

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 52–59| 52

Learning Object Affordances from Sensory-Motor Interaction via

Bayesian Networks with Auto-Encoder Features

Mete Tuluhan Akbulut*1, Emre Ugur2

Submitted: 04.11.2019 Accepted: 19.05.2020

Abstract: In this paper, we study learning relationships between objects, actions, and effects. “Affordance” is an ecological psychology

concept, which addresses how humans learn these relationships and which is also studied in cognitive robotics to transfer the same ability

to robots. Our model is built on top of two existing models in this field and uses their strengths to introduce a novel system, where an

anthropomorphic robot observes its environment and changes in that environment after executing pre-learned actions. Robot transfers these

observations to object and effect properties in the same space and object affordances are learned using Bayesian Networks. The dimensions

of features are decreased through autoencoders to achieve a compact network. Usage of a probabilistic model helps our system to deal with

missing information or to make predictions for object properties and actions along with effect properties. We illustrate the advantages of

our model by comparing it with the two aforementioned models.

Keywords: affordance, cognitive robotics, developmental robotics, perception, learning

1. Introduction

Humans solve many tasks in their daily life without recognizing

how complex they are. It is more obvious to researchers in artificial

intelligence (AI) and robotics because computers can do better than

humans in games [1] but progress of AI is much slower when it

comes to addressing real-world problems [2].

To achieve human-level performance in real-world tasks, robots

should be able to understand the characteristics of the environment

and to estimate how their actions change the environment. In this

article, we approach this challenge from a developmental

perspective. Before making plans to achieve goals, growing infants

first make sense of incoming stimuli by learning how they can

change the environment. Babies manipulate the objects differently

according to their properties while they are 6 months old [3]. After

6 months, they start to make sense of not only objects and surfaces

but also the relations between them [4]. As they grow up, the

perceived properties of the environment change in relation to their

abilities. Crawling children find both rigid and non-rigid surfaces

navigable, whereas walking children learn that non-rigid objects

are not easily navigable [5].

This phase is explained with the phenomenon “affordance” in

developmental psychology [6]. It is defined by J.J. Gibson as

directly perceived “meanings” of surroundings in an organism’s

environment and provided action possibilities. For example,

detecting the affordance of a bottle is analogous with the question:

“Which actions can be taken using this bottle?”. However, it is

important to note that this relation does not necessarily require

object recognition [7]. The actions are linked to the object’s

features directly.

In this work, we model affordances for robots on top of two

existing works on affordances. The first approach [29,34,39] used

Support Vector Machines to learn affordances. Support Vector

Machine (SVM) is a strong method to model affordances, but it is

a deterministic method that allows only unidirectional prediction.

The second one [25,31,32,33] used Bayesian Networks to learn

affordances. Bayesian Network (BN) is a graph that represents

relations between variables of data in terms of probability [8]. It is

a directed acyclic graph and each directed edge defines a

dependency, i.e. conditional probability, of the incoming node on

the outcoming node. Bayesian Networks do not try to fit a function

like standard supervised learning algorithms, thus are less prone to

overfitting. When some input information is missing, Bayesian

Networks can make predictions where standard supervised

algorithms do not perform well. This representation is very useful

for the affordances because the example question above can be

rewritten as: “Which action is more probable to produce the

desired effect for this bottle?”. The network visualizes these

dependencies and helps the computation of probabilities.

Unknown probabilities can be inferred omnidirectional according

to Bayes’ theorem. The nodes of the Bayesian Network in [25]

were object categories, effect categories, and action categories.

However, the object and effect types were not learned directly from

data. They were predefined and encoded as different nodes in BN.

For example, color, shape, and size were defined for the objects;

and object velocity, contact time, and object-hand distance were

defined for the effects. Thus, the number of nodes of the Bayesian

Network increased with the number of features, and it became

harder to make an inference. Raghvendra and Inamura extended

Bayesian Networks for learning tool affordances by including tool

related nodes [33]. Saponaro et al. extended this framework to

learning affordances along with the verbal descriptions [31]. Then,

Hidden Markov Models with Gaussian Mixture Models were used

to interpret and to describe other agents’ actions. Andries et al.

[32] formalized affordances with Bayesian Networks emphasizing

the equivalence classes in affordances. However, effect and object

types were predefined in these studies.

In our work, we use Bayesian Networks instead of SVMs to learn

1 Computer Eng., Bogazici University, Istanbul–34342, TURKEY

 ORCID ID: 0000-0001-5822-1031

2 Computer Eng., Bogazici University, Istanbul–34342, TURKEY
 ORCID ID: 0000-0001-9597-2731

* Corresponding Author: Email: tuluhan.akbulut@boun.edu.tr

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 52–59| 53

the affordances and our model learns the categories of the object

and the effect directly from data. Furthermore, instead of pre-

grouping data as in [25], we use neural networks to decrease

dimensions of data in order to obtain a single object type and a

single effect type. In particular, we use an autoencoder that learns

to produce outputs as close as to the inputs [9], forcing the input

through a bottleneck layer composed of a small number of neurons.

The activations at the bottleneck layer are used as the low-

dimensional representation in a latent space, through which K-

means clustering is applied to find data- driven categories. As a

result, our Bayesian Network is formed using only 3 nodes for

object, action, and effect; which in turn allows efficient inference.

Additionally, clustering is not done based on only linear relations

of features as in [25] and [29], because auto-encoders extract

nonlinear relationships in data as well.

Our contribution can be summarized as follows: (1) extension of

our previous work with a probabilistic approach, (2) use of

autoencoders to avoid pre-engineered Bayesian Network nodes

and keeping network size at a minimum to allow efficient

inference, and (3) qualitative and quantitative comparison of

discriminative and generative approaches, i.e. SVM-based and

Bayesian Network based affordance learning methods.

2. Related Work

Using concepts in developmental psychology in robotics has

become popular in recent years [10, 11, 12, 13]. In these studies

robots explore and learn about their environment with minimal

help from experts. In this section, we review studies in this field

and emphasize our contribution.

The prominent studies that use motor activity to explore the

environment and learn affordances include Metta and Fitzpatrick

[14], Fitzpatrick et al. [15] and Stoytchev [16]. As an example,

Stoytchev [16] studied tool affordances by discovering tool-

behavior pairs that give the desired effect. However, in these

studies the learned affordances could not be generalized on novel

objects/tools, because the learned relations between visual features

and effects of tools were not addressed.

The relations between visual features and effects were addressed

by Ugur and Sahin [17], Erdemir et al. [18], Fritz et al. [19], where

associations between visual features of objects and their

affordances were learned. In these studies, the affordance

categories were defined by the programmer and supervised

learning was implemented. So, the robot did not explore the

environment and learned affordances, rather it predicted

predefined effects. Sinapov and Stoytchev [20], Griffith et al. [21],

Cos-Aguilera et al. [22] studied self-discovery of effects and

affordances. In these studies, effect categories were learned

through unsupervised clustering in effect space and these

categories were mapped to objects so that the robot was able to

choose actions that would result in desired effects.

The studies that we discussed were all deterministic and could

learn and reason about one-directional mappings, i.e. they could

predict the effects given object features and robot actions, but they

could not predict the object features given robot actions and

desired effects. Demiris and Dearden [23], Hart et. al. [24],

Raghvendra and Inamura [33], Saponaro et al. [31], Andries et al.

[32], and Montesano et. al. (2008) [25] used probabilistic networks

to learn relations between actions, objects, and effects.

Probabilistic networks allow learning multi-directional relations.

For example in Montesano et al. [25], Bayesian Networks encoded

these relations and robot was able to predict the object categories

given that effect categories and actions were known, or it could

also predict effect categories given that object categories and

actions were known, or it could also estimate the required action to

obtain a given effect category for a given object. On the other hand,

object features and different effects were modeled with different

nodes and as the number of nodes increases, the number of possible

network structures increases exponentially. Therefore, it would be

impractical to explore all possible graphs. They proposed different

methods to make inference such as Markov chain Monte Carlo

(MCMC) method or the maximum likelihood solution provided by

the K2 algorithm.

Recently, deep learning approaches gained popularity for learning

locomotion and manipulation affordances. Do et. al. [38] used

Convolutional Neural Networks (CNN) to detect objects and

affordances from raw RGB images. Seker et al. [35] used CNN and

Long Short-Term Memory (LSTM) to predict push affordances

and low-level outcome trajectories of levered-up objects from their

depth image. Chu et al. [36] realized a deep learning framework

that predicts the affordances of object parts for robotic

manipulation through segmenting affordance maps by jointly

detecting and localizing candidate regions within an image. Li et

al. [37] exploited deep residual U-Nets for learning grasp

affordances. While deep learning affordance classifiers acquire

high performances in the corresponding datasets, they generally

require large numbers of training samples, which is challenging

and time consuming to obtain from robotics interactions.

None of the methods above are fit for complex planning because

of the effect-representation they have. It is not possible to plan one

step further with these representations. In [26, 27, 28] the robots

could make multi-step predictions by linking actions according to

logical precondition and postcondition predicates. For example,

Wörtgötter et al. [27] defined conditions as binary functions of

sensor readings and then the robot learned to remodel these

conditions in the form of pre-conditions and effects with the help

of a human expert. Ugur et al. [29] showed that complex planning

can be achieved if effects and objects were encoded in the same

feature space. By adding the object features of the current state to

the predicted effect features, the robot could predict the next

perceptual state, therefore it was able to achieve multi-step

planning. In [29], Support Vector Machines were used in

predicting effects from objects and actions. This made the model

deterministic and relations between objects and effects

unidirectional.

In our study, we combine the Bayesian Network idea with the

SVM learning approach to make the model probabilistic and

relations bidirectional. Directly applying Bayesian Networks to the

model assumes human expert domain knowledge, because

Bayesian Networks require discretization. On the other hand, the

discretization performed by humans is not scalable to life-long

learning settings and might not correspond to the sensorimotor

capabilities of the robot. Classic clustering algorithms to discretize

the data do not work simply because of the aforementioned

drawback of [25]. An increasing number of features result in

exponential growth of the number of possible Bayesian Networks.

We propose to transfer the object features into a latent space

through autoencoders first and only then apply clustering

algorithms so that we could have only one node for objects and one

node for effects without any pre-engineering. Besides, in [25] and

[29] X-means clustering algorithm was applied to data for

categorization and clusters were formed based on Euclidean

distances in feature space. However, since autoencoders extract

nonlinear relationships in data, using them before categorization

enables the model to cluster data based on nonlinear and complex

relations.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 52–59| 54

3. The Approach

reduction, pixels at the edge of the objects are removed and Median

and Gaussian filters with a 5x5 sized window are applied. In the

end, feature vectors of each object are determined as follows.

Three categories of information are encoded in the feature vector

of the object: Object visibility that encodes the existence of the

object; object position that is represented by the six values along

longitudinal, lateral and vertical axes and object shape that

corresponds to the distribution of local surface normal vectors. The

normal vector around each point is computed using positions of the

two neighbors in the range image:

Here, d represents the 3D position, n corresponds to neighbor pixel

distance and it can be set to an arbitrary value. The normal vector

is calculated in a spherical coordinate system, where the vector is

represented with radius, analogous to the distance from the origin,

polar angle, the angle between the normal vector and x-z plane,

azimuthal angle, the angle between the projection of normal vector

to the x-z plane and z-axis. After angles are calculated for every

pixel, two histograms are formed for the 2 angles and they express

36 shape features.

For interaction, one lift action and three push actions are defined,

and the robot is capable of performing these actions. The robot

perceives the positions of objects by its camera and it is able to

interact with the objects at different positions. For the three push

actions, namely push-left, push-right and push forward, the robot

hand is moved to the corresponding side of the object and push-

action is done towards the center of the object. In order to lift the

object, the robot puts its hand at the back-right diagonal of the

object and moves it towards the object while closing the fingers.

After grasping, the object is lifted vertically. The objects that the

robot interacts with can be categorized as cubic, cylindrical and

spherical. Different types of objects result in different types of

effects after action execution. For example, pushing a cubic object

makes its position change but pushing a spherical object makes it

roll away from the table so that the camera cannot see it anymore.

Also, the result of pushing a cylindrical object varies according to

the side of the object that force is applied.

In the explained way, the robot collects object features via its

physical simulator and interacts with the objects randomly. The

final features of the object are also recorded after the action is

applied. An effect vector is acquired by subtracting initial feature

vector from the final feature vector:

Learning affordances require abstraction of observation. The

model uses discrete random variables to achieve this abstraction.

For example, object features can be represented with discrete

random variables for shape, position such as O = {s1, s2,…, p1,

p2, …}. However, many random variables cause trouble when

constructing the Bayesian Network. So, dimension reduction for

the object and the effect features is needed.

For that purpose, we use autoencoders. In Fig. 1, it can be seen that

a neural network is designed to construct an output as close as

possible to its input through a bottleneck layer. The activations in

the bottleneck layer represent input features and the space that

consists of these activations is called latent space. In our model,

the first layer has the same size as the input feature vector. Then in

every layer, the dimension size is reduced to its half until 3 nodes

are enough to represent the data. More nodes may increase

accuracy, but 3 nodes work fine in our case since our concern is to

decrease the dimension number for clustering. After the bottleneck

layer, in every layer, dimension size is doubled until we have a

layer that has the same size as the input vector. Since dimensions

of latent space are fewer than the original space, the possible BN

network structure decreases. After the initial features are

transferred into a latent space, the K-means clustering algorithm is

applied to categorize the data. Effect features are also clustered

with the K-means algorithm, which is an unsupervised algorithm

that selects K number of centers and assigns the data points to the

closest center to group the data. Afterwards, new centers of groups

are determined, and grouping is done again. The algorithm stops

when no point needs to change its cluster. In the end, the algorithm

gives clusters, where data points are similar according to positions

in defining space.

Fig. 1. Autoencoder schematic, the activations of the bottleneck layer are

the representation of the input in latent space. Encoder decreases the input

dimension in a way so that decoder can reconstruct the input.

After grouping object and effect features, all that is left is to encode

the relationship between the actions, the object clusters and the

effect clusters. In order to do this, Bayesian Networks are used.

Bayesian Network is a graph: G (V, E), whose edges specify

conditional probabilities. Thus, it is a convenient way to illustrate

and model affordances. It allows deducting probabilities for a node

in condition with other nodes or the joint probabilities in terms of

conditional probabilities:

Fig. 2. shows a network with 3 nodes and 2 edges. BNs need

discretization and that is why clustering takes place in the previous

step.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 52–59| 55

Fig. 2. Bayesian Network for affordances. Effects are conditioned on

which action or object are selected. Objects and actions can be selected

arbitrarily, so they are independent variables. However, some actions

coupled with some objects are more likely to produce a desired effect.

Therefore, actions and objects are not conditionally independent.

To form the network, the conditional probabilities of child nodes

and the probability distribution of parent nodes should be

calculated in the data:

Here, "𝑎, 𝑒, 𝑜" stand for a single action, object and effect,

respectively and "�̅�, e̅, o̅" represents for actions, objects and effects

alternative to "𝑎, 𝑒, 𝑜". After the network is formed, it can infer

probabilities for each node by following Bayes’ rule:

It is also possible to infer the probabilities even in the case of

incomplete data. Neural networks or other standard methods like

SVM cannot handle incomplete data well but Bayesian Networks

can provide good predictions with the formulas below:

4. Experiments

4.1. 4.1 Experimental Setup

The simulated robot interaction data obtained in [29] is used in this

paper. The robotic system is composed of a five-fingered 16 DOF

robot hand and a 7 DOF robot arm. The infrared range camera

provides a 176x144 pixel array with 1 cm distance accuracy, and

0.23-degree angular resolution. The camera is able to produce a

grayscale image of the scene and a confidence value for each pixel.

7 types of objects were used: There were 2 balls, 2 cylinders, 2

rectangular prisms with different sizes and 1 pitcher. Different

shapes and sizes were selected to make robots learn related

affordances.

The robot explored its environment in the simulator as follows

(Fig. 3): The robot perceived its environment before and after

interacting with one of the random objects placed in a random

position with one of its four actions. Approximately 10500

interactions were performed for each action type and feature

vectors of objects before and after an action execution were

recorded. Both the initial and final feature vector were composed

of 43 features, including 1 visibility, 6 position, and 36 shape-

related features (Fig. 4). The effect feature vector was found by

subtracting the initial feature vector from the final.

Fig. 3. View of the physics simulator, Open Dynamics Engine (ODE) is

used to develop the simulator. The simulated range camera sends a

176x144 ray array from its center with 0.23-degree angular intervals. The

first contact of each ray with any surface is determined using ODE

functions. The range value is calculated as the distance between the

contact point and ray origin point. Camera noise is simulated as a

Gaussian noise with zero mean and 0.2 variance.

Fig. 4. Bar plot of features of a cylindrical object. Visibility,

position and shape-related features are shown with different

colors.

4.2. 4.2 Discretization of data

Our aim is to cluster the initial and effect data so that we can form

a Bayesian Network. That’s why our model takes the initial data

and puts it into an autoencoder to reduce dimensionality since

clustering algorithms do not perform well in high dimensional

data. We choose the K-means algorithm to cluster latent vectors

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 52–59| 56

and 7 is chosen for K because there are 7 types of objects. The

result can be seen in Fig. 5.

In the figure, it can be realized that clusters are not separated

ideally because of the limited generalization capabilities of the

autoencoders. In the ideal scenario, the representation of the object

features could be marked by hand. However, the purpose is to

create a general framework, which can learn affordances of any

random object. Therefore, the objects are not labeled in our input

data, we decrease dimensions by using an autoencoder and we

cluster the representation using the K-means algorithm.

The K-means algorithm is also applied to effect vectors, but we do

not need to put effect vectors into the autoencoder because we

figured out later that values of shape vector for effect are not

correlated with action type. Thus, it was not necessary to decrease

dimensions further. So, omitting shape vectors reduced the

dimensionality to 7 from 43. Then the K-means algorithm is

applied again and 5 effect categories were obtained.

Fig. 5. 7 clusters obtained by the K-means algorithm on object data. The

latent space has 3 dimensions. For visualization, the same figure is shown

from different view angles. Different colors show different clusters.

4.3. 4.3. Prediction results

After the discretization of the initial and effect vectors, the

Bayesian Network is formed. With the Bayesian Network model,

it was possible to infer the probability of any node given the other

node values. For comparison, three separate SVM classifiers were

trained to predict the effect category given the object features and

the action type; the object category given the effect features and

the action type; and finally, the action type given the object and the

effect features.

Table 1: The results for effect, object and action prediction

 Effect

prediction

Object

prediction

Action

prediction

SVM [29] 83.1% 35.7% 58.6%

Our work 70.3% 48.4% 59%

Note that, originally in [29], for each action one SVM model was

trained only to predict the effect. To compare with our model,

actions were enumerated as 1000, 0100, 0010, 0001 so that they

have equal distance to each other. Then all data for different

actions were concatenated and an SVM was trained for effect

prediction. Two different SVM models were also required to be

trained in the same way for object and action prediction.

Furthermore, in [29], action selection was performed by a state

space search tree algorithm that predicts effects of different action

sequences and selects the closest one.

Bayesian Network provides probabilities for each possible output

whereas SVM assigns a single class for a given input. It is both

possible to select the highest probability output as prediction

(Table 1) or to make a search in outputs with probabilities bigger

than a threshold (Table 2).

The results summarized in Table 1 shows that our autoencoder

based Bayesian Network model gives similar results in predicting

actions, outperforms SVM predictors in predicting objects, and

performs worse in predicting effects when the output with highest

probability is selected as the prediction of BN. As expected, SVM

performs better in predicting the effect as Bayesian Networks lose

information while discretizing the initial data. The accuracy fall in

object prediction can be interpreted as follows: the prediction

becomes an ill-posed problem when SVM tries to predict the initial

cluster from initial and effect data. There are potentially different

object types that can result in the same effect and it is hard to

differentiate them, but Bayesian Networks can model such

relations better. The reason for the similarity of action prediction

accuracy may be due to the limitations inherent to the experiment

setup for action prediction. In the previous work of Ugur et. al [29],

it was indicated that all push-actions produced similar effect

categories. For example, all 3 pushing actions for spherical objects

result in a similar effect which is falling from the table.

Table 2: The results for effect, object and action prediction for different

threshold probabilities

 Effect

prediction

Object

prediction

Action

prediction

SVM [29] 83.1% 38% 58.6%

p(x)>0.33 70.8% 49.1% 59.7%

p(x)>0.25 81.4% 69.2% 84.2%

p(x)>0.15 92.3% 81.3% 93%

p(x)>0 100% 100% 100%

The results summarized in Table 2 shows that our autoencoder

based Bayesian Network model gives better results as the threshold

probability decreases. Here using the threshold value refers to

trying all outputs whose probabilities are larger than the threshold.

BN model outperforms the SVM predictor as the threshold

probability gets smaller. This approach would decrease the number

of states in the search tree of [29] exponentially as well. In [29],

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 52–59| 57

planning was done by constructing a tree structure where nodes

and edges represented the perceptual states and action-object pairs,

respectively. The sequence of actions and the objects were

searched and selected in order to obtain the desired effect. The

branching factor in such a search tree is the number of children of

each node, and the branching factor was the number of actions ×

the number of objects. However, the branching factor of the

proposed method is proportional to the number of most possible

actions and objects for the desired effect. Table 3 illustrates this

idea: For a test set with 4288 samples, the method in [29] had to

check 4288× 4 actions × 7 objects, in total 120064 leaves but the

branching factor of the proposed tree is 7758 for the threshold

probability of 0.25. On top of that, the prediction accuracy for the

test set is 0.86. In the previous method [29], the accuracy of the

planning phase was bounded by the accuracy of the SVM. Here, it

is possible to increase the accuracy by decreasing the threshold

probability as it is shown in Table 2. In our method, the planning

accuracy is bounded by the representation capability of the

acquired data about the environment.

Table 3: Results for action and object prediction as a tuple with given

effect

 Number of

test samples

Number of the

searched tuples

(branching factor)

Accuracy

p(x)>0.33 4288 4156 0.62

p(x)>0.25 4288 7758 0.85

p(x)>0.18 4288 9460 0.92

One important final remark is that Bayesian Networks provide one

unified framework whereas the SVM approach requires a separate

model for each variable to predict. Assuming other components

such as tools, gestures, language, we would require training and

predicting with separate SVMs; however, one single Bayesian

Network model with more nodes can be directly used instead.

4.4. Results for effect prediction with missing information

Table 4: Results for effect prediction only with action and only with

object

 Effect prediction only

with action

Effect prediction

only with object

SVM [29] 61.9% 54.8%

Our work 58.1% 53.6%

In the real world, the robots may be in a partially observable state.

For example, the camera of the robots may not detect the object

properties fully. Thus, we find it important to investigate the

robustness of our model in such conditions. We tested the SVM

and our model by giving either the object category or the action

type as input and requesting the effect category as the output. For

these cases, SVM performed slightly better than BN method when

output of the BN was used through winner-take-all as it can be seen

in Table 4.

On the other hand, BNs inherently provide probabilities along with

the predicted values. Therefore, we investigated to exploit

provided probabilities and performed a further analysis.

Table 5: Results for effect prediction only with action and only with

object using threshold

 Effect prediction

only with action

Effect prediction

only with object

SVM [29] 61.9% 54.8%

p(x)>0.3 54.1% 25.6%

p(x)>0.25 75% 65.5%

From Table 5, it can be deduced that the prediction of BN

significantly improves when the model considers probabilities

assigned to outputs and empirically sets a threshold. The results

show that using the most probable outcomes that only BN can

provide enables our model to outperform SVM. The jump in the

part effect prediction only with the object shows that there are

many outputs’ probabilities within that 0.05 range.

Finally, we should remind again that the old SVM, that was trained

before, could not produce these results. For these 2 predictions, 2

more SVMs were trained whereas a single Bayesian Network can

make all 5 predictions above.

5. Conclusion

This paper addresses learning affordances and develops a novel

method that uses autoencoders to decrease input dimensions in data

and constructs a Bayesian Network to encode relationships

between action, object and effect categories.

Autoencoders can extract nonlinear and complex relationships and

can decrease the number of data dimensions so that the Bayesian

Network can be constructed with a few nodes. Since larger BNs

have a considerable amount of possible network structures, our

network can infer probabilities computationally more efficiently.

In this work, our results are compared with that of Support Vector

Machines. The biggest advantage of our approach is that a single

Bayesian Network can predict effects, objects, and actions

separately but different SVMs are needed to predict different types

of outputs. When there is change in input or prediction is done with

missing information, new SVMs are required to be trained.

However, the Bayesian Network can handle such imperfections. In

terms of accuracy, SVM can make equally good or better

predictions except for object prediction whereas our model makes

its predictions based on the most probable output. However, our

model outperforms SVM especially in object and action prediction

when it tries all outputs whose probabilities are higher than a

threshold. This approach increases the computation time but high

accuracy in object and action prediction becomes very useful in the

planning phase of a task. When that prediction is not accurate, the

model has to consider all possible scenarios to reach the desired

effect. In our case, the model can just give the required object and

action with high precision. For future work, we will show that this

planning approach works well with real robots. We will also

investigate to use this approach in more complex object-action

interactions.

References

[1] [1] D. Silver et al., “A general reinforcement learning algorithm that

masters chess, shogi, and Go through self-play,” Science, vol. 362,

no. 6419, pp. 1140–1144, 2018.

[2] [2] G. Dulac-Arnold, D. J. Mankowitz, and T. Hester, “Challenges

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 52–59| 58

of real-world reinforcement learning,” arXiv preprint

arXiv:1904.12901, 2019.
[3] [3] E. W. Bushnell and J. P. Boudreau, “Motor development and the

mind: The potential role of motor abilities as a determinant of

aspects of perceptual development,” Child Development, vol. 64,

no. 4, pp. 1005– 1021, 1993.

[4] [4] K. S. Bourgeois, A. W. Khawar, S. A. Neal, and J. J. Lockman,

“Infant manual exploration of objects, surfaces, and their

interrelations”, Infancy, vol. 8, no. 3, pp. 233–252, 2005.

[5] [5] H. L. Pick, “Eleanor j. gibson: Learning to perceive and

perceiving to learn.” Developmental Psychology, vol. 28, no. 5, p.

787, 1992.

[6] [6] J. J. Gibson, The Ecological Approach to Visual Perception.

Lawrence Erlbaum Associates, 1986.

[7] [7] M. A. Goodale and A. D. Milner, “Separate visual pathways

for perception and action,”Trends Neurosci, vol. 15, pp. 20–25,

1992.

[8] [8] Ben-Gal I., Bayesian Networks, in Ruggeri F., Faltin F. & Kenett

R., Encyclopedia of Statistics in Quality & Reliability, Wiley &

Sons (2007).

[9] [9] D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning

internal representations by error propagation. In Parallel Distributed

Processing. Vol 1: Foundations. MIT Press, Cambridge, MA, 1986.

[10] [10] J. Weng, J. McClelland, A. Pentland, O. Sporns, I. Stockman,

M. Sur, E. Thelen, Autonomous Mental Development by Robots and

Animals, Science 291 (2001) 599–600.

[11] [11] M. Lungarella, G. Metta, R. Pfeifer, G. Sandini, Developmental

robotics: a survey, Connection Science 15 (2003) 151–190.

[12] [12] M. Asada, K. Hosoda, Y. Kuniyoshi, H. Ishiguro, T. Inui, Y.

Yoshikawa, M. Ogino, C. Yoshida, Cognitive developmental

robotics: a survey, IEEE Transactions on Autonomous Mental

Development 1 (2009) 12–34.

[13] [13] A. Stoytchev, Some basic principles of developmental robotics,

IEEE, Transactions on Autonomous Mental Development 1 (2009)

122–130.

[14] [14] G. Metta, P. Fitzpatrick, Better vision through manipulation,

Adaptive Behavior 11 (2003) 109–128.

[15] [15] P. Fitzpatrick, G. Metta, L. Natale, A. Rao, G. Sandini,

Learning about objects through action -initial steps towards artificial

cognition, in: Proc. of ICRA 03, IEEE, 2003, pp. 3140–3145.

[16] [16] A. Stoytchev, Behavior-grounded representation of tool

affordances, in: In Proceedings of IEEE International Conference on

Robotics and Automation (ICRA), IEEE, Barcelona, Spain, 2005,

pp. 18–22.

[17] [17] E. Ugur, E. Şahin, Traversability: A case study for learning and

perceiving affordances in robots, Adaptive Behavior 18 (2010).

[18] [18] E. Erdemir, C. B. Frankel, K. Kawamura, S. M. Gordon, S.

Thornton, B. Ulutas, Towards a cognitive robot that uses internal

rehearsal to learn affordance relations, IEEE/RSJ International

Conference on Intelligent Robots and Systems (2008) 2016–2021.

[19] [19] G. Fritz, L. Paletta, M. Kumar, G. Dorffner, R. Breithaupt, R.

Erich, Visual learning of affordance based cues, in: S. Nolfi, G.

Baldassarre, R. Calabretta, J. Hallam, D. Marocco, J.-A. Meyer, D.

Parisi (Eds.), From animals to animats 9: Proceedings of the Ninth

International Conference on Simulation of Adaptive Behaviour

(SAB), LNAI. Volume 4095., Springer-Verlag, Berlin, Roma, Italy,

2006, pp. 52–64.

[20] [20] J. Sinapov, A. Stoytchev, Detecting the functional similarities

between tools using a hierarchical representation of outcomes, in:

7th IEEE International Conference on Development and Learning,

IEEE, 2008, pp. 91–96.

[21] [21] S. Griffith, J. Sinapov, M. Miller, A. Stoytchev, Toward

interactive learning of object categories by a robot: A case study

with container and non-container objects, in: Proc. of the 8th IEEE

Intl. Conf. on Development and Learning (ICDL), IEEE, Shanghai,

China, 2009, pp. 1–6.

[22] [22] I. Cos-Aguilera, L. Canamero, G. M. Hayes, Using a SOFM to

learn object affordances, in: In Proceedings of the 5th Workshop of

Physical Agents, Girona, Catalonia, Spain.

[23] [23] Y. Demiris, A. Dearden, From motor babbling to hierarchical

learning by imitation: a robot developmental pathway, in: Fifth

International Workshop on Epigenetic Robotics, Lund University,

2005, pp. 31–37.

[24] [24] S. Hart, R. Grupen, D. Jensen, A relational representation for

procedural task knowledge, in: Proceedings of the National

Conference on Artificial Intelligence, AAAI Press, 2005, pp. 1280–

1285.

[25] [25] L. Montesano, M. Lopes, A. Bernardino, J. Santos-Victor,

Learning object affordances: From sensory–motor maps to

imitation, IEEE Transactions on Robotics 24 (2008) 15–26.

[26] [26] R. Petrick, D. Kraft, K. Mourão, N. Pugeault, N. Krüger, M.

Steedman, Representation and integration: Combining robot control,

high-level planning, and action learning, in: P. Doherty, G.

Lakemeyer, A. Pobil (Eds.), Proceedings of the 6th International

Cognitive Robotics Workshop, 2008, pp. 32–41.

[27] [27] F. Wörgötter, a. Agostini, N. Krüger, N. Shylo, B. Porr,

Cognitive agents a procedural perspective relying on the

predictability of Object-Action-Complexes (OACs), Robotics and

Autonomous Systems 57 (2009) 420–432.

[28] [28] J. Modayil, B. Kuipers, The Initial Development of Object

Knowledge by a Learning Robot., Robotics and Autonomous

Systems 56 (2008) 879–890.

[29] [29] E. Ugur, E. Oztop, and E. Sahin, “Goal emulation and planning

in perceptual space using learned affordances,” Robot. Autonom.

Syst., vol. 59, no. 7–8, pp. 580–595, 2011.

[30] [30] R. M. Haralick, L. G. Shapiro, Computer and Robot Vision,

Volume I, Addison-Wesley, 1992.

[31] [31] Giovanni Saponaro, Lorenzo Jamone, Alexandre Bernardino,

and Giampiero Salvi. “Beyond the Self: Using Grounded

Affordances to Interpret and Describe Others’ Actions”. In: IEEE

Transactions on Cognitive and Developmental Systems (2019). doi:

10.1109/TCDS.2018.2882140 (cit. on pp. 14, 50)

[32] [32] M. Andries, R. O. Chavez-Garcia, R. Chatila, A. Giusti, and L.

M. Gambardella, “Affordance equivalences in robotics: a

formalism,” Frontiers in Neurorobotics, vol. 12, p. 26, 2018. doi:

10.3389/fnbot.2018.00026

[33] [33] Jain, Raghvendra, and Tetsunari Inamura. "Bayesian learning

of tool affordances based on generalization of functional feature to

estimate effects of unseen tools." Artificial Life and Robotics 18.1-

2 (2013): 95-103.

[34] [34] E. Ugur, J. Piater, Emergent structuring of interdependent

affordance learning tasks using intrinsic motivation and empirical

feature selection, IEEE Transactions on Cognitive and

Developmental Systems (TCDS), 9(4), pp. 328-340, 2017.

[35] [35] Seker, M. Yunus, Ahmet E. Tekden, and Emre Ugur. "Deep

effect trajectory prediction in robot manipulation." Robotics and

Autonomous Systems 119 (2019): 173-184.

[36] [36] Chu, Fu-Jen, Ruinian Xu, and Patricio A. Vela. "Detecting

Robotic Affordances on Novel Objects with Regional Attention and

Attributes." arXiv preprint arXiv:1909.05770 (2019).

[37] Li, Yikun, Lambert Schomaker, and S. Hamidreza Kasaei.

"Learning to Grasp 3D Objects using Deep Residual U-Nets." arXiv

preprint arXiv:2002.03892 (2020).

[38] Do, Thanh-Toan, Anh Nguyen, and Ian Reid. "Affordancenet: An

end-to-end deep learning approach for object affordance detection."

2018 IEEE international conference on robotics and automation

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2020, 8(2), 52–59| 59

(ICRA). IEEE, 2018.

[39] M. Imre, E. Oztop, Y. Nagai, E. Ugur, Affordance-Based Altruistic

Robotic Architecture for Human-Robot Collaboration, Adaptive

Behavior, 27(4), pp. 223-241, 2019.

