
and a random time-point tk is selected from the t0 − tn
range. Then the query network is conditioned with zi for
time-points t0 − tk and with zj for time-points tk+1 − tn;
generating SM values for all time-points. This crossover
operation is repeated for m such random pairs, generating
m/2 trajectories. Applying crossover symmetrically on the
selected pairs, m total trajectories are obtained at the end of
the crossover operation.

e) Mutation operation (V): In order to increase the
diversity of the solutions and encourage further exploration,
a smoothed Gaussian noise is added to all n trajectories
to encourage further exploration in the trajectory space.
Note that as the underlying network model does not have
extrapolation capability in the latent space, big changes in
the latent space resulted in slight changes in the trajectory
space, therefore mutation operation is applied in the task
space rather than the latent space.

f) PD controller (VI): We incorporated a PD controller
in our model to ensure smooth movement and guarantee of
reaching to the goal. The trajectories obtained at the end of
the evolutionary operations are given to PD controller for
execution. Our controller has two objectives: following the
trajectory smoothly and reaching to the goal point at the end.

u(t) = Kp ∗ e(t)−Kd ∗
de(t)

dt
e(t) = λ1 ∗ (g − x(t)) + λ2 ∗ (τ(t)− x(t))

(3)

Here g denotes the goal position and x(t) and τ(t) denote
the current and desired positions at time t. Kp and Kd are
PD parameters that define control behaviour. λ1 and λ2 are
weight parameters of the two objectives. In our application,
λ1 grows exponentially and λ2 decreases exponentially be-
tween 0 and 1 over time to ensure that the robot follows the
trajectory as much as it can.

After the execution, the combination of the best perform-
ing trajectories and random ones are added to the Replay
Buffer and the process is repeated.

IV. EXPERIMENTS

Experiments are conducted to evaluate RC-NMP com-
pared to the state of the art methods mentioned in the paper.
Details can be found in the readme file of the source code.

A. Stochastic sampling in latent space

This experiment aims to analyze the trajectories generated
by our proposed stochastic latent space sampling method
and compare these trajectories with the trajectory generated
by the CNMPs [14]. For this, 6 demonstration trajectories,
provided with the colored lines in Fig. 2, are learned by our
method and the CNMPs. These trajectories start from the
same initial position, follow varying curved paths and ends
up in the same final position. After learning, both models are
conditioned with the initial position, i.e. models are requested

Fig. 2: 6 demonstrations are shown with colored curves in
both figures. Given only the initial position, the generated
trajectories for CNMP (left) and RC-NMP (right) are com-
pared.

to generate trajectories that start from the initial position. As
provided in Fig. 2 (left), based on the distribution shown
with the shaded area, CNMP generated a single trajectory
shown with the bold line. On the other hand, as shown in
Fig. 2 (right), our method was able to generate different
trajectories that well-covered the demonstrated range from
multiple runs due to our latent representation stochastic sam-
pling approach. Note that our method was able to generate
trajectories that were similar to the demonstrated trajectories
at the edges, i.e. to the top-most and bottom-most ones.

B. Performance in generating complex trajectories

In this experiment, the aim is to thoroughly analyze the
performance of our method in generating target complex
trajectories, and compare its performance with ACNMP [15].
Furthermore, in order to understand the importance and influ-
ence of the crossover and mutation operations, we conducted
ablation procedure where either crossover or mutation was
removed from the learning loop. The task is designed as
generating trajectories that pass through given target points.
For each task, 2 to 5 different random points are generated
from a uniform distribution. The goal of the models is to
learn to generate trajectories that pass through each set of the
generated target points. For this task, the reward function is
defined as the minus sum of the distances of each target point
to the generated trajectory. Two example tasks with 4 target
points are provided in Fig. 3 where the points are shown with
black dots. Every set of random points contains 10 different
environments. For each environment, the algorithms run until
they use 300 trajectory samples. Fig. 4 (left) provides the
change in error throughout the learning trials obtained by
the compared models. The bold lines and shades show the
mean and standard error of the sum of distances divided by
the number of points achieved by each model in a mixed set
of environments. As shown, the crossover operation makes
the algorithm progress faster at early stages because genetic
diversity at the beginning is vast, although the trajectories
have a high error. The well-performing parts of 2 sub-optimal
trajectories can be combined with this method and higher
rewards can be achieved within a few generations. We also
observe that without mutation operation, which makes small
changes in the trajectories, the progress stopped when the

Fig. 3: Example environments for the task generating com-
plex trajectories. The complexity is dependent on the posi-
tions of random points and affects the model’s performance.

Fig. 4: Learning curves for RC-NMP, RC-NMP w/o
crossover, RC-NMP w/o mutation and ACNMP for gener-
ating complex trajectories experiment on the left, learning
curves of RC-NMP for different number of random points
on the right.

generated solution was close to an optimal one. RC-NMP,
on the other hand, was able to generate trajectories with
low error already in the initial steps of learning. ACNMP
performs slightly worse compared to our method. But more
importantly, ACNMP has an oscillating performance change
whereas RC-NMP offers a more stable learning because it
learns the mapping from the reward values to the trajecto-
ries considering both well and poor performing experience
rather than taking gradient steps from bad trajectories to
good trajectories for those particular samples. Fig. 4 (right)
provides the error made by our system for a different
number of target points. We observe that our method could
find perfect trajectories that pass through 2 points but the
performance degrades with the increasing number of points.
The reason behind this fall in the performance is related to
the complex and challenging configuration of the points. For
example, Fig. 3 provides two different sets of target points
and the generated trajectories. On the left, it can be seen
that the points were well-spaced along the x-axis and the
model was able to generate trajectories that satisfied the task
requirements. However, the last 2 points in the right figure
required trajectories with sharp turns as they were far away
from each other along the y-axis and very close along the
x-axis; and our model was not able to find a trajectory that
passed through these two points.

C. Multi-modal problem: Passing through linearly aligned
objects

In this section, we evaluate our method in a challenging
planar obstacle avoidance task and compare the results with a

a) b) c)

d) e) f)

Fig. 5: Snapshots from the ‘pass between two obstacles’
experiment. (a) gives the setup; (b,c,d) show snapshots from
collisions observed during learning and (e,f) show snapshots
from successful execution after learning is accomplished.
The generated trajectories for 2 modes are shown in the plots
on the right. The black circle represents the bottle on the table
and it is expanded with the radius of the bottle at hand to
the gray circle. Video of this experiment is available in the
supplementary material.

state-of-the-art methods, REPS[16] and DREPS [17], where
this task was originally formalized. Initial position, two
obstacles and final position are arranged in a line in this task.
The end-effector of the robot needs to move from the initial
position to the final position, avoiding the obstacles and
passing through the aperture between them. The challenge
in this task stems from the fact that this is a multi-modal
problem with multiple distant optimal solutions where many
approaches (e.g. [16]) get trapped in between the alternative
maxima as reported in [17]. Furthermore, the reward uses
only a binary signal for obstacle collision, rather than a
more informative value such as the distance to the objects
as in our previous experiments. In detail, we used the same
reward defined in [17]. The reward is composed of three
terms, where the first and second terms penalize collision
with the bottles and not passing between the bottles, and the
third term punishes long trajectories. Formally, the reward is
defined as follows:

R = −2Nbottlesdown − 4Icross − 0.15Ltrajectory (4)

where Nbottlesdown, Icross, and Ltrajectory denote the number
of bottles the robot collided with, whether the end-effector
passed through the aperture between bottles, and the length
of the trajectory in meters. Note that the second term does
not enforce any constraint in the direction of aperture-pass.
The models should generate an S-shaped or reverse S-shaped
trajectory making the problem a multi-modal one.

In the experiment, we solved the task in similar settings
and conditions with [17] where the sum of radii of the bottle
and the end effector was set as 6.5 cm. To reflect a similar
setup with [17], we put bottles with 3 cm radius on the table
and another bottle with a radius of 3 cm was attached to

Fig. 6: Learning curves for RC-NMP, DREPS and REPS for
the multi-modal problem

the robot’s gripper. We left 0.5 cm error margin as a rule of
thumb since it is not possible to put the bottles at exactly
the same locations between runs. The trajectories were run
on UR10 robot.

Our algorithm starts with a straight line in its replay
buffer as in [17]. After the trajectories are generated, the
PD controller is used to find the next position given the
current and target positions in each time point. Our algorithm
reached a satisfactory solution, reaching to the end position
by passing through the bottles without colliding with them,
48 times out of 50 trials, whereas DREPS [17] had 47
times and REPS [16] had 35 times. Fig. 6 provides a more
detailed comparison between our method and the baselines.
The bold lines and shades correspond to the mean and to
standard deviation of rewards. As shown, our method (RC-
NMP) reaches to maximum reward within 10 generations.
Meanwhile, DREPS reaches to the same reward rate around
50 generations and REPS gets stuck at low rewards. Our
method uses 20 trajectory samples in each generation and 20
trajectory samples from the crossover operation, as opposed
to 50 trajectory samples used by DREPS and REPS per
update. Therefore, our method required around 5 times less
number of rollouts compared to the DREPS and REPS. Our
model successfully generated trajectories for both modes and
a number of snapshots from the execution of trajectories
taken at different generations are provided in Fig. 5 along
with the top-down view of the final trajectory distribution.

V. CONCLUSIONS

In this work, we proposed a novel method, which syn-
thetically produces its own demonstrations and improves
itself fully using supervised learning. The model constructs
a representation distribution using variational inference to
sample reward conditioned trajectories and it increases the
diversity of trajectories with the help of crossover and mu-
tation, techniques from genetic algorithms. The experiments
showed that it offers a more stable learning than its policy
gradient variant and it is more sample efficient than two other
RL methods implemented on top of movement primitives.
In the future, we plan to investigate the means to achieve
the mutation operation in the latent space and to keep the
diversity in the population giving the capability of encoding
multi-modal trajectories in the same policy.

REFERENCES

[1] O. Kroemer, S. Niekum, and G. Konidaris, “A review of robot learning
for manipulation: Challenges, representations, and algorithms,” arXiv
preprint arXiv:1907.03146, 2019.

[2] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[3] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Rob. and Auto. Sys., vol. 57,
no. 5, pp. 469–483, 2009.

[4] G. Dulac-Arnold, D. Mankowitz, and T. Hester, “Challenges of
real-world reinforcement learning,” arXiv preprint arXiv:1904.12901,
2019.

[5] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot,
D. Horgan, J. Quan, A. Sendonaris, I. Osband et al., “Deep q-learning
from demonstrations,” in Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

[6] M. Vecerik, O. Sushkov, D. Barker, T. Rothörl, T. Hester, and
J. Scholz, “A practical approach to insertion with variable socket
position using deep reinforcement learning,” in 2019 International
Conference on Robotics and Automation (ICRA). IEEE, 2019, pp.
754–760.

[7] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” 2018.

[8] A. G. Barto and T. G. Dietterich, Reinforcement Learning and Its
Relationship to Supervised Learning. John Wiley & Sons, Ltd, ch. 2,
pp. 45–63.

[9] J. Schmidhuber, “Reinforcement learning upside down: Don’t predict
rewards – just map them to actions,” 2020.

[10] R. K. Srivastava, P. Shyam, F. Mutz, W. Jaśkowski, and J. Schmid-
huber, “Training agents using upside-down reinforcement learning,”
2019.

[11] M. Garnelo, J. Schwarz, D. Rosenbaum, F. Viola, D. J. Rezende,
S. Eslami, and Y. Teh, “Neural processes,” ArXiv, vol. abs/1807.01622,
2018.

[12] S. Nolfi, D. Floreano, and D. D. Floreano, Evolutionary robotics:
The biology, intelligence, and technology of self-organizing machines.
MIT press, 2000.

[13] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe, “Variational inference:
A review for statisticians,” Journal of the American Statistical
Association, vol. 112, no. 518, p. 859–877, Apr 2017. [Online].
Available: http://dx.doi.org/10.1080/01621459.2017.1285773

[14] M. Y. Seker, M. Imre, J. Piater, and E. Ugur, “Conditional neural
movement primitives,” in Proceedings of Robotics: Science and Sys-
tems (RSS), Freiburgim, Germany, June 2019.

[15] T. Akbulut, E. Oztop, Y. Seker, H. Xue, A. Tekden, and E. Ugur,
“Acnmp: Flexible skill formation with learning from demonstration
and reinforcement learning via representation sharing,” in Conference
on Robot Learning (CoRL), 2020.

[16] J. Peters, K. Mülling, and Y. Altun, “Relative entropy policy search,”
in Twenty-Fourth AAAI Conference on Artificial Intelligence, vol. 10.
Atlanta, 2010, pp. 1607–1612.

[17] A. Colome and C. Torras, “Dual reps: A generalization of relative
entropy policy search exploiting bad experiences,” IEEE Transactions
on Robotics, vol. 33, no. 4, pp. 978–985, 2017.

[18] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors,” Neural computation, vol. 25, no. 2, pp. 328–373, 2013.

[19] S. Calinon, “A tutorial on task-parameterized movement learning and
retrieval,” Intelligent Service Robotics, vol. 9, no. 1, pp. 1–29, 2016.

[20] H. Girgin and E. Ugur, “Associative skill memory models,” in IROS,
2018, pp. 6043–6048.

[21] E. Ugur and H. Girgin, “Compliant parametric dynamic movement
primitives,” Robotica, vol. 38, no. 3, pp. 457–474, 2020.

[22] A. Paraschos, C. Daniel, J. Peters, and G. Neumann, “Probabilistic
movement primitives,” in NIPS, 2013, pp. 2616–2624.

[23] M. Garnelo, D. Rosenbaum, C. Maddison, T. Ramalho, D. Saxton,
M. Shanahan, Y. W. Teh, D. Rezende, and S. M. A. Eslami, “Condi-
tional neural processes,” in ICML, 1704-1713 2018.

[24] N. Chen, M. Karl, and P. van der Smagt, “Dynamic movement
primitives in latent space of time-dependent variational autoencoders,”
11 2016.

[25] M. Noseworthy, R. Paul, S. Roy, D. Park, and N. Roy, “Task-
conditioned variational autoencoders for learning movement primi-
tives,” ser. Proceedings of Machine Learning Research, L. P. Kaelbling,
D. Kragic, and K. Sugiura, Eds., vol. 100. PMLR, 2020, pp. 933–944.

[26] T. Osa and S. Ikemoto, “Goal-conditioned variational autoencoder
trajectory primitives with continuous and discrete latent codes,” SN
Computer Science, vol. 1, no. 5, 2020.

[27] M. Karl, M. Soelch, J. Bayer, and P. van der Smagt, “Deep variational
bayes filters: Unsupervised learning of state space models from raw
data,” 2017.

[28] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” 2016.

[29] S. Stark, J. Peters, and E. Rueckert, “Experience reuse with proba-
bilistic movement primitives,” in Proceedings of the IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), 2019.

[30] M. Ewerton, O. Arenz, G. Maeda, D. Koert, Z. Kolev, M. Takahashi,
and J. Peters, “Learning trajectory distributions for assisted teleoper-
ation and path planning,” Frontiers in Robotics and AI, vol. 6, p. 89,
2019.

[31] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolution
strategies as a scalable alternative to reinforcement learning,” arXiv
preprint arXiv:1703.03864, 2017.

[32] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competi-
tive alternative for training deep neural networks for reinforcement
learning,” arXiv preprint arXiv:1712.06567, 2017.

[33] S. Chang, J. Yang, J. Choi, and N. Kwak, “Genetic-gated networks
for deep reinforcement learning,” in Advances in Neural Information
Processing Systems, 2018, pp. 1747–1756.

[34] T. Gangwani and J. Peng, “Policy optimization by genetic distillation,”
arXiv preprint arXiv:1711.01012, 2017.

[35] Z. Wang, C. Chen, and D. Dong, “Instance weighted incremental evo-
lution strategies for reinforcement learning in dynamic environments,”
arXiv preprint arXiv:2010.04605, 2020.

[36] E. Conti, V. Madhavan, F. P. Such, J. Lehman, K. Stanley, and J. Clune,
“Improving exploration in evolution strategies for deep reinforcement
learning via a population of novelty-seeking agents,” in Advances in
neural information processing systems, 2018, pp. 5027–5038.

[37] J. Lehman and K. O. Stanley, “Novelty search and the problem with
objectives,” in Genetic programming theory and practice IX. Springer,
2011, pp. 37–56.

[38] S. Khadka and K. Tumer, “Evolution-guided policy gradient in rein-
forcement learning,” in Advances in Neural Information Processing
Systems, 2018, pp. 1188–1200.

[39] C. Bodnar, B. Day, and P. Lió, “Proximal distilled evolutionary
reinforcement learning,” arXiv preprint arXiv:1906.09807, 2019.

[40] A. Pourchot and O. Sigaud, “Cem-rl: Combining evolutionary
and gradient-based methods for policy search,” arXiv preprint
arXiv:1810.01222, 2018.

[41] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick,
S. Mohamed, and A. Lerchner, “beta-vae: Learning basic visual
concepts with a constrained variational framework,” in ICLR, 2017.

[42] K. Sohn, H. Lee, and X. Yan, “Learning structured output representa-
tion using deep conditional generative models,” in Advances in Neural
Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates, Inc.,
2015, pp. 3483–3491.

[43] D. P. Kingma and M. Welling, “An introduction to variational
autoencoders,” CoRR, vol. abs/1906.02691, 2019. [Online]. Available:
http://arxiv.org/abs/1906.02691

[44] C. Doersch, “Tutorial on variational autoencoders,” 2016.

