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Abstract: In this paper, we study learning relationships between objects, actions, and effects. “Affordance” is an ecological psychology 

concept, which addresses how humans learn these relationships and which is also studied in cognitive robotics to transfer the same ability 

to robots. Our model is built on top of two existing models in this field and uses their strengths to introduce a novel system, where an 

anthropomorphic robot observes its environment and changes in that environment after executing pre-learned actions. Robot transfers these 

observations to object and effect properties in the same space and object affordances are learned using Bayesian Networks. The dimensions 

of features are decreased through autoencoders to achieve a compact network. Usage of a probabilistic model helps our system to deal with 

missing information or to make predictions for object properties and actions along with effect properties. We illustrate the advantages of 

our model by comparing it with the two aforementioned models.  
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1. Introduction 

Humans solve many tasks in their daily life without recognizing 

how complex they are. It is more obvious to researchers in artificial 

intelligence (AI) and robotics because computers can do better than 

humans in games [1] but progress of AI is much slower when it 

comes to addressing real-world problems [2].  

To achieve human-level performance in real-world tasks, robots 

should be able to understand the characteristics of the environment 

and to estimate how their actions change the environment. In this 

article, we approach this challenge from a developmental 

perspective. Before making plans to achieve goals, growing infants 

first make sense of incoming stimuli by learning how they can 

change the environment. Babies manipulate the objects differently 

according to their properties while they are 6 months old [3]. After 

6 months, they start to make sense of not only objects and surfaces 

but also the relations between them [4]. As they grow up, the 

perceived properties of the environment change in relation to their 

abilities. Crawling children find both rigid and non-rigid surfaces 

navigable, whereas walking children learn that non-rigid objects 

are not easily navigable [5]. 

This phase is explained with the phenomenon “affordance” in 

developmental psychology [6]. It is defined by J.J. Gibson as 

directly perceived “meanings” of surroundings in an organism’s 

environment and provided action possibilities. For example, 

detecting the affordance of a bottle is analogous with the question: 

“Which actions can be taken using this bottle?”. However, it is 

important to note that this relation does not necessarily require 

object recognition [7]. The actions are linked to the object’s 

features directly. 

In this work, we model affordances for robots on top of two 

existing works on affordances. The first approach [29,34,39] used 

Support Vector Machines to learn affordances. Support Vector 

Machine (SVM) is a strong method to model affordances, but it is 

a deterministic method that allows only unidirectional prediction. 

The second one [25,31,32,33] used Bayesian Networks to learn 

affordances. Bayesian Network (BN) is a graph that represents 

relations between variables of data in terms of probability [8]. It is 

a directed acyclic graph and each directed edge defines a 

dependency, i.e. conditional probability, of the incoming node on 

the outcoming node. Bayesian Networks do not try to fit a function 

like standard supervised learning algorithms, thus are less prone to 

overfitting. When some input information is missing, Bayesian 

Networks can make predictions where standard supervised 

algorithms do not perform well. This representation is very useful 

for the affordances because the example question above can be 

rewritten as: “Which action is more probable to produce the 

desired effect for this bottle?”. The network visualizes these 

dependencies and helps the computation of probabilities. 

Unknown probabilities can be inferred omnidirectional according 

to Bayes’ theorem. The nodes of the Bayesian Network in [25] 

were object categories, effect categories, and action categories. 

However, the object and effect types were not learned directly from 

data. They were predefined and encoded as different nodes in BN. 

For example, color, shape, and size were defined for the objects; 

and object velocity, contact time, and object-hand distance were 

defined for the effects. Thus, the number of nodes of the Bayesian 

Network increased with the number of features, and it became 

harder to make an inference. Raghvendra and Inamura extended 

Bayesian Networks for learning tool affordances by including tool 

related nodes [33]. Saponaro et al. extended this framework to 

learning affordances along with the verbal descriptions [31]. Then, 

Hidden Markov Models with Gaussian Mixture Models were used 

to interpret and to describe other agents’ actions. Andries et al.  

[32] formalized affordances with Bayesian Networks emphasizing 

the equivalence classes in affordances. However, effect and object 

types were predefined in these studies. 

In our work, we use Bayesian Networks instead of SVMs to learn 
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the affordances and our model learns the categories of the object 

and the effect directly from data. Furthermore, instead of pre-

grouping data as in [25], we use neural networks to decrease 

dimensions of data in order to obtain a single object type and a 

single effect type. In particular, we use an autoencoder that learns 

to produce outputs as close as to the inputs [9], forcing the input 

through a bottleneck layer composed of a small number of neurons. 

The activations at the bottleneck layer are used as the low-

dimensional representation in a latent space, through which K-

means clustering is applied to find data- driven categories.  As a 

result, our Bayesian Network is formed using only 3 nodes for 

object, action, and effect; which in turn allows efficient inference. 

Additionally, clustering is not done based on only linear relations 

of features as in [25] and [29], because auto-encoders extract 

nonlinear relationships in data as well.  

Our contribution can be summarized as follows: (1) extension of 

our previous work with a probabilistic approach, (2) use of 

autoencoders to avoid pre-engineered Bayesian Network nodes 

and keeping network size at a minimum to allow efficient 

inference, and (3) qualitative and quantitative comparison of 

discriminative and generative approaches, i.e. SVM-based and 

Bayesian Network based affordance learning methods. 

2. Related Work 

Using concepts in developmental psychology in robotics has 

become popular in recent years [10, 11, 12, 13]. In these studies 

robots explore and learn about their environment with minimal 

help from experts. In this section, we review studies in this field 

and emphasize our contribution. 

The prominent studies that use motor activity to explore the 

environment and learn affordances include Metta and Fitzpatrick 

[14], Fitzpatrick et al. [15] and Stoytchev [16]. As an example, 

Stoytchev [16] studied tool affordances by discovering tool-

behavior pairs that give the desired effect. However, in these 

studies the learned affordances could not be generalized on novel 

objects/tools, because the learned relations between visual features 

and effects of tools were not addressed. 

The relations between visual features and effects were addressed 

by Ugur and Sahin [17], Erdemir et al. [18], Fritz et al. [19], where 

associations between visual features of objects and their 

affordances were learned. In these studies, the affordance 

categories were defined by the programmer and supervised 

learning was implemented. So, the robot did not explore the 

environment and learned affordances, rather it predicted 

predefined effects. Sinapov and Stoytchev [20], Griffith et al. [21], 

Cos-Aguilera et al. [22] studied self-discovery of effects and 

affordances. In these studies, effect categories were learned 

through unsupervised clustering in effect space and these 

categories were mapped to objects so that the robot was able to 

choose actions that would result in desired effects.  

The studies that we discussed were all deterministic and could 

learn and reason about one-directional mappings, i.e. they could 

predict the effects given object features and robot actions, but they 

could not predict the object features given robot actions and 

desired effects. Demiris and Dearden [23], Hart et. al. [24], 

Raghvendra and Inamura [33], Saponaro et al. [31], Andries et al. 

[32], and Montesano et. al. (2008) [25] used probabilistic networks 

to learn relations between actions, objects, and effects. 

Probabilistic networks allow learning multi-directional relations. 

For example in Montesano et al. [25], Bayesian Networks encoded 

these relations and robot was able to predict the object categories 

given that effect categories and actions were known, or it could 

also predict effect categories given that object categories and 

actions were known, or it could also estimate the required action to 

obtain a given effect category for a given object. On the other hand, 

object features and different effects were modeled with different 

nodes and as the number of nodes increases, the number of possible 

network structures increases exponentially. Therefore, it would be 

impractical to explore all possible graphs. They proposed different 

methods to make inference such as Markov chain Monte Carlo 

(MCMC) method or the maximum likelihood solution provided by 

the K2 algorithm.  

Recently, deep learning approaches gained popularity for learning 

locomotion and manipulation affordances. Do et. al. [38] used 

Convolutional Neural Networks (CNN) to detect objects and 

affordances from raw RGB images. Seker et al. [35] used CNN and 

Long Short-Term Memory (LSTM) to predict push affordances 

and low-level outcome trajectories of levered-up objects from their 

depth image. Chu et al. [36] realized a deep learning framework 

that predicts the affordances of object parts for robotic 

manipulation through segmenting affordance maps by jointly 

detecting and localizing candidate regions within an image. Li et 

al. [37] exploited deep residual U-Nets for learning grasp 

affordances. While deep learning affordance classifiers acquire 

high performances in the corresponding datasets, they generally 

require large numbers of training samples, which is challenging 

and time consuming to obtain from robotics interactions. 

None of the methods above are fit for complex planning because 

of the effect-representation they have. It is not possible to plan one 

step further with these representations. In [26, 27, 28] the robots 

could make multi-step predictions by linking actions according to 

logical precondition and postcondition predicates. For example, 

Wörtgötter et al. [27] defined conditions as binary functions of 

sensor readings and then the robot learned to remodel these 

conditions in the form of pre-conditions and effects with the help 

of a human expert. Ugur et al. [29] showed that complex planning 

can be achieved if effects and objects were encoded in the same 

feature space. By adding the object features of the current state to 

the predicted effect features, the robot could predict the next 

perceptual state, therefore it was able to achieve multi-step 

planning. In [29], Support Vector Machines were used in 

predicting effects from objects and actions. This made the model 

deterministic and relations between objects and effects 

unidirectional. 

In our study, we combine the Bayesian Network idea with the 

SVM learning approach to make the model probabilistic and 

relations bidirectional. Directly applying Bayesian Networks to the 

model assumes human expert domain knowledge, because 

Bayesian Networks require discretization. On the other hand, the 

discretization performed by humans is not scalable to life-long 

learning settings and might not correspond to the sensorimotor 

capabilities of the robot. Classic clustering algorithms to discretize 

the data do not work simply because of the aforementioned 

drawback of [25]. An increasing number of features result in 

exponential growth of the number of possible Bayesian Networks. 

We propose to transfer the object features into a latent space 

through autoencoders first and only then apply clustering 

algorithms so that we could have only one node for objects and one 

node for effects without any pre-engineering. Besides, in [25] and 

[29] X-means clustering algorithm was applied to data for 

categorization and clusters were formed based on Euclidean 

distances in feature space. However, since autoencoders extract 

nonlinear relationships in data, using them before categorization 

enables the model to cluster data based on nonlinear and complex 

relations.  
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3. The Approach 

reduction, pixels at the edge of the objects are removed and Median 

and Gaussian filters with a 5x5 sized window are applied. In the 

end, feature vectors of each object are determined as follows. 

Three categories of information are encoded in the feature vector 

of the object: Object visibility that encodes the existence of the 

object; object position that is represented by the six values along 

longitudinal, lateral and vertical axes and object shape that 

corresponds to the distribution of local surface normal vectors. The 

normal vector around each point is computed using positions of the 

two neighbors in the range image: 

   

Here, d represents the 3D position, n corresponds to neighbor pixel 

distance and it can be set to an arbitrary value. The normal vector 

is calculated in a spherical coordinate system, where the vector is 

represented with radius, analogous to the distance from the origin, 

polar angle, the angle between the normal vector and x-z plane, 

azimuthal angle, the angle between the projection of normal vector 

to the x-z plane and z-axis. After angles are calculated for every 

pixel, two histograms are formed for the 2 angles and they express 

36 shape features. 

For interaction, one lift action and three push actions are defined, 

and the robot is capable of performing these actions. The robot 

perceives the positions of objects by its camera and it is able to 

interact with the objects at different positions. For the three push 

actions, namely push-left, push-right and push forward, the robot 

hand is moved to the corresponding side of the object and push-

action is done towards the center of the object. In order to lift the 

object, the robot puts its hand at the back-right diagonal of the 

object and moves it towards the object while closing the fingers. 

After grasping, the object is lifted vertically. The objects that the 

robot interacts with can be categorized as cubic, cylindrical and 

spherical. Different types of objects result in different types of 

effects after action execution. For example, pushing a cubic object 

makes its position change but pushing a spherical object makes it 

roll away from the table so that the camera cannot see it anymore. 

Also, the result of pushing a cylindrical object varies according to 

the side of the object that force is applied. 

In the explained way, the robot collects object features via its 

physical simulator and interacts with the objects randomly. The 

final features of the object are also recorded after the action is 

applied. An effect vector is acquired by subtracting initial feature 

vector from the final feature vector: 

 

Learning affordances require abstraction of observation. The 

model uses discrete random variables to achieve this abstraction. 

For example, object features can be represented with discrete 

random variables for shape, position such as O = {s1, s2,…, p1, 

p2, …}. However, many random variables cause trouble when 

constructing the Bayesian Network. So, dimension reduction for 

the object and the effect features is needed.   

For that purpose, we use autoencoders. In Fig. 1, it can be seen that 

a neural network is designed to construct an output as close as 

possible to its input through a bottleneck layer. The activations in 

the bottleneck layer represent input features and the space that 

consists of these activations is called latent space. In our model, 

the first layer has the same size as the input feature vector. Then in 

every layer, the dimension size is reduced to its half until 3 nodes 

are enough to represent the data. More nodes may increase 

accuracy, but 3 nodes work fine in our case since our concern is to 

decrease the dimension number for clustering. After the bottleneck 

layer, in every layer, dimension size is doubled until we have a 

layer that has the same size as the input vector. Since dimensions 

of latent space are fewer than the original space, the possible BN 

network structure decreases. After the initial features are 

transferred into a latent space, the K-means clustering algorithm is 

applied to categorize the data. Effect features are also clustered 

with the K-means algorithm, which is an unsupervised algorithm 

that selects K number of centers and assigns the data points to the 

closest center to group the data. Afterwards, new centers of groups 

are determined, and grouping is done again. The algorithm stops 

when no point needs to change its cluster. In the end, the algorithm 

gives clusters, where data points are similar according to positions 

in defining space. 

 

Fig. 1. Autoencoder schematic, the activations of the bottleneck layer are 

the representation of the input in latent space. Encoder decreases the input 

dimension in a way so that decoder can reconstruct the input. 

After grouping object and effect features, all that is left is to encode 

the relationship between the actions, the object clusters and the 

effect clusters. In order to do this, Bayesian Networks are used. 

Bayesian Network is a graph: G (V, E), whose edges specify 

conditional probabilities. Thus, it is a convenient way to illustrate 

and model affordances. It allows deducting probabilities for a node 

in condition with other nodes or the joint probabilities in terms of 

conditional probabilities: 

 

 

Fig. 2. shows a network with 3 nodes and 2 edges. BNs need 

discretization and that is why clustering takes place in the previous 

step. 
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Fig. 2. Bayesian Network for affordances. Effects are conditioned on 

which action or object are selected. Objects and actions can be selected 

arbitrarily, so they are independent variables. However, some actions 

coupled with some objects are more likely to produce a desired effect. 

Therefore, actions and objects are not conditionally independent. 

To form the network, the conditional probabilities of child nodes 

and the probability distribution of parent nodes should be 

calculated in the data: 

 

Here, "𝑎, 𝑒, 𝑜"  stand for a single action, object and effect, 

respectively and "�̅�, e̅, o̅" represents for actions, objects and effects 

alternative to "𝑎, 𝑒, 𝑜". After the network is formed, it can infer 

probabilities for each node by following Bayes’ rule: 

 

 

It is also possible to infer the probabilities even in the case of 

incomplete data. Neural networks or other standard methods like 

SVM cannot handle incomplete data well but Bayesian Networks 

can provide good predictions with the formulas below:  

 

 

 

 

4. Experiments 

4.1. 4.1 Experimental Setup 

The simulated robot interaction data obtained in [29] is used in this 

paper. The robotic system is composed of a five-fingered 16 DOF 

robot hand and a 7 DOF robot arm. The infrared range camera 

provides a 176x144 pixel array with 1 cm distance accuracy, and 

0.23-degree angular resolution. The camera is able to produce a 

grayscale image of the scene and a confidence value for each pixel. 

7 types of objects were used: There were 2 balls, 2 cylinders, 2 

rectangular prisms with different sizes and 1 pitcher. Different 

shapes and sizes were selected to make robots learn related 

affordances. 

The robot explored its environment in the simulator as follows 

(Fig. 3): The robot perceived its environment before and after 

interacting with one of the random objects placed in a random 

position with one of its four actions. Approximately 10500 

interactions were performed for each action type and feature 

vectors of objects before and after an action execution were 

recorded. Both the initial and final feature vector were composed 

of 43 features, including 1 visibility, 6 position, and 36 shape-

related features (Fig. 4). The effect feature vector was found by 

subtracting the initial feature vector from the final.  

 

Fig.  3. View of the physics simulator, Open Dynamics Engine (ODE) is 

used to develop the simulator. The simulated range camera sends a 

176x144 ray array from its center with 0.23-degree angular intervals. The 

first contact of each ray with any surface is determined using ODE 

functions. The range value is calculated as the distance between the 

contact point and ray origin point. Camera noise is simulated as a 

Gaussian noise with zero mean and 0.2 variance. 

Fig. 4. Bar plot of features of a cylindrical object. Visibility, 

position and shape-related features are shown with different 

colors. 

4.2. 4.2 Discretization of data 

Our aim is to cluster the initial and effect data so that we can form 

a Bayesian Network. That’s why our model takes the initial data 

and puts it into an autoencoder to reduce dimensionality since 

clustering algorithms do not perform well in high dimensional 

data. We choose the K-means algorithm to cluster latent vectors 
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and 7 is chosen for K because there are 7 types of objects. The 

result can be seen in Fig. 5. 

In the figure, it can be realized that clusters are not separated 

ideally because of the limited generalization capabilities of the 

autoencoders. In the ideal scenario, the representation of the object 

features could be marked by hand. However, the purpose is to 

create a general framework, which can learn affordances of any 

random object. Therefore, the objects are not labeled in our input 

data, we decrease dimensions by using an autoencoder and we 

cluster the representation using the K-means algorithm. 

The K-means algorithm is also applied to effect vectors, but we do 

not need to put effect vectors into the autoencoder because we 

figured out later that values of shape vector for effect are not 

correlated with action type. Thus, it was not necessary to decrease 

dimensions further. So, omitting shape vectors reduced the 

dimensionality to 7 from 43. Then the K-means algorithm is 

applied again and 5 effect categories were obtained. 

Fig. 5. 7 clusters obtained by the K-means algorithm on object data. The 

latent space has 3 dimensions. For visualization, the same figure is shown 

from different view angles. Different colors show different clusters. 

4.3. 4.3. Prediction results 

After the discretization of the initial and effect vectors, the 

Bayesian Network is formed. With the Bayesian Network model, 

it was possible to infer the probability of any node given the other 

node values. For comparison, three separate SVM classifiers were 

trained to predict the effect category given the object features and 

the action type; the object category given the effect features and 

the action type; and finally, the action type given the object and the 

effect features. 

Table 1: The results for effect, object and action prediction 

 Effect 

prediction 

Object 

prediction 

Action 

prediction 

SVM [29] 83.1% 35.7% 58.6% 

Our work 70.3% 48.4% 59% 

 

Note that, originally in [29], for each action one SVM model was 

trained only to predict the effect. To compare with our model, 

actions were enumerated as 1000, 0100, 0010, 0001 so that they 

have equal distance to each other. Then all data for different 

actions were concatenated and an SVM was trained for effect 

prediction. Two different SVM models were also required to be 

trained in the same way for object and action prediction. 

Furthermore, in [29], action selection was performed by a state 

space search tree algorithm that predicts effects of different action 

sequences and selects the closest one. 

Bayesian Network provides probabilities for each possible output 

whereas SVM assigns a single class for a given input. It is both 

possible to select the highest probability output as prediction 

(Table 1) or to make a search in outputs with probabilities bigger 

than a threshold (Table 2).  

The results summarized in Table 1 shows that our autoencoder 

based Bayesian Network model gives similar results in predicting 

actions, outperforms SVM predictors in predicting objects, and 

performs worse in predicting effects when the output with highest 

probability is selected as the prediction of BN. As expected, SVM 

performs better in predicting the effect as Bayesian Networks lose 

information while discretizing the initial data. The accuracy fall in 

object prediction can be interpreted as follows: the prediction 

becomes an ill-posed problem when SVM tries to predict the initial 

cluster from initial and effect data. There are potentially different 

object types that can result in the same effect and it is hard to 

differentiate them, but Bayesian Networks can model such 

relations better. The reason for the similarity of action prediction 

accuracy may be due to the limitations inherent to the experiment 

setup for action prediction. In the previous work of Ugur et. al [29], 

it was indicated that all push-actions produced similar effect 

categories. For example, all 3 pushing actions for spherical objects 

result in a similar effect which is falling from the table.   

Table 2: The results for effect, object and action prediction for different 

threshold probabilities 

 Effect 

prediction 

Object 

prediction 

Action 

prediction 

SVM [29] 83.1% 38% 58.6% 

p(x)>0.33 70.8% 49.1% 59.7% 

p(x)>0.25 81.4% 69.2% 84.2% 

p(x)>0.15 92.3% 81.3% 93% 

p(x)>0 100% 100% 100% 

The results summarized in Table 2 shows that our autoencoder 

based Bayesian Network model gives better results as the threshold 

probability decreases. Here using the threshold value refers to 

trying all outputs whose probabilities are larger than the threshold. 

BN model outperforms the SVM predictor as the threshold 

probability gets smaller. This approach would decrease the number 

of states in the search tree of [29] exponentially as well. In [29], 
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planning was done by constructing a tree structure where nodes 

and edges represented the perceptual states and action-object pairs, 

respectively. The sequence of actions and the objects were 

searched and selected in order to obtain the desired effect. The 

branching factor in such a search tree is the number of children of 

each node, and the branching factor was the number of actions × 

the number of objects. However, the branching factor of the 

proposed method is proportional to the number of most possible 

actions and objects for the desired effect. Table 3 illustrates this 

idea: For a test set with 4288 samples, the method in [29] had to 

check 4288× 4 actions × 7 objects, in total 120064 leaves but the 

branching factor of the proposed tree is 7758 for the threshold 

probability of 0.25. On top of that, the prediction accuracy for the 

test set is 0.86. In the previous method [29], the accuracy of the 

planning phase was bounded by the accuracy of the SVM. Here, it 

is possible to increase the accuracy by decreasing the threshold 

probability as it is shown in Table 2. In our method, the planning 

accuracy is bounded by the representation capability of the 

acquired data about the environment. 

Table 3: Results for action and object prediction as a tuple with given 

effect 

 Number of 

test samples 

Number of the 

searched tuples 

(branching factor) 

Accuracy 

p(x)>0.33 4288 4156 0.62 

p(x)>0.25 4288 7758 0.85 

p(x)>0.18 4288 9460 0.92 

 

One important final remark is that Bayesian Networks provide one 

unified framework whereas the SVM approach requires a separate 

model for each variable to predict. Assuming other components 

such as tools, gestures, language, we would require training and 

predicting with separate SVMs; however, one single Bayesian 

Network model with more nodes can be directly used instead.  

4.4. Results for effect prediction with missing information 

Table 4: Results for effect prediction only with action and only with 

object 

 Effect prediction only 

with action 

Effect prediction 

only with object 

SVM [29] 61.9% 54.8% 

Our work 58.1% 53.6% 

In the real world, the robots may be in a partially observable state. 

For example, the camera of the robots may not detect the object 

properties fully. Thus, we find it important to investigate the 

robustness of our model in such conditions. We tested the SVM 

and our model by giving either the object category or the action 

type as input and requesting the effect category as the output. For 

these cases, SVM performed slightly better than BN method when 

output of the BN was used through winner-take-all as it can be seen 

in Table 4.  

On the other hand, BNs inherently provide probabilities along with 

the predicted values. Therefore, we investigated to exploit 

provided probabilities and performed a further analysis. 

Table 5: Results for effect prediction only with action and only with 

object using threshold 

 Effect prediction 

only with action 

Effect prediction 

only with object 

SVM [29] 61.9% 54.8% 

p(x)>0.3 54.1% 25.6% 

p(x)>0.25 75% 65.5% 

From Table 5, it can be deduced that the prediction of BN 

significantly improves when the model considers probabilities 

assigned to outputs and empirically sets a threshold. The results 

show that using the most probable outcomes that only BN can 

provide enables our model to outperform SVM. The jump in the 

part effect prediction only with the object shows that there are 

many outputs’ probabilities within that 0.05 range. 

Finally, we should remind again that the old SVM, that was trained 

before, could not produce these results. For these 2 predictions, 2 

more SVMs were trained whereas a single Bayesian Network can 

make all 5 predictions above. 

5. Conclusion 

This paper addresses learning affordances and develops a novel 

method that uses autoencoders to decrease input dimensions in data 

and constructs a Bayesian Network to encode relationships 

between action, object and effect categories. 

Autoencoders can extract nonlinear and complex relationships and 

can decrease the number of data dimensions so that the Bayesian 

Network can be constructed with a few nodes. Since larger BNs 

have a considerable amount of possible network structures, our 

network can infer probabilities computationally more efficiently. 

In this work, our results are compared with that of Support Vector 

Machines. The biggest advantage of our approach is that a single 

Bayesian Network can predict effects, objects, and actions 

separately but different SVMs are needed to predict different types 

of outputs. When there is change in input or prediction is done with 

missing information, new SVMs are required to be trained. 

However, the Bayesian Network can handle such imperfections. In 

terms of accuracy, SVM can make equally good or better 

predictions except for object prediction whereas our model makes 

its predictions based on the most probable output. However, our 

model outperforms SVM especially in object and action prediction 

when it tries all outputs whose probabilities are higher than a 

threshold. This approach increases the computation time but high 

accuracy in object and action prediction becomes very useful in the 

planning phase of a task. When that prediction is not accurate, the 

model has to consider all possible scenarios to reach the desired 

effect. In our case, the model can just give the required object and 

action with high precision. For future work, we will show that this 

planning approach works well with real robots. We will also 

investigate to use this approach in more complex object-action 

interactions. 
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