
Proceedings of the IROS 2013 Workshop
on Neuroscience and Robotics

Towards a robot-enabled,
Neuroscience-guided healthy society

Editors

Emre Ugur, Erhan Oztop

Jun Morimoto, Shin Ishii

Tokyo Big Sight, Japan

November 3rd, 2013



Preface

We are experiencing fast paced developments in robotics and neural sci-
ences. Robots are becoming more and more part of our daily lives; in the
near future they will be with us as companions, caregivers, smart prosthet-
ics, and nano-robots in our bodies. The progress in neural sciences accel-
erated by brain imaging, clever behavioral experimentation and technical
advancements such as multi-electrode recordings, better analysis techniques
and neuroinformatics tools. Compared to twenty years ago, now the exist-
ing neuroscientific data and knowledge are more easily accessible, and thus
available for building robotic systems that can exhibit the robustness, adapt-
ability and intelligence of humans. Reciprocally, significant developments in
robotics and machine learning put robotics in the service of Neuroscience as
experimental platforms or test-beds of brain models.

We are witnessing the growth of a solid interdisciplinary research fron-
tier, which on one hand uses Neuroscience for better robotics and intelligent
systems, and on the other hand, uses robotics to better understand hu-
man cognition and intelligence. With this workshop we aim to bring in
the pioneers in this frontier for further fostering this interdisciplinary ef-
fort by facilitating the exchange of ideas among researchers from diverse
fields. The ultimate goal is to disseminate the current state of the art and
set the research targets that need to be reached to ensure a robot-enabled,
Neuroscience-guided healthy society.

We aimed to bring together researchers from both the robotics and Neu-
roscience in order to explore how to maximize the progress at the multidis-
ciplinary frontier of robotic-for Neuroscience and Neuroscience-for-robotics.
Five regular papers were accepted as contributions to the workshop after
peer-reviewing. We expect that the twelve invited talks from distinguished
scientists on Neuroscience and Robotics, together with the contributed talks
elucidate initial answers for the questions posed above, and emphasize the
challenges ahead.

We thank all submitting authors for choosing this workshop to dissemi-
nate their work. We thank keynote speakers who considerably contributed
to the quality and the impact of the workshop. Needless to say, the pro-
gram committee members have a big role in making the workshop a success;
we thank them for their fine reviewing efforts. Finally, we would like to
thank the IROS 2013 Organization Committee for facilitating the workshop
execution.

This workshop was partially supported by European Communitys Sev-
enth Framework Programme FP7/2007-2013 (Specific Programme Coop-



eration, Theme 3, Information and Communication Technologies) under
grant agreement no. 270273, Xperience; by European Communitys Sev-
enth Framework Programme FP7/2007-2013 under the grant agreement no.
321700, Converge. It was also partially funded by a contract in H23 with
the Ministry of Internal Affairs and Communications, Japan, entitled ‘Novel
and innovative R&D making use of brain structures’.
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Abstract—In this work, we propose a biologically inspired
framework for developing object permanence in robots. In partic-
ular, we build upon a previous work on a slowness principle-based
visual model (Wiskott and Sejnowski, 2002), which was shown to
be adept at tracking salient changes in the environment, while
seamlessly “understanding” external causes, and self-emerging
structures that resemble the human visual system. We propose
an extension to this architecture with a prefrontal cortex-inspired
recurrent loop that enables a simple short term memory, allowing
the previously reactive system to retain information through time.
We argue that object permanence in humans develop in a similar
manner, that is, on top a previously matured object concept.
Furthermore, we show that the resulting system displays the
very behaviors which are thought to be cornerstones of object
permanence understanding in humans. Specifically, the system is
able to retain knowledge of a hidden object’s velocity, as well as
identity, through (finite) occluded periods.

I. INTRODUCTION

Humans are born into persistent worlds. Through years and
countless interactions, we come to understand the world as
a place that makes temporal and spatial sense. Objects do
not appear out of nowhere, nor vanish into thin air, and as
they move from point A to point B, they indeed have to
exist for some time at every point in between. However, it
is difficult to claim that we have so far built robots that truly
make use of these basic axioms. Given that this understanding
is a basis for us humans to act effectively in our persistent
world, in this study we propose a model for building an
understanding of object permanence in terms of a higher-order
internal representation of the environment. Our ultimate goal is
to build effective environment manipulation capabilities on top
of this basis later on. But first, the robot needs to “understand”
what it is to exist in a persistent world.

Against the complexity of a world abundant with con-
tinuously changing sensory signals, we take refuge in the
“slowness principle” [1]: While the sensory signals are noisy
and erratic, their underlying physical causes are relatively
persistent in time. For instance, retinal signals can vary greatly
from one moment to another due to lightning conditions, as
well as saccadic movements of the eye, however the object
which the eye sees is constant. Therefore we must be able
to process these erratic sensory signals to extract meaningful
high-level representations, which are characteristic of varying

H. Celikkanat gratefully acknowledges support of TUBITAK 2211 program.

more “slowly”, thereby containing more valuable “informa-
tion”, than the readily-available sensory signals.

In [1], Wiskott and Sejnowski propose Slow Feature Anal-
ysis (SFA). They show that sensory signals can be processed
through successive steps of principal component analysis to
extract optimally slow signals, which summarize the mean-
ingful event in the scene. The solutions are guaranteed to be
optimally slow within a predefined family of functions, while
still conveying meaningful information. In forthcoming work,
Wiskott et al. design a hierarchical visual architecture which
can recognize objects through translational, orientational, and
scaling transformations [2], distinguish known and novel ob-
jects, predict the type of the solutions if the transformation
is known a priori [3], survive multiple co-occuring transfor-
mations, and even adapt themselves to behave like simple
and complex visual neurons when trained with natural-life
scenes [4]. As is, this architecture develops the object concept
very plausibly. However, it is reactive in time, responding
momentarily to inputs; and not being able to retain information
through time, it cannot survive the object permanence problem.
We propose a prefrontal cortex inspired extension to serve as
a working memory.

The contributions of this paper are threefold: First, we
apply SFA to real world images to demonstrate that the
invariant object recognition capabilities can indeed survive real
world data. (Note that with the exception of Zhang and Tao
[5] and Berkes and Wiskott [4], SFA has not been used for
real world images before. Furthermore, in these two studies,
it has not been utilized for object recognition.) Second, we
propose a quantitative method to estimate the sufficient number
of slowly varying signals to represent a certain event. Finally,
and most significantly, we propose an extension to develop an
understanding of object permanence.

Our fundamental claim in building our extension on top
of the SFA framework is that the object permanence can be
regarded as a stage which develops on top of an already
developed reactive object concept. In this sense, we claim
that the SFA architecture fulfills the initially maturing object
concept understanding, on top of which the object permanence
understanding develops later in time on a par with the matura-
tion of the prefrontal cortex. Last but not least, we show that
the proposed framework demonstrates similar characteristics
(and pitfalls) like an infant learning permanence of objects.
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II. RELATED WORK

A. Object Permanence

Piaget famously proposed that the cognitive functions of an
infant progresses in developmental “stages” [6]. Within the first
stage, he singles out the object permanence understanding as
one of the cornerstones, at the end of which objects come to be
identified as independent entities. Furthermore, he also claimed
that object permanence similarly develops in substages. The
object concept forms in the second substage (1–4 months),
indicated by the infant starting to follow their movements. She
reaches for partially hidden objects by 4–8 months, and for
fully hidden objects 8–12 months. By this time, she makes the
A-not-B error 1, which disappears by 12–18 months.

Once fully developed, Michotte identifies two indicators of
the object permanence understanding [7]:

The Tunnel Effect is the infant’s capability of judging when
an object, having previously disappeared behind a screen, will
reappear again. This indicates the ability to track the object’s
position even while it’s not directly observable. It also depends
on the length of the occluded period: Young infants (of 4
months) can track the objects behind sufficiently short screens
(< 14.8 cm), but their performance degrades to chance level
as the occluded time gets longer. Older infants (of 6 months)
can handle longer periods.

The Screen Effect is the surprise of the infant when object
A enters behind a screen, and reappears not as itself, but
having transformed into object B, indicating she understands
the integrity of the object’s identity.

B. Neurological Bases of Object Permanence

The close relationship between the maturation of the pre-
frontal cortex, and the emergence of object permanence un-
derstanding, has attracted much attention from neuroscientists
[8]–[12]. Diamond and Goldman-Rakic [8] are one of the
first to the demonstrate the link between the maturation (or
integrity) of the dorsolateral prefrontal cortex and successful
performance at the A-not-B task. They conduct a longitudinal
study of infants performing the A-not-B task, as well as of
adult rhesus monkeys with bilateral prefrontal and parietal ab-
lations. They note a significant performance increase between
7.5-9 and 12 months, since the delay necessary to elicit the A-
not-B error increases from 2-5s to 10s. In addition, monkeys
with bilateral ablations of DL-PFC perform at the level of
7.5-9-month-olds, while unoperated and parietally operated
monkeys are as successful as 12-month-olds; showing the
direct dependence of A-not-B task on DL-PFC maturation.

Imaruoka et al. [11] and Saiki [12] introduce a novel
paradigm, called the multiple object permanence tracking task,
in which objects are moving in a display. They are distinguish-
able by their features, such as color and shape. The participants
are required to track the objects, while also maintaining their
features mentally. In this dynamic environment, Saiki [12]
shows that our ability to keep bindings of objects color, shape
and spatiotemporal locations was significantly impaired when
objects move. Even though the visual short-term memory is

1In the A-not-B task, an object is first hidden at a location A several times,
until the infant learns to retrieve it successfully. Afterwards, it is visibly taken
away from A and moved to a second hidden location B, however infants at
this stage still try to retrieve it from the previously learnt location A.

generally assumed to be capable of maintaining 3-5 feature
bound object representations, when the objects are on the
move, this ability regresses down to 1 or 2 objects. Employing
the same paradigm in an fMRI experiment, Imaruoka et al. [11]
demonstrates the activation of anterior prefrontal cortex.

One thing significant about the prefrontal cortex is that it is
abundant with recurrent loops, both intrinsic [13], and through
other brain areas [14]. The generally accepted hypothesis is
that these recurrent loops are the key structure to keep track
of time concept in sequential events [15].

C. Robotics Studies

Chen and Weng [16] propose a value-based behavior to
develop a rudimentary object permanence. The system is hard-
coded to (1) be “surprised” when events are incongruent with
its predictions, and (2) gaze longer upon surprising events.
After habituation, it gazes longer at events which violate
object permanence principles. Roy et al. [17] propose a mental
imagery system for the robot, with a global physical model of
itself, the objects, and the human partner. The system has an
object tracking module, which maintains invisible objects for
some time, and dropping ones that are hidden for too long.

A highly relevant work is the MTRNN model by Yamashita
and Tani [18]. MTRNN is composed of two groups of con-
textual neurons, one group with a slow learning timescale,
and one with a fast learning timescale. The fast neurons
adapt themselves to rapid changes in the environment, thus
discovering motion primitives, while the slow neurons learn to
discern the context, thereby learning the sequence of necessary
primitives to perform a certain behaviour. The major downside
is that the slow neurons must be set to a certain discriminative
initial state, both to learn, and to reproduce a certain sequence.
Therefore, even though it uses the same idea of separating fast
and slow signals, MTRNN needs a level of supervision that is
not available in the classic object permanence scenario.

D. Slow Feature Analysis

Wiskott and Sejnowski [1] take a novel approach to vi-
sual perception. Through a rigorous mathematical procedure
called Slow Feature Analysis, they extract the slowest signals
carrying most information about the scene. These signals
have a total ordering, allowing the selection of the slowest
and most informative ones. The resulting system turns out
to be highly robust, with some extra features emerging as
well. Many identical SFA modules can be stacked together
hierarchically, enabling feasible processing and parallelization
of high-dimensional images. The system develops invariant
object recognition [2]. It can withstand (possibly multiple)
transformations such as translation, rotation, and scaling, dis-
tinguishing known and novel objects, while also providing
insight about the transformation. For instance, in case of
multiple moving objects, the system not only distinguishes
different objects, but it can also identify the position of any
of them. It is not negatively affected by multiple co-occuring
transformations (translation, rotation, and/or scaling), render-
ing it suitable for real-life scenarios, where transformations
do not generally occur in isolation. It is also mathematically
treatable [3], and it is possible to predict the exact shape of
outputs that will result from each of these transformations.

An interesting feature is the biologically plausible prop-
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erties that emerge. For instance, the nodes self-organize to
behave like simple and complex cells of the visual cortex
[4]. When trained with natural life-like scenes, they adapt
to prefer Gabor-filter-like inputs, responding maximally to
certain directions, and minimally to others. In addition, certain
nodes self-specialize to display end-inhibition or side inhibi-
tion, again similarly to specialized V1 complex cells. These
adaptations are purely due to the input characteristics: Since
the visual sequences are natural, they bear spatial and temporal
continuity, resulting in these preferences. In yet another study,
Franzius et al. [19] show the emergence of hippocampal place
cell, head direction cell, and spatial view cell-like formations,
which have specialized in rodents to represent its spatial state.
Again, they emerge completely due to the nature of the input.

SFA has also been successfully employed for practical pur-
poses. Zhang and Tao [5] propose an SFA-based system to rec-
ognize human actions. They also introduce three variants: (1)
supervised, (2) discriminative, and (3) spatial discriminative.
Kompella et al. [20] devise incremental and online deduction
of slow features, while retaining computational feasibility in
the face of high-dimensional input. The original SFA approach
requires a (costly) offline learning phase, therefore this is an
important step for real-time applications.

To the best of our knowledge, there has been no a priori
studies to enhance this system with recurrence, nor any at-
tempts to carry a trace of activation through time. The previous
studies of slow feature analysis are purely reactive in time.

III. METHODS

A. Slow Feature Analysis

Wiskott and Sejnowski [1] formalize the following op-
timization problem: Given an I-dimensional input signal,
x(t) = [x1(t), x2(t), ..., xI(t)]T , the objective is to find a
set of input-output functions, g(x), which will produce a J-
dimensional output signal y(t) := g(x(t)), whose components
vary as slowly as possible, while still containing information.
The objective is to minimize 〈(̇y)2j 〉, ∀j ∈ 1, ..., J , with:

〈yj〉 = 0 (zero mean), (1)
〈y2j 〉 = 1 (unit variance), (2)

∀j′ < j : 〈yj′yj〉 = 0 (decorrelation). (3)

The angular brackets indicate averaging over time.

The unit variance constraint avoids the trivial solution with
zero information content. The decorrelation constraint ensures
non-redundant signals. It also enforces a total order: The
smaller the index j is, the more optimal is the solution yj .

This optimization problem is difficult to solve, but it can
be simplified by constraining the output functions to be linear
combinations of a finite set of nonlinear functions, that is,
yj(t) = gj(x(t)) := wT

j z(t). The nonlinear functions z(t) can
be obtained via applying a set of functions h = [h1, ..., hK ]
on the input signals, thus expanding them nonlinearly: z(t) =
h(x(t)). After this nonlinear expansion, the problem can be
treated as linear in the expanded signal components zk(t),
similar to using a kernel to linearize the classification problem.

Then the problem reduces to finding the weight vectors
wj = [wj1, ..., wjK ]T to minimize 〈ẏ2j 〉 = wT

j 〈żżT 〉wj .

Assuming that the functions hk are chosen such that the

expanded signal z(t) has zero mean and unit covariance matrix
(〈z = 0〉 and 〈zzT = I〉), the constraints:

〈yj〉 = wT
j 〈z〉 = 0,

〈y2j 〉 = wT
j 〈zzT 〉wj = wT

j wj = 1,

∀j′ < j : 〈yj′yj〉 = wT
j′〈zzT 〉wj = wT

j′wj = 0,

are fulfilled if and only if the weight vectors form an orthonor-
mal set. Therefore the set of eigenvectors of 〈żżT 〉 gives us the
weight vectors that satisfy the constraints. From these eigen-
vectors, we choose the ones with the smallest eigenvalues as
the weight vectors, 〈żżT 〉wj = λjwj ,with λ1 ≤ λ2 ≤ · · ·λJ ,
resulting in the input-output functions: gj(x) = wT

j h(x).

In other words, to find the slowest signal, we use the
eigenvector of the smallest eigenvalue, corresponding to the
direction of the least variance in the time derivative of the
input. For other signals, orthogonal directions can be used,
given by eigenvectors of increasing eigenvalues. They are
found by a principle component analysis on the matrix 〈żżT 〉.

For nonlinear expansion, Wiskott et al. use the first and
second-degree monomials of the input: z(t) = h(x(t)) =
[x1(t), · · · , xI(t), x1(t)x1(t), x1(t)x2(t), · · · , xI(t)xI(t)]T .
Higher order expansions are possible, but not necessary, since
a hierarchical architecture results in increasing complexity in
higher-levels, performing this expansion in every layer.

Notice that the outputs signal are computed instanta-
neously, i.e., they are not a result of simple temporal low-pass
filtering. Hence, the optimization problem is being solved by
instantaneously calculating a higher level representation.

B. Recurrent SFA

We use a hierarchical architecture composed of SFA nodes
(Figure 1) [2]. The input images have a resolution of 65x65.
The bottom layer reads from the input, and is formed of 15x15
SFA nodes, each with a 9x9 receptive field, among which 5
pixels overlap. The higher 3 levels have 7x7, 3x3, 1x1 nodes
respectively, all but the last one with 3x3 receptive fields. This
part of the architecture is proposed in previous studies [2], and
called thereupon Feed-forward SFA for clarity.

We extend Feed-forward SFA with an extra 1x1 layer on
top, which feeds its output at time t is back to itself at t+∆t.
The new architecture is called Recurrent SFA. The input to
the top (nth) layer at time t, xn(t), becomes:

xn(t) = [yn−11 (t), yn−12 (t), ..., yn−1J (t),

yn1 (t−∆t), yn2 (t−∆t), ..., ynJ (t−∆t)]T .

where yn is the output of the nth layer.

Input Image: 65x65

Layer 0: 15x15

Layer 1: 7x7

Layer 2: 3x3

Layer 3: 1x1

Layer 4: 1x1

Feed-forward SFA

Recurrent SFA

Fig. 1: The architecture of Feed-forward and Recurrent SFAs.
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Fig. 2: The feed-forward SFA response to a single moving object. (a-h) Object enters into view from left at t=110, leaves from
right at t=320. (i-j) The slowest two responses of the system, y1 and y2. (k) Phase diagram y1 vs. y2. Every point on the phase
diagram corresponds to a unique location of the object on the retinal plane. (l) Actual versus estimated position values of the
object. (n) Mutual information between the (actual) position values of the object, and y1, y2, and y1&y2.

The time difference ∆t, as the single parameter of the
system, determines the maturity of the emulated prefrontal
cortex, and hence called the “maturity” parameter. The smaller
it is, the “younger” the system will be, and recall only the near
past. As the system gets more mature, it can be increased to
allow a longer window.

Note that a hierarchical structure: (1) maintains feasibility
by restricting the input matrices of each node to a constant
size, (2) enables parallel processing, (3) forms a biologically
accurate model of the visual cortex, with strongly position-
dependent lower-level cells, and position-independent higher-
level cells. Furthermore, higher-level cells can represent in-
creasingly more complicated input-output functions (starting
with degree of 2 at the lowest-layer, and increasing as 4, 8,
16, and so on.)

IV. EXPERIMENTAL RESULTS

The experiments are divided into two sets to distinguish
capabilities that are already offered by feed-forward SFA, ver-
sus the newly introduced ones. In the first set, we demonstrate
feed-forward SFA in various cases, such as a single moving
object, a single object that disappears and reappears again, and
multiple objects moving around. These are also interesting as
a proof-of-concept that the original SFA approach is feasible
for object recognition in real-world images. The second set
demonstrates recurrent SFA in an object permanence scenario.
Specifically, we show that, when recurrence is introduced, the
tunnel and screen effects emerge. We further demonstrate how
it is possible to model an increasingly mature prefrontal cortex,
by manipulating the single parameter. For each set, same object
and behavior was used for both training and testing.

A. Feed-forward SFA

The first experiment shows the response of the feed-
forward SFA to an object traversing the x-axis from left to
right (Figure 2a-h, data was grayscaled to remove the color
cue, which makes classification too easy for different objects.)
This set is important for establishing a basis of the output
shapes. Figures 2i and 2j show the slowest two signals, whose
shapes are exactly as predicted by the theoretical analysis

[3]. Let [tA, tB ] denote the whole experiment duration, and
[ta, tb] ∈ [tA, tB ] a time interval in the experiment during
which the object is visible. A single pattern is visible during
[ta, tb], and is out of the view during [tA, tB ]\[ta, tb] (\
indicating set difference). The case with ta 6= tA and tb 6= tB ,
is called a bounded case, since the output must equal to a
constant c1 all during the interval [tA, tB ]\[ta, tb], given that
the system sees the (approximately) same background all the
while. Due to the zero mean constraint (Equation 1), c1 tends
to 0 in the limit (tB−tA)→∞. The analysis predicts that the
slowest signal (y1) should be a half cosinus, with the second
slowest signal (y2) being a sinus of a single oscillation. (The
other signals which are not shown here are cosinuses and
sinuses of increasing oscillations.)

The slowest two signals have a significance: They predict
the object’s 1D position uniquely. On the phase diagram of
y1 vs. y2 (Figure 2k), every point corresponds to a single
position on the x axis. This is because, as shown previously, the
SFA outputs reflect the main underlying free variable causing
the change in the system, called the configuration variable,
which in this case is the position. Exact position values can
be estimated via a simple regression [2]: Figure 2l depicts the
actual and regressed position values.

Ideally, one would like to predict the states of the con-
figuration variables based on the outputs. However which
output combination would be necessary or sufficient is not
automatically given by the network. For instance, in this case,
notice that y1 on its own is not enough to retrieve the position
values, and neither is y2, due to nonlinearities of both signals.
Here, a combination of the two is sufficient. However different
transformations need different outputs to be combined. When
there is more than one configuration variable, this can be even
more complicated: In one case in [1], where both position and
identity are changing, a combination of y1 and y3 estimate
the position, while y2 and y4 estimate the identity. So far, a
qualitative (human-supervised) assessment have been used to
decide. We propose using mutual information for a quantitative
assessment, without supervision. Specifically, we calculate the
mutual information between all the output combinations, and
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Fig. 3: A single moving object which is occluded for some time (between t=350 and 410) during the trial. (a-h) Snapshots from
the input images. (i) Feed-forward SFA. (j) Recurrent SFA and the “Tunnel Effect”.

the position values, then perform a thresholding to select the
minimum sufficient number of outputs. Figure 2m displays
the mutual information provided by y1, y2 and y1&y2. As
expected, y1&y2 is sufficient for this case.

The second experiment stands as a proof-of-concept: As
the object is traversing the retinal plane, it disappears behind
a screen. It continues to move behind the screen with a constant
velocity, and reappears in due time (Figure 3a-h). As expected,
due to the reactive nature SFA, as soon as it disappears,
the SFA outputs diminish to 0, and on its reappearance they
increase again (Figure 3i).

A final issue is the response of the system to more than
one object. In this case, there are two objects, the first one
in view at t=100-360; the second one at t=710-880. Both
are occluded shortly, the first between t=230-250, and the
second between t=820-830 (Figure 4a-k). As predicted, the
system develops highly object-dependent outputs (4l-n). It is
still possible to estimate the position of the objects, but in
addition, the outputs also code the identity of the object at
any time. For instance, a positive y1 response during the first
visible interval distinguishes the first object from the second
one, which has a negative y1 response for that interval. As
shown in [2], a kNN classifier with ≈ 95% success rate can
be trained to estimate the identity (Figure 4o).

B. Recurrent SFA

When a recurrent input is added, the system begins to
behave similarly with infants with maturating prefrontal cortex.
The first indicator is an ability of tracking the position of an
object behind a screen. This is demonstrated by the child’s
ability to guess when it will become visible again (the tunnel
effect). Figure 3j demonstrate the occluded object case with
recurrent input. Recurrent SFA is able to retain its activation
throughout occlusion, giving a comparable phase diagram y1
vs. y2 with the visible case. This means we can “track” the
position of the object uniquely, even through occlusion.

Psychological studies indicate that the tunnel effect de-
pends on the length of the “tunnel”. Younger infants are
successful for short tunnels only, while older infants can
manage increasingly longer ones. A similar effect is observed
in Figure 5 with two longer tunnels. Keeping the maturity

parameter constant, there is a limit to the occluded period
which can be compensated, similar to infants.
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(a) Tunnel with size 10 cms.
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(b) Tunnel with size 14 cms.

Fig. 5: As the tunnel gets longer, Recurrent SFA is no more
able to sustain the signals from vanishing.

The final indicator of a mature understanding of object
permanence is the screen effect, in which the infant maintains
the object’s identity. She is surprised if a different object
reappears from behind the screen. To demonstrate the effect,
we show that the architecture has difficulty adjusting when a
different object reappears, in which case its predictions collide
with the apparent stimuli, resulting in a “surprise”. Figure 6a
demonstrates the feed-forward case: When Object A disap-
pears behind the screen, and reappears having changed into
Object B at time 150, the system responds immediately. Figure
6b demonstrates the recurrent case, with maturity parameters
of ∆t = 20 and ∆t = 40, where the system needs time to
adjust itself to the changed object. The delays, in which the
system insists on seeing Object A, indicate an expectation that
the object’s identity should have been preserved.

V. CONCLUSION

We have shown how slow feature analysis, previously
shown to develop the object concept, can be extended with
a recurrent loop to retain information through time. The pro-
posed extension mimics an important developmental stage, the
object permanence understanding. We argue that the building
of one ability on top of another is reminiscent of the way
humans maturate. The resulting system can predict an occluded
object’s movements, as well as keeping in mind its identity.
These abilities are not infinitely powerful: After a long enough
occlusion, they give in, just as in infants. Our study also serves
as a minor contribution to the SFA framework: We demonstrate
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Fig. 4: The feed-forward SFA response to two objects presented sequentially, both of which are occluded for some time. (a-k)
The first object is in view from t=100 to 360, occluded between t=230 and 250; the second object is in view between t=710 and
880, occluded between t=820 and 830. (l-n) The slowest three responses. (m) kNN classification of object identity.
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Fig. 6: The “Screen Effect”. The identity classification made by the recurrent SFA. Object A is changed with object B at t=150.
(a) Feed-forward case. (b) Recurrent case with maturity parameters ∆t = 20 and ∆t = 40. Notice that as the maturity parameter
increases, the system takes more time getting over its reluctance to accept the chance.

how mutual information can estimate the sufficient outputs, as
well as validating SFA for recognizing real-world objects.

An interesting question is whether a gradually increasing
maturation parameter will boost cognitive development, since
as shown repeatedly, initial limitations of our body promote de-
velopment by restricting the complexity. The effect of working
memory restrictions, other levels of recurrence, and real robotic
applications are all promising future directions.
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Abstract—In this article, a new CPG-Actor-Critic architecture
based on motor primitives is proposed to perform a crawling
learning task on a humanoid (the NAO robot). Starting from
an interdisciplinary explanation of the theories, we present two
investigations to test the important functions of the layered
CPG architecture: sensory feedback integration and whole-body
posture control. Based on the analysis of the experimental results,
a generic view/architecture for locomotion learning is discussed
and introduced in the conclusion.

I. INTRODUCTION

Bio-inspired approaches have been widely applied to model
locomotion capabilities in robotic applications[1]. Especially
in soft robotics[2], how the neural controller, the body mor-
phology and the environment interact is a challenging theme
for locomotion modelers. Firstly, the neural controller has to
be able to deal with a number of sensory inputs. Secondly,
the neural controller embedded in different bodies has to be
morphology-independent, in which case the generic neural
controller is transferrable to different morphologies. Finally, it
is arduous to evaluate the interaction of a locomotion capability
with the environment. In this article, we propose a CPG
architecture that aims to deal with all three challenges.
Using central pattern generators (CPGs) is one main-
stream bio-inspired solution to modelling quadrupedal
locomotion[3][4][5]. In most work, CPGs are used as sensory-
input-dependent neural networks of which the output is consid-
ered as a force or trajectory generator. According to Ijspeert et
al[6], there are two modelling objectives for locomotion capa-
bilities: One is to identify a baseline behavior which contains
fundamental patterns for a type of motor ability, for example
the coordination of joints. After this is accomplished, the other
is to identify how the baseline patterns can adapt to complex
and dynamical changes pertaining to the environment or the
physical body. Hence, based on this theory, the CPG network
should be extensively reformed into a generic architecture
where not only the two modelling aims can be fulfilled but also
the network’s adaptation/learning abilities can be strengthened.
In this article, a layered CPG architecture is proposed on the
basis of Rybak et al’s neuroscientific research[7] and follows
the same modelling ideology to the similar purposes. With this
architecture, it is possible to utilize typical machine-learning
methods to learn the adaptive dynamics.
Reinforcement learning (RL) is an effective mechanism for
locomotion learning. From the neuroscienfic perspective, Grill-
ner et al[8] highlight the connection of the brainstem and
basal ganglia structures, to which RL is closely related, to

CPGs. Based on experiments by Adolph et al[9], the infants
learn locomotion through self-correction via thousands of
failures. Clearfield et al[10] experimentally illustrate that infant
locomotion learning is related to social/emotional interaction.
Reinforcement learning might be an appropriate approach to
modeling locomotion learning processes as it theoretically de-
scribes sorts of emotion-related learning algorithms applicable
to the agent/robot interacting with the environment.
In this article, a new layered CPG-Actor-Critic architecture
based on motor primitives[6] is proposed to learn crawling on
the NAO robot. In section II, the detailed architecture of the
layered CPG network and learning algorithm is introduced. In
section III, the CPG-Actor-Critic is tested on the simulated
NAO robot and the results are transferred to the physical
robot for validation. Learned joint dynamics for crawling is
demonstrated for analysis. In the final section, the conclusion
about a generic neural structure of locomotion learning is
drawn for the purpose of implementing locomotion learning
in a robot.

II. METHODS AND THEORIES

A. The layered CPG architecture

Central pattern generators have been investigated to model
locomotion in a lot of robotic applications[1]. However, the
adaptation/learning capabilities of CPGs used on those robotic
platforms are limited. Firstly, the approaches to involving
adaptation/learning in most applications can only deal with
several specific types of adaptation and based on several
methods such as sensor-information extraction[11][12], neu-
ral connectionism alternation[3], demonstrated information[13]
and so forth. Secondly, the CPG structure lacks a generic com-
patibility with which any above-mentioned adaptive methods
can work together. According to Grillner et al’s research[8],
CPGs biologically are able to assimilate two functions: sensory
feedback integration and posture control. If each degree of
freedom of the robotic joint is considered as a stable limit
cycle, sensory feedback integration is the function of reshaping
the limit cycle and the posture control is applied in order to
shift the oscillation center.
Rybak et al[7] uncovered the possible biological mechanics of
CPGs (Figure 1 left). In this schema, the rhythmic generator
(RG) layer provides a primitive source of oscillatory signals.
The pattern formation (PF) layer is a level on which all
the RGs are mutually connected to form the phase-separated
output. This layer contains fundamental characteristics of one
type of locomotion. For example, crawling is experimentally
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observed to be one type of locomotion featured in anti-phase
movement of the ipisilateral limbs and in-phase movement of
diagonal limbs[14]. The dynamics adaptation represents the
functions of motorneurons of which the output is sent directly
to muscle spindles. In this layer, the output of PF layer is
adapted into distinct dynamics in order to adapt to different
environment or interactions. After reshaping the output of PF
layer in dynamic adaptation (DA) layer, the RG itself turns
out to be a ”clocking” driver for CPGs. The above three-
layer architecture has been implemented to model walking
behaviors in explaining locomotion models[12][15]. However,
the difficulty of implementing this structure is that there is
no generic models of the DA layer so that the robot without
proper sensors loses the ability to locomote. In this article, this
problem might be solved with the proposed solutions presented
below.
Mathematically, RGs can be modelled by different oscillators
(e.g. Hopf oscillators[15]). In this work, a phase oscillator is
chosen:

ṙi = ai(Ri − ri)
Ẇi = 2πωi +Ki

Ki =
∑
j

wji · rjsin(Wj −Wi − Pji)

ωi =
ω1i

e−100·Aexi + 1
+

ω2i

e100·Aexi + 1

Aexi = ri · sin(Wi +
π

2
)

Ai = ri · sin(Wi)

where Ai is the output of this phase oscillator and Aexi is
the frequency control output. ri and Wi are the amplitude
and phase variables. ωi is the frequency of the oscillator
with ω1i and ω2i controlling the ascending and descending
frequency. Ki is the connection term from the other oscillators
to oscillator i. wji is the connection weight of from oscillator
j to i. Wj is the phase of oscillator j and Pji is the phase
difference from oscillator j to i. ai and Ri are the convergence
rate and converged value of amplitude. In our work, the
parameters settings are as follows: ai = 50, Ri = 1.0,
w1i = w2i = 1.0. In the PF layer, a four-cell CPG network
is utilized as a CPG core to drive the motion of each joint
(details are in Figure 1). This CPG core has the capabilities
to maintain structural stability according to group theory[16]
and been verified to generate basic patterns of both crawling
and walking by adapting parameters w1i and w2i[5][17][18].
In the DA layer, the model of motor primitives is applied
to adjust the output of correspondent PF-layer neurons. The
motor primitive model is:

τ żi = α(β(gi − yi)− zi) + amp ·Ai + f

τ ẏi = zi

f(Wi, p) =

∑N
j=1 ψjvj∑N
j=1 ψj

pi (1)

ψj = exp(hj(cos(Wi − cj)− 1)) (2)
τ ġ = αg(g0 − g)

α = 8.0, β =
α

4
, αg =

α

2
(3)

cj ∼ (0, 2π)

Rythmic Generator

Pattern Formation

Dynamics Adaptation

Output

Fig. 1. Left: The functional structure of CPG anatomy and each block repre-
sents one-layer functionality. Right: The neural structure of CPG employed for
crawling. The single circle above most represents the RG layer as an oscillator.
The recurrent neural network composed of connected circles represents the
function of the PF layer. The diamonds represent functions of the DA layer.
Within the PF-layer network, the four-cell network in the dash-line frame
controls the rhythms of pitch motion for Shoulders and Hips. The other four
outside the dash-line frame controls the roll motion of Shoulders and Hips. The
arrow-head lines represent in-phase oscillation (the phase difference between
two oscillators is 0 or 2π). The dot-head lines represent anti-phase oscillation
(the phase difference between two oscillators is π)

where zi, yi and gi are the variables of the motor primitive.
amp is the weight of correspondent input from PF layer and
set to 27 which makes the output of motor primitive to oscillate
between -1 and 1. Ai is the “clocking” input from the PF layer.
τ is the time constant which is equal to the period ( 1

ωi
) of input

Ai. f is the forcing term in which ψj are fixed basis functions,
vj are the weights and pi is the amplitude which is equal to
amp. N = 50 represents the number of basis functions. Using
nonlinear arbitrary functions in f is a well-defined approach in
machine learning[19] for nonlinear regression and analogous
to population coding for computational neuroscience[20]. In
equation (2), hj is a constant equal to 2·N and Wi is the phase
input from the PF layer. cj is vector containing N separations
of the scope in (0, 2π). g0 is the anchor point (g0 = 0).
Equation group (3) guarantees the damping convergence of
the motor primitives.
Motor primitives are widely used to model discrete motor
learning[21][22] and rhythmic movement[6]. In terms of pe-
riodic movement learning, Gams et al[23] and Nakanishi et
al[24] employed demonstrated signals to learn motor primitives
of rhythmic motion with local weighted regression. However,
supervised learning might not always be the case in locomo-
tion learning. Infants learn to crawl by interacting with the
environment rather than being demonstrated how each joint
moves dynamically[25][26]. Locomotion learning based on
RL without demonstrated signals and motor primitives are
also popular[27][28]. However, as the motor primitives model
has a good learnability, in this article, a new approach of
using motor primitives and RL for locomotion learning without
demonstrated signals is proposed.

B. Natural CPG-Actor-Critic

The CPG-Actor-Citic architecture has been used for ex-
ploring and learning complicated locomotion patterns for both
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bipedal[29][30][15] and quadrupedal robots[31][32]. Inspired
by Grillner et al[8], the functions of CPG-Actor-Critic connects
the layered architecture to an affective learning (RL) process
in which the optimal parameters of CPGs are determined.
The actor generates actions by exploring the state space and
the critic evaluates the actions taken by observing rewards.
Policy gradient is a well-established method used to update
the parameterized action space. Since the normal ”vanila”
gradient suffers the slow learning rate, natural policy gradient
is employed to speed up the learning in the CPG-Actor-Critic
architecture. This is the so-called Natural CPG-Actor-Critic.
As previously mentioned, learning locomotion is a repeti-
tive task. As such, episodic natural policy gradient (eNAC)
is selected. eNAC is well-known for its learning effi-
ciency on searching optima in a continuous parameterized
space. Compared to Cacla (continuous action space learning
automaton)[33], another efficient continuous-space RL, eNAC
might suffer in possible failures by updating a parametrized
model into an uncertain action space[33]. So a positive eNAC
is applied in our work (details in II-C)to rule out the potential
failures. NAC is proposed by Kakade et al[34] and further
developed and used in motor learning by Peters et al[22][35].
It transforms the traditional RL problem of solving the Bell-
man equation to an explorative process of linear/non-linear
regression. As an efficient policy gradient approach, the basic
principles of NAC are as follows:
Assume the stationary policy is πθ(x,u) which can de-
termine action space u based on state space x with a
static distribution dπ(x). The immediate reward is r(xt, ut)
and baseline value is b. According to policy gradient
theorem[22], the monte-carlo expected reward J(θ) =∫
x
dπ(x)

∫
u
πθ(u|x)(

∑T
t=1 αtr(xt, ut) − b) and its normal

policy gradient can be written as:

5θJ(θ) =

∫
x

dπ(x)

∫
u

πθ(u|x)5θ log(πθ(u|x))

(Q(u,x)− b)dxdu

Q(u,x) =

T∑
t=1

αtr(xt, ut)

where the policy πθ(x,u) is derivable at the policy parameters
θ, namely 5θπθ exists. Q(u,x) is the action-state function.
By using function approximation approaches, Q(u,x)− b can
be approximated by 5θlogT (πθ(u|x))w, the policy gradient
can be rewritten as:

5θJ(θ) =

∫
x

dπ(x)

∫
u

πθ(u|x)5θ log(πθ(u|x))

5θlogT (πθ(u|x))wdxdu (4)
θn+1 = θn + α5θ J |θ=θn (5)

In equation (4), 5θlog(πθ(u|x)) is the basis function vector
related to state space x and w. By and large, Equation (5) plot
the rudimentary rule of thumb for policy gradient approaches.
For searching maximal expected reward J(θ) with respect to
θ in a faster speed, natural policy gradient will maximize
the Kullback-Leibler distance between J(θ +4θ) and J(θ)
to update searching policy πθ(x,u) until it converges[22]. n
represents the n-th step of update and α is the learning rate
(equal to 0.01). By using natural policy gradient, the normal

form is turned into:

θn+1 = θn + αF−1
θ 5θ J |θ=θn = θn + αw (6)

Fθ =

∫
T

πθ 5θ logπθ 5θ logπθdxdu

where F is the Fisher Matrix (FM) and w is the weight
vector. Multiplied by FM, normal policy gradient (Equation
(5)) is changed to the steepest one (Equation (6)). Then the
RL problem is transformed to figure out the approximation
of Q(x, u) function with the basis functions by searching
for a proper weight vector. According to the derivation of
eNAC[22], the weights, obtained by least square learning, can
be employed to update the policy parameters directly and the
calculation of the weights is:[

w
J

]
= (φφT )−1φR.

φ = [
s∑
t=1

αt 5 logT (πθ(ut|xt))w, 1]T1:H (7)

R = [

T∑
t=1

αtr(xt,ut)]
T
1:H (8)

where 1 : H represent H times samplings within one trial
(refer to details in the Algorithm). φ is the basis vector and
constant 1 is used to determine the baseline J avoiding large-
variance update. αt is the theoretical discounting factor. R is
the average reward vector in which r is the instant reward
(for the detailed eNAC proof, please refer to[22]). In this
article, motor primitives are embedded in the eNAC algorithm.
Within motor primitives, the weights vj (in equation (1)) are
the parameters and basis functions (equation (2)) represent the
states of a motor primitive. Assume that the actor emits the
action a according to a gaussian policy, then the action can
be written as:

a = θTψf(x, t) + εt

εnt ∼ N(0, (σn)2)

where θ is the policy parameter vector reflecting the weights
vj in motor primitives. ψf is the vector of normalized basis
functions of motor primitives. εt is the gaussian exploration
vector with deviation σ at time t and εnt is the exploration for
the nth basis function in εt. On the other hand, the actor can
also be altered to another form:

a = (θT + εTt )ψf(x, t) (9)
εnt ∼ N(0, (σn)2)

Equation (9) is state-dependent exploration[36] since the ex-
ploration of the action is εt(ψ) = εTt ψ(x, t). In order to re-
duce the computational load technically, using equation (9) can
save one-time matrix multiplication for exploration. The action
follows the new gaussian function a ∼ N(θTψf ,ψ

T
f Σψf )

and the RL basis function becomes 5θlog(πθ(u|x)) =
εTt ψfψ

T
f

ψT
f Σψf

, where Σ is the diagnal deviation matrix. if the
same deviation is employed for all the parameters and ψf
is normalized, ψTf Σψf turns out to be σ2.
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Fig. 2. The standard crawling posture on knees and hands and the main joints
controlled by CPGs. The distance and spineline angle indicate the quality of
crawling. The spineline angle is controlled by a gaussian function.

C. Learning to Crawl

With the above-mentioned eNAC algorithm, the robot
is able to explore the dynamics of each joint on its own
according to the specific reward function. Figure 2 shows the
standard crawling (crawling on knees and hands[37]). The
main joints controlled by CPGs are the ones located at the
hip and shoulder. The elbow oscillates with the rhythms of the
shoulder pitch. Since crawling is left-and-right symmetric[14],
the number of degrees of freedom (DOFs) can be reduced from
8 (left and right joints) to 4 (left or right joints only). Therefore,
the parameters for standard-crawling learning is 4 · 50 = 200
(where 4 is the number of DOFs and 50 is that of basis
functions). From the previous work[31], the move distance and
spineline angle (Figure 2) are two significant factors to evaluate
the quality of crawling behaviors. Accordingly, in the CPG-
Actor-Critic architecture, the reward function is composed of
two terms (rdistance and rangle) as two evaluation landmarks
for the above-mentioned two variables:

rreward = rdistance + rangle

rdistance = exp(
D

2
)− 1

rangle = exp(e)− 1

with e = N(x0, σ = 0.02) (10)

where D is the distance the robot crawls every episode. e is a
gaussian distribution with the center x0 and variance σ. Using
e is possible to maintain the posture of standard crawling
without learning some extreme postures[31]. In the case of
infants learning to crawl, this function works like parents’
hands adjusting or holding up the infant’s body when she/he
is crawling.
The pseudo-code of the learning-to-crawl algorithm based on
natural CPG-Actor-Critic can be summarized as:

eNAC Algorithm:
Repeat M trials each of which includes 10 rollouts
(H=10), In each rollout, action is generated
bya = (θT + εTt )ψf where εt ∼ N(0, σ2) (σ = 0.05)
for t = 1,2,3....s
Calculate:
for each rollout, the episodic return ri =

∑
j rangle(j)

the eligibility Ψi =
∑s
t=1 σ

2(εtψ)ψT

after each rollout, ri = ri+ rdistance then the gradient is:[
w
J

]
= (φφT )−1φR.

where R = [r1, r2, ...rH ]T and φ = [Ψ1,Ψ2, ...,ΨH ]T

Updating for each trial:
if δ > 0, with δ = Ravg − Vn−1 where Ravg is the
average of R and Vn−1 is the episodic value function of
last updating:
Vn = Vn−1 + 0.1 · δ and θn+1 = θn + αw, otherwise no
updating.
Until the convergence condition is satisfied: δ < 0 all the
time or |δ| < 10−4.

It is noteworthy that, inspired by Cacla architecture[38], the
“positive updating” is used to avoid the inappropriate updating
in the parametrized action space. Since the function approxi-
mation cannot accurately converge to the real Q function (w
cannot be zero), the convergence condition is necessary to
determine the termination of each learning process.

III. INVESTIGATIONS AND ANALYSIS

The objective of investigations in this section is to verify
the capability of motor primitives based on CPG-Actor-Critic
on dynamics modification and postural control. There are two
investigations: One is to test the learnability of the CPG archi-
tecture by using a generic “reshaping” mechanism (Equation
(1)) with the same targeted posture (the same spineline angle).
The other is to test if the generic motor primitives can also
adjust the joint posture (shifting centers of limit cycles) under
the condition that the posture control reward is set to two
different targets.

Before Learning After Learning

Starting

Termination

Fig. 3. Left: the beginning and termination snapshots of crawling before
learning. Right: the beginning and termination snapshots of crawling after
learning
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Fig. 4. Learning curves of three trials in investigation 1. run1-1∼3 represent
the three independent trials in investigation 1.

A. Investigation 1:Proprioceptive Sensory Feedback Integra-
tion

In this investigation, with the average spineline angle fixed
at 30 degrees (x0 = 1.05), the simulated robot learns to crawl
in three independent runs and finally converges to three differ-
ent results by balancing the distance maximization and posture
maintenance. Every run starts with the same initial posture
with (x0 = 1.08, approximately 28 degree) and performs a bad
non-crawling behavior with no crawling distance (Figure 3).
However, after learning, the standard crawling emerges from
the interaction amongst the CPG-Actor-Critic architecture, the
humanoid body and the environment (For the detailed perfor-
mance, please refer to the video[39]). Interestingly, the three
learning trials converge with similar smooth reward curves
(Figure 4) but different results (Figure 5).
In order to clearly investigate the reasons of the formation of
crawling, the joint dynamics are shown separately in Figure 5.
Since the standard crawling is a whole-body motion, the CPG-
Actor-Critic autonomously decides how to adapt the motion of
each joint. The adaptive changes of pitch joints for shoulders
and hips focus on the adjustment of their amplitudes (Figure 5.
A and B). Especially, the HipPitch joint tends to swing more
backward so that robot can crawl forward with more force.
Interestingly, extracting from the results in our investigations
(Figure 5.C and D), the significant factor determining if the
robot can crawl forward properly is the roll motion. Not
only the amplitudes of roll joints in shoulders and hips are
statistically adapted, but also the phases of CPGs controlling
roll joints are shifted compared to the original CPG output
without learning. It seems the DA layer modelled as motor
primitives has the capability to deal with the integration of
sensory information locally and even to adjust the phase
difference which is set inappropriately in the PF layer. It can
also tune the posture. From the joint dynamics of roll motion, it
is clearly observed that the limit cycles of roll joints are shifted,
in which case the oscillation centers of roll joints are adaptively
adjusted. Compared to the explicit posture-control terms in
previous work[15][31], the implicit terms grounded in the
motor primitives can integrate two functions: sensory feedback
integration and posture control. To verify the functionality of
posture control, investigation 2 below is focused on this aim.

B. Investigation 2: Posture Adjustment

In investigation 2, the objective is to verify the capability of
the proposed CPG-Actor-Critic architecture on the adjustment
of joint posture. Actually, the spineline angle reward proffers a
control signal of limiting the whole-body posture. With a loose
control coefficient (e.g. σ > 0.02 in Equation (10)) or without
the spineline restriction, the robot will only consider the
maximization of crawling distance, ignoring the maintenance
of the posture. This causes a convergence to an extreme
crawling behavior. In reality, parents always need to guide
a right posture by holding up or lifting the infants’ body
when they are crawling. Therefore, the posture limitation is
necessary.
For testing the posture control abilities, two spinelines are
chosen (x0 = 1.03 and x0 = 1.08, approximately 31 de-
grees and 28 degrees ). Two independent learning trials are
performed respectively for each of these two spineline-angle
controlled postures. With the results obtained, the comparison
of limit cycles of joints in 4 learning runs are given in Figure
6. For each group of the results (black and red curves), the
crawling joint dynamics converge to similar limit cycles. In
terms of the motion of pitch joints (shoulders and hips), from
Figure 6.A-B, the deviation between two limit-cycle centers is
blurry. However, it is conspicuous for the roll joints, especially
hip roll joints (Figure 6.C-D). The limit-cycle centers are
both shifted rightwards for shoulder and hip roll motion from
posture 2 (28 degree spineline angle) to posture 1(31 degree
spineline angle). This limit-cycle-center shifts correspond to
the closing-inward and opening-outward posture changes of
shoulder and hip joints. This is a typical whole-body motion
of lifting the gravity center of the body and increasing the
spineline angle. Compared to the explicitly allocated posture-
change terms in previous work[15][31], using motor primitives
can interactively rule out the unnecessary joints for posture
control. For example, in investigation 2, to change from posture
1 to posture 2, the system determines to fixate on altering the
posture of roll joints other than pitch joints based on the whole-
body motion logic.

C. Transferred Test on the Physical Robot

In this article, with 7 learning results, they are transferred to
the physical NAO robot for testing. In all the learning trials, the
popular Webots simulator[40] based on ODE (open dynamics
engine) is used. In order to successfully test the learned motion
from the simulated robot to the physical one, some precondi-
tions have to be realized. As discussed in previous work[31],
the possible failures of transferred results on physical robots
could be caused by the disparity in physics engines and
difference between simulation time and real time. In our work,
the frequency of the CPG is doubled while being transferred.
5 out of 7 results can be successfully transferred expect the
results for the posture (x0 = 1.03). After the CPG amplitudes
of pitch joints are reduced to 70%, the transfer to the physical
robot is now successfu. Figure 7 shows the snapshots of one-
step crawling on the physical robot (for details, please refer
to the video[41]). Compared to the previous implementation
with only optimized postures, the left-right curvy motion of the
spineline, a typical characteristic of crawling behaviors[14],
emerges after learning.
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Fig. 5. The dynamics of joints (Shoulder Pitch and Roll, Hip Pitch and Roll) before and after learning. The blue line indicates the original joint motion
without learning and the red solid lines, black dashed lines and purple dashed lines show the results of run 1-3 on the right side. The left-side figures are the
correpondent limit cycles.
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Fig. 6. The figure shows the limit cycles of each controlled joint with 2 independent learning trials for two different body postures. The blue solid lines
represent the limit cycles for each joint before learning. Red solid and dashed lines indicate the limit cycles for tested posture 1 (x0 = 1.03, appox.31 degree).
Black solid and dashed lines indicate the limit cycles for tested posture 2 (x0 = 1.08, appox.28 degree). pn-n is the abbreviation of posture n-run n. In the
investigation, all the outputs of CPGs for Hip-roll, Hip-pitch, Shoulder-roll and Shoulder-pitch joints are resacled by multiplying 0.35, 0.3, 0.3, 0.2.

Fig. 7. The implementation on the physical robot. This figure shows the video snapshot of one-crawling-step NAO robot on a wooden flat table (One crawling
step means one time alternation of the supporting leg and arm).

D. Summary

In this section, the motor primitives based CPG-Actor-
Critic architecture is tested for learning standard crawling from
non-crawling behaviors by phase shifting, output reshaping
and whole-body posture adjusting. The learned results are
transferred to the physical robot. It seems the three-layered
CPG model is able to proffer a generic mechanism to seek
out the possible answers to the typical problems regarding to
CPGs: sensory feedback integration and posture control.

IV. CONCLUSION

A. Motor Primitives based CPG-Actor-Critic

In this article, the proposed CPG-Actor-Critic based on
motor primitives seems to be able to optimize humanoid
crawling given an initially rough baseline behavior. The forcing
term f(Wi, p) in equation (1) works like a sampling sensor
which perceives a large number of proprioceptive points of the
CPGs and adapts flexibly them into distinct dynamic patterns
on the basis of actor-critic interaction. Even though this imple-
mentation of motor primitives with RL approaches instead of
supervised learning opens a new page for locomotion learning,
this approach still has some disadvantages: Firstly, learning
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might be slow. In the above investigation, each run takes
about 6-7 hours to complete. Therefore, the learning process
might not be transferred to the physical robot. Secondly, the
frequency is not adaptive. In the work presented above, all the
CPG frequencies are fixed. Even though the motor primitives
can innately preserve the learned dynamics when the frequency
is changed, it still cannot guarantee that the new-frequency
patterns still can work when the whole-body dynamics change
with the oscillation frequency. As a matter of fact, after
reducing the frequency from 1.0 to 0.5, the robot’s body
dynamics change and crawling cannot be properly presented.
The solution to this problem might be using hybrid learning
based on eNAC by counting in the frequency parameters[42].
Thirdly, the implementation of CPGs is not energy efficient.
In our work, the CPGs are used as trajectory generators. The
layered architecture still lacks of an adaptive approach to
altering the stiffness of joints. On the other hand, low energy
efficiency might be a natural flaw of rigid body robots. Even
though force control might be able to improve the energy
issues on a rigid body, the inflexibilities of the body is still
a stumbling block stifling a robot from being energy-efficient
for locomotions.
In a conclusion, motor primitives based CPGs is able to not
only learn demonstrated/supervised signals[23] but also adapt
to flexible patterns based RL approaches in our work. It might
be possible to combine the two together to form a more general
architecture for locomotion-learning tasks.

B. A Generic View of Bio-inspired Locomotion Learning

Even though a lot of inspirations related to locomotion
learning/development can be extracted from cognitive science
(e.g. Thelen et al[43] ), neuroscience (e.g. Schore et al[44],
Grillner et al[8]), psychology (e.g. Clearfield et al[26], Adolph
et al[9]) and robotics (e.g. Pfeifer et al[2]). From the per-
spective of Thelen et al[43], locomotion development/learning
is focused on the formation and adaptation of the so-called
”attractors” in a dynamic system. This assumption offers a
baseline for locomotion learning that what should be fo-
cused on is not how a static system can be modelled but
a dynamic system might be developed. The stagnation is
only one “special” attractor of the system. In this sense,
motor primitives have been assumed to represent locomotion
attractors in Ijspeert et al’s work[6]. Schore et al[44] and
Grillner et al[8] both imply that locomotion learning might
be RL-related from the perspective of neuropsychology and
neural structures. From psychological point of view, Clearfield
et al[26] indicates the developmental relation of locomotion to
spatial memory including the distance. Adolph et al[9] recently
explain why the repetitiveness is important for infants to learn
locomotion. Finally, Pfeifer et al[2] rethink the locomotion
and emphasize the interaction between the body and the
environment. Based on the above-mentioned comprehension
of locomotion from different angles, locomotion learning is
an affective-related, interactive and repetitive process with
cognitive cues. Therefore, it seems the motor primitives based
CPG-Actor-Critic capsulated the possible potentials to cover
the explanations from each view of them. A general CPG
architecture in Figure 8 might be able combine the self-
learning and supervised learning. In the supervised learning
mechanism, the input can be mimicry/demonstrated signals of
joint dynamics. The PA layer can be a recurrent neural network

Demonstrated 

Info

Pattern 

Formation

Dynamics

Adaptation

No input

output

Fig. 8. The generic architecture of locomotion learning. The dashed-line
blocks represent the choices of input. The other blocks represent the functions
of each layer.

in which each neuron modeled by motor primitives can learn
input signals by using local weighted regression. This has been
demonstrated in the work by Gams et al[23]. As the approach
presented in our approach, the self-learning mechanism does
not need supervised input. The PA layer can be constructed
as a recurrent neural network composed of oscillators. The
main contribution of this paper is that the output of PA layer
by both self or supervised learning can be adaptively changed
in the DA layer modeled by motor primitives for different
tasks or different sensor configuration in the CPG-Actor-Critic
architecture. eNAC or PoWER (Policy learning by Weighting
Exploration with the Return) learning algorithms[36] can be
applied to adapt the motor dynamics.
In future work, the proposed new architecture will be tested
on different legged morphologies and even applied to bipedal-
walking learning. Meanwhile, the frequency has to be consid-
ered as one of the factors for learning. On the other hand, this
new model will be modified to integrate the sensory feedback
from sensors, which can increase the adaptation of the whole
architecture.

ACKNOWLEDGMENT

Authors would like to thank the European RobotDoC
project (www.robotdoc.org) for funding and supporting this
research.

REFERENCES

[1] A. J. Ijspeert, “Central pattern generators for locomotion control in
animals and robots : a review Neurobiology of CPGs,” Neural Networks,
vol. 21, pp. 642–653, 2008.

[2] R. Pfeifer and J. C. Bongard, How the Body Shapes the Way We Think:
A New View of Intelligence (Bradford Books). The MIT Press, Nov.
2006.

[3] N. Harischandra, J. Knuesel, A. Kozlov, A. Bicanski, J.-M. Cabelguen,
A. Ijspeert, and O. Ekeberg, “Sensory feedback plays a significant role
in generating walking gait and in gait transition in salamanders: a
simulation study.” Frontiers in neurorobotics, vol. 5, no. November,
p. 3, Jan. 2011.

[4] X. Zhao, J. Zhang, and C. Qi, “CPG and Reflexes Combined Adaptive
Walking Control for AIBO,” 2012 11th International Conference on
Machine Learning and Applications, pp. 448–453, Dec. 2012.

[5] S. Degallier, L. Righetti, L. Natale, F. Nori, G. Metta, and A. Ijspeert,
“A modular bio-inspired architecture for movement generation for the
infant-like robot iCub,” 2008 2nd IEEE RAS & EMBS International
Conference on Biomedical Robotics and Biomechatronics, pp. 795–800,
Oct. 2008.

14



[6] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor
behaviors.” Neural computation, vol. 25, no. 2, pp. 328–73, Feb. 2013.

[7] I. A. Rybak, N. A. Shevtsova, M. Lafreniere-Roula, and D. A. McCrea,
“Modelling spinal circuitry involved in locomotor pattern generation:
insights from deletions during fictive locomotion.” The Journal of
physiology, vol. 577, no. Pt 2, pp. 617–39, Dec. 2006.

[8] S. Grillner, P. Wallén, K. Saitoh, A. Kozlov, and B. Robertson, “Neural
bases of goal-directed locomotion in vertebrates–an overview.” Brain
research reviews, vol. 57, no. 1, pp. 2–12, Jan. 2008.

[9] K. E. Adolph, W. G. Cole, M. Komati, J. S. Garciaguirre, D. Badaly,
J. M. Lingeman, G. L. Y. Chan, and R. B. Sotsky, “How do you learn to
walk? Thousands of steps and dozens of falls per day.” Psychological
science, vol. 23, no. 11, pp. 1387–94, Jan. 2012.

[10] M. W. Clearfield, C. N. Osborne, and M. Mullen, “Learning by looking:
Infants’ social looking behavior across the transition from crawling to
walking.” Journal of experimental child psychology, vol. 100, no. 4, pp.
297–307, Aug. 2008.

[11] L. Righetti and A. J. Ijspeert, “Pattern generators with sensory feedback
for the control of quadruped locomotion,” 2008 IEEE International
Conference on Robotics and Automation, pp. 819–824, May 2008.

[12] J. Nassour, V. Hugel, F. B. Ouezdou, G. Cheng, and S. Member, “Failure
Maps : Applied to Humanoid Robot Walking,” IEEE Transactions on
Neural Networks, vol. 24, no. 1, pp. 81–93, 2013.

[13] J. Buchli, L. Righetti, and A. J. Ijspeert, “Frequency analysis with
coupled nonlinear oscillators,” Physica D: Nonlinear Phenomena, vol.
237, no. 13, pp. 1705–1718, Aug. 2008.

[14] L. Righetti, K. A. Nylén, and A. Ijspeert, “Is the locomotion of crawling
human infants different from other quadruped mammals?” Tech. Rep.,
2008.

[15] C. Li, R. Lowe, and T. Ziemke, “Humanoids Learning to Walk: a
Natural CPG-Actor-Critic Architecture,” Frontiers in Neurorobotics,
vol. 7, 2013.

[16] M. Golubitsky and I. Stewart, The Symmetry Perspective: From Equi-
librium to Chaos in Phase Space and Physical Space, ser. Progress in
Mathematics Series. Birkhäuser Basel, 2003.

[17] C. Li, R. Lowe, B. Duran, and T. Ziemke, “Humanoids that crawl:
Comparing gait performance of iCub and NAO using a CPG architec-
ture,” 2011 IEEE International Conference on Computer Science and
Automation Engineering, pp. 577–582, Jun. 2011.

[18] C. Li, R. Lowe, and T. Ziemke, “Modelling Walking Behaviors Based
on CPGs: A Simplified Bio-inspired Architecture,” From Animals to
Animats 12 Lecture Notes in Computer Science, vol. 7426, pp. 156–
166, 2012.

[19] C. M. Bishop, Pattern Recognition and Machine Learning, 2006.
[20] P. Dayan, Theoretical Neuroscience: Computational And Mathematical

Modeling of Neural Systems. Massachusetts Institute of Technology
Press, 2005.

[21] J. Kober, A. Wilhelm, E. Oztop, and J. Peters, “Reinforcement learning
to adjust parametrized motor primitives to new situations,” Autonomous
Robots, vol. 33, no. 4, pp. 361–379, Apr. 2012.

[22] J. Peters, “Machine learning for motor skills in robotics,” Ph.D. disser-
tation, 2007.

[23] A. Gams, A. J. Ijspeert, S. Schaal, and J. Lenarčič, “On-line learning and
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Abstract—Bio-inspired sensorimotor control systems may be 
appealing to roboticists who try to solve problems of multi-
DOF humanoids and human-robot interactions. This paper 
presents a simple posture control concept from neuroscience, 
called disturbance estimation and compensation, DEC concept 
[1]. It provides human-like mechanical compliance due to low 
loop gain, tolerance of time delays, and automatic adjustment 
to changes in external disturbance scenarios. Its outstanding 
feature is that it uses feedback of multisensory disturbance 
estimates rather than ‘raw’ sensory signals for disturbance 
compensation. After proof-of-principle tests in 1 and 2 DOF 
posture control robots, we present here a generalized DEC 
control module for multi-DOF robots. In the control layout, one 
DEC module controls one DOF (modular control architecture). 
Modules of neighboring joints are synergistically inter-
connected using vestibular information in combination with 
joint angle and torque signals. These sensory interconnections 
allow each module to control the kinematics of the more distal 
links as if they were a single link. This modular design makes 
the complexity of the robot control scale linearly with the DOFs 
and error robustness high compared to monolithic control 
architectures. The presented concept uses Matlab/Simulink 
(The MathWorks, Natick, USA) for both, model simulation and 
robot control and will be available as open library. 
 

I. INTRODUCTION 

Postural adjustments (PAs) allow humans to make their 
voluntary movements smooth and skillful. The adjustments 
(1) provide the movement buttress that the action-reaction 
law of physics prescribes, (2) maintain body equilibrium by 
balancing the body’s center of mass (body COM) over the 
base of support, and (3) cope with interlink coupling torque 
disturbances from link acceleration (also due to the action-
reaction law). The adjustments require coordination across 
(1)-(3) and between these and the voluntary movements. 
They participate in the movement and muscle synergies and 
sensorimotor ‘building blocks’ [2-5] that help to simplify the 
complexity given by the high redundancy in the motor 
system. PA impairment by damage of the cerebellum or 
sensory systems tends to produce a severely disabling 
syndrome called ataxia (jerky and dysmetric movements, 
postural instability; [6]).  

There has been recent progress in understanding the 
neural mechanisms of human postural control [7-10]. This 
owes to the use of engineering methods that allow relating 
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measured postural responses to exactly known external 
disturbances in model-based approaches. These models 
mostly considered human balancing in the sagittal plane, 
which predominantly occurs around an axis through the 
ankle joints, and described its biomechanics as that of a 
single inverted pendulum, SIP.  

Among these models, the DEC (disturbance estimation 
and compensation) model [1, 10] is unique in that it uses 
sensory-derived internal reconstruction of the external 
disturbances having impact on the body posture. Model 
simulation data for various disturbance scenarios and 
changes in sensor availability were in good agreement with 
human data [10-14]. The model was re-embodied into a SIP 
postural control robot [15] and the robot was successfully 
tested in the human test bed [14].  

Further development of the DEC model comprised its 
extension to double inverted pendulum (DIP) biomechanics 
with hip and ankle joints and an investigation of the neural 
control underlying the coordination between these two joints 
[16]. This work involved a double inverted pendulum, DIP 
postural control robot. Furthermore, feasibility tests with a 4 
DOF agent involving Matlab’s SimMechanics toolbox were 
successful. This led to the here presented generalized DEC 
module for the control of multi-DOF robots with a modular 
control architecture. Using one DEC module for each DOF, 
control complexity linearly increases with the number of 
DOF.  

The next section gives an overview of the DEC control 
principles, followed by a description of the implementation 
in a SIP and the generalized modular control of a multi-DOF 
DEC system. Finally, the DEC library is briefly described 
and demonstrated by presenting an application. In 
Conclusion, outstanding results are emphasized and future 
improvements are outlined.  

II. SYSTEM OVERVIEW 

A. The DEC concept 
Figure 1 shows a simplified scheme of the DEC module as 

it was developed for the SIP control. The module controls 
joint position of a moving link with respect to a supporting 
link and consists of three parts:  

(A) Proprioceptive negative feedback loop of joint angular 
position (box ‘Prop.’). A PID (proportional, integral, 
derivative) controller provides the torque command (P ≈ 
m⋅g⋅h; m, body mass; h, center of mass= COM height; g, 
gravitational acceleration). The neural time delay of this 
loop amounts to ≈60 ms (ankle joint). 

(B) Intrinsic stiffness and damping loop of musculoskeletal 
system (‘passive stiffness’ in box ‘Biomech’; it amounts to 
≈15% of reflexive stiffness and damping of (A) and 
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feedback gain of (A) and (B) together is unity). Time delays 
are virtually zero. (A) and (B) together form a servo that, 
given appropriate control parameters, actuates the joint such 
that actual joint position equals the desired position (input is 
displacement trajectory via the Set Point Signal).  

(C) Disturbance estimation and compensation (DEC) loop. 
The DEC loops (four in a complete scheme, see below) 
estimate the external disturbances through sensor fusions 
and command via negative feedback the servo (A, B) to 
produce the joint torques that compensate for the 
disturbances. Assuming ideal compensation, the servo can 
function as if there were no disturbances. Note furthermore 
that no feed forward of plant dynamics is used for the servo 
(e.g. through an inverse of plant dynamics). Sensory 
information (mainly vestibular) from the DEC loops 
upgrades the servo from joint coordinates to space 
coordinates. Identified lumped human time delay across all 
three loops (A-C) measured at the controller for the ankle 
joint amounts to ≈180ms, with the largest share from (C) 
[9,10]. 

In the SIP used for the DEC control, the joint (ankle joint) 
connects the moving link (body) with the supporting link 
(foot). Postural movements tend to be rather slow, such that 
centrifugal and Coriolis forces can be neglected. Postural 
stability is achieved by the DEC feedback for any desired 
possible joint position, allowing the superposition of 
voluntary movements with the compensation of external 
disturbances. The many external events that may have a 
mechanical impact on body stability are decomposed in, and 
estimated as external disturbances. Underling these 
estimations are sensory mechanisms.  

Humans use multisensory integration of vestibular signals, 
vision, touch, and joint proprioception (angle, angular 
velocity, and force/torque) for their postural control [17]. 
Studies on human self-motion perception [18] and animal 
work on sensory processing [19] showed that the central 
nervous system internally processes physical variables that 
are not directly available from the sensory organs, but result 
from sensor fusions.  

For example, humans distinguish in the absence of external  
spatial orientation cues (visual, auditory, and haptic) between 
body rotation (velocity and position), orientation with respect 
to the earth vertical, and linear acceleration. They do so by 
combining input from peripheral vestibular receptor organs 
(canals, otoliths; see [14]). Furthermore, they may use 
estimates of the variables for controlling body segments that 
are distant from the sensor organ in the body. For example, 

humans may perceive trunk-in-space motion by combining a 
vestibular head-in-space motion signals with a proprioceptive 
trunk-to-head (neck) motion signal [18]. Transfer of the 
space reference also may apply to the other vestibular signals 
and may be applied to other body segments and even 
extended to external items that are in firm haptic contact with 
the body (e.g. the support surface when standing).  

The external disturbances and their estimates can be 
considered from two viewpoints. First, they reflect outside 
world events that tend to affect the joint torque in certain 
conditions (e.g. while standing). These events occur in world 
coordinates and usually in a context dependent way (e.g. ride 
on “this especially fast escalator”). Corresponding 
predictions of these estimates may later be re-called from 
memory and fed forward to the estimation mechanisms 
where they are fused with the sensory-derived estimates. 
According to the DEC concept, also self-produced 
disturbances, such as the gravity effect during voluntary 
body lean, entail fusions of predicted and sensory derived 
estimates [1]. The second aspect is that the disturbances 
affect body stability via the joint torque they produce. The 
corresponding torque components are referred to as 
disturbance torques. Both aspects will be considered in the 
next section (III). 

The disturbance torques in the SIP scenario are part of the 
ankle torque  

     ,    (1) 
where J represents the body’s moment of inertia about the 
ankle joint (not including the feet) and αBS the body-space 
angle (primary position: COM projection on ankle joint be 
vertical, αBS = 0°). In the absence of any disturbance, TA 
equals the actively produced muscle torque, Ta. The 
disturbance torques add to Ta in the form 

 TA = (Tg + Tin + Text + Tp) + Ta  ,     (2) 
where Tg is the gravitational torque, Tin the inertial torque, 
Text the external torque, and Tp the passive joint torque. Tg, 
Tin, Text, and Tp challenge the control of TA (exerted by Ta) 
and are compensated for by Ta [1]. While Tp represents an 
intrinsic musculoskeletal property, Tg, Tin, and Text are 
produced by the neural feedback. 

The following section explains the DEC loops in two steps. 
First, an explanation is given for the simple case of the SIP 
balancing about the ankle joints. Then, the generalized form 
for modular control of multi-DOF systems will be presented. 
Tables I and II give our designations of the DEC module’s 
inputs and outputs, respectively. 

III. DISTURBANCE ESTIMATIONS  
Four physical external disturbances need to be taken into 

account for posture control: 
(i) Support surface rotation (platform tilt) 
(ii) Gravity and other field forces  
(iii) Support surface translation (external acceleration) 
(iv) Contact forces (external torque) 

  

 

TA = J ! d
2"BS(t)
dt 2

 
Fig. 1. Simplified scheme of DEC module. 
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(I) DEC OF SUPPORT SURFACE ROTATION 
SIP scenario. The support surface tilt produces the foot-

space excursion αFS (primary position, level; αFS= 0°). Body 
inertia tends to maintain the primary body-space orientation, 
which is upright (primary body-foot angle αBF≈ αBS = 0°). On 
the other hand, the servo tends to take the body with the 
platform in relation to αBF. This applies to the passive ankle 
torque Tp, in the form 

    ,  (3) 
with KP´ representing the passive stiffness (proportional) 
factor and KD´ the passive damping factor. The reflexive part 
of the servo, loop (A), is commanded by the estimate of αFS, 

, to maintain the body orientation upright. 
To this end,  combines vestibular and proprioceptive 

information by a down channeling of the vestibular derived 
space reference from the body to the feet. According to [10], 
humans achieve this by using the derivatives of αBS and αBF 
in the form 

FS = BS - BF      .   (4) 
According to [10], there is a subsequent processing of the 
estimate by a velocity threshold (0.18°/s; with level support, 

FS tends to be subthreshold, and its noise, mainly from the 
!!" signal, is prevented from entering the control [14]), a 
scaling factor (G=0.75), and a mathematical integration. 

Implemented in the SIP control, ‘upgrades’ the 
control from joint to space coordinates.  
 

Generalized case. For the nth link in a multi-DOF system 
(Fig. 2), the link orientation in space is given by αn

SPACE. 
This information is obtained from vestibular input that is 
down-channeled analogous to (4) through the fusion of 
vestibular and proprioceptive signals by  

αn
SPACE=αn+1

SPACE-αn-1
JOINT   . (5) 

The down-channeling proceeds from the upper most 
segment αHEAD

SPACE that contains the vestibular organs. The 
tilt of the lowest link in the system (most often the foot), 
which provides the support for the upper links, is given by 

α0
SPACE= αHEAD

SPACE-∑k=1
Nαk

JOINT  .   (6) 
 

Recent evidence from humans [20] suggests that, while 
the down-channeling to the supporting link occurs through 
velocity signals as in (4), the further processing in terms of 
thresholding (dead band discontinuity), gain scaling and 
integration is performed for the lowest link α0

SPACE, from 
where the tilt estimate is then up channeled for controlling 
the tilt responses of the upper links. The position of the 
common COM of all the links above the respective joint is 
calculated (see below). This accounts for the fact that the 
location of the COM above the joint may change when the 
configuration of the links changes. The control of each joint 
can now be viewed as if dealing with a SIP. 
 
(II) DEC OF GRAVITY DISTURBANCE 

SIP scenario. Body lean evokes the gravitational torque Tg 
that is related to αBS by 

      .  (7). 
The estimate g uses a vestibular derived αBS signal and 

includes a detection threshold and gain scaling. For use of 
g in the DEC feedback loop, small angle approximation 

reduces (7) to Tg=m⋅g⋅h⋅αBS. Furthermore, g is divided by 
m⋅g⋅h to obtain an angle equivalent of the torque. As an 
alternative to use g one may use directly αBS (in the form 
of an estimate ).  
 Note that during support surface tilt with compensation of 

 (or g) alone, the body is tilted with the platform; it is 
the compensation of  that maintains the body upright. 
 

Generalized case. In a DIP or multi-DOF body, τg is 
calculated by  

τg=mn
UP g CoMnx     ,    (8) 

where CoMnx is the horizontal component of the position of 
the center of mass CoMn of all the segments above the 
controlled joint. CoMn is computed performing the weighted 
average 

CoMn= [CoMn+1 +Lncos(αn
SPACE) ]mn-1

UP 

+mnhncos(αn
SPACE)     ,    (9) 

where Ln is the length of the link controlled by the joint and 
hn is the distance of the COM of the nth link from the nth 
joint. 
 Analogous to (I), the gravity compensation in each joint 
comprises all links above this joint, as if dealing with a SIP. 
 
(III) DEC OF SUPPORT LINEAR ACCELERATION 

SIP scenario. Human perception of support surface 
acceleration may involve various sensory systems and may 
include sensing of shear forces in the foot soles. However, 
the corresponding biological knowledge base is still limited. 
Reference [1] used vestibular information to estimate support 
surface acceleration, having in mind that vestibular-loss 
subjects have major problems during such stimulus 
conditions in the absence of external orientation cues. 
Support surface acceleration evokes the disturbance torque 
Tin in the form 

Tin´= - âFS ⋅ m ⋅ h ⋅  cos(αBS)    ,  (10) 
where âFS is the estimate of support surface acceleration. âFS 
can be computed from the difference between two vestibular 

 

Tp = !K " P #$BF ! K " D #
d$BF(t)

dt

 

ˆ ! FS
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Tg = m ! g ! h ! sin("BS)
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ˆ T 
!̂BS
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Fig. 2. Conventions used for labeling links, joints and control 
modules (M). 
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signals, the one of head linear acceleration and the one of the 
head acceleration due to body rotation (also derived from 
vestibular input; see [1]. The processing for âFS also 
comprises thresholding and gain scaling. 
 

Generalized case. In the case of a multi-DOF system, the 
external acceleration is computed for each joint. Analogous 
to the SIP scenario, the part of the vestibular head 
acceleration signal that is not explained by trunk rotation at 
the hip or at any joint below is taken to stem from support 
surface acceleration. This is expressed as  

aEXTERNAL=aVESTIBULAR-an
SELF   ,  (11) 

where the acceleration produced by joint movements is: 

!!!"#$ = !!!!!"#$ + !!
!!

!!!
sin  (!!!"#$%)
cos  (!!!"#$%)

  .  (12) 
 The disturbance torque then results from 
 

τacc=ax
EXTERNALCoMnymn

UP+ ay
EXTERNALCoMnxmn

UP.  (13) 
 
 

TABLE I.  
MODULE INPUTS 

Symbol Description Source 
Control signal Desired αn

SPACE, Comn 
or αn

JOINT (3 options) 
Desired position 

CoMn+1 Center of mass of the 
robot over the n+1th 
joint 

n+1th module 

mn+1
UP Mass of the robot 

from head to the n+1th 
joint 

n+1th module 

αn-1
SPACE Up-channeled 

αn-1
SPACE 

n-1th module 

αn
SPACE-DOWN Down-channeled 

αn
SPACE 

n+1th module 

Jn+1
UP Moment of inertia of 

the robot from head to 
the nth joint 

n+1th module 

an+1
ang Head angular 

acceleration with 
respect to the joint 
n+1th 

n+1th module 

 
 
(IV) DEC OF CONTACT FORCE DISTURBANCE 

SIP scenario. Led the disturbance torque Text of equation 
(2) be the results of a horizontal force Fext exerted on the 
body by a pull on the clothes at the height h, which is above 
the COM (such that foot-support shear forces may be 
neglected). Text is then related to Fext and TBS in the form  

Text= Fext⋅  h ⋅  cos (αBS)     .   (14) 
An estimate of the external disturbance may be obtained from 
sensing the amount and location at the body of Fext (and αBS). 
However, having in mind that humans tend to sense centre of 
pressure (COP) shifts under the feet during such stimuli, 
studies from our laboratory [1,10,11,13] derived the estimate 

ext from a sensory measure of COP, as represented in Ta, in 
the form of 

Text = Ta - (Tg + Tin + Tp - TA)    ,   (15)  
accounting for TA, Tg, and Tin by equations (1), (7), and (10), 
respectively, and neglecting Tp, because it is relatively small. 
Processing of the ext estimate includes again a detection 
threshold and, because Ta provides positive feedback, a gain 
clearly <1 and a low-pass filtering. Humans appear to restrict 
the use of ext to situations where the contact force stimulus 
endangers postural stability [13]. Possibly, co-contraction of 
antagonistic muscles across the involved joints may 
additionally help Text compensation as long as the COP shift 
does not exceed the base of support. 

 
TABLE II 

MODULE OUTPUTS 
Symbol Description Destination 

τn Torque produced in the 
joint n 

Joint servo loop 

CoMn Center of mass of the 
robot over the nth joint 

n-1th module 

mn
UP Mass of the robot from 

head to the nth joint 
n-1th module 

αn
SPACE Up-channeled αn

SPACE n+1th module 
αn

SPACE-DOWN Down-channeled 
αn

SPACE 
n-1th module 

Jn
UP Moment of inertia of 

the robot from head to 
the nth joint 

n-1th module 

an
ang Head angular 

acceleration with 
respect to the nth joint  

n-1th module 

 
Generalized case. For convenience, the subscripts in (15) 

were changed to superscripts, allowing to denote the number 
of the module by the subscript. With this modification, (15) 
takes the form  

τext= τn
a- τn

g - τn
in-τn

p +τn
A    .  (16) 

With the term Jn
UP representing the moment of inertia of all 

the segments over the controlled joint, equation (1) takes the 
form 

τn
A= !

!"
( n

SPACEJn
UP)      ,      (17) 

which takes into account that also Jn
UP may change in the 

case of a robot with several DOFs.  
In order to keep the computation of Jn

UP as simple as 
possible by exchanging only one variable between blocks, 
the moment of inertia Jn

UP* is computed around the axis 
passing through the center of mass of the whole group of 
segments from the nth segment to the head in the form 

Jn
UP*=(Jn+1

UP* + mn+1
UP||CoMn+1-CoMn||2)+   

+ Jn+mn||CoMn
LINK-CoMn||2     , (18) 

where CoMn
LINK is the center of mass of the nth link equal to 

!"#!
!"#$ = !!

sin  (!!!"#$%)
cos  (!!!"#$%)

   .  (19) 

Jn
UP* is then down-channeled to the n-1nt block, while Jn

UP, 
used in (17), is computed as 

Jn
UP=Jn

UP* + mn
UP||CoMn||2      .  (20) 

 

 

ˆ T 

 

ˆ T 

 

ˆ T 
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IV. SOFTWARE LIBRARY 
The software library consists of a Matlab/Simulink block 

that implements a single DEC module containing the servo 
and the above described disturbance estimates. An 
interactive mask allows the user to specify the block position 
in a multi-link system (as top or bottom/supporting, or 
intermediate link). The physical features such as link height, 
link mass, height of link COM, etc. are input into the block 
as anthropometric parameters. Each block has input and 
output ports to exchange data with the neighboring blocks 
above and below (see Tables I and II) and allows modifying 
the processing of the estimates in terms of thresholding, gain 
scaling, etc. The PID controller parameters and the passive 
stiffness and damping parameters of the servo are set after 
deciding the target variables (COM-joint orientation of the 
above link, or link orientation with respect to earth vertical, 
or joint angle).   

The software will be made available as an open library in 
the internet.  

V. CASE STUDY 
Simulations of the modular control concept were 

performed with a four link humanoid agent in 
Matlab/Simulink. The links were feet (fixed to the ground), 
shank, thigh and trunk (here HAT; head, arms and torso), 
interconnected by the ankle joint, the knee joint and the hip 
joint, respectively. Stimuli were applied in the sagittal plane, 

which allowed us to use a planar triple inverted pendulum 
biomechanical model. The humanoid’s biomechanical 
parameters corresponded to human anthropometric measures 
[21]. The above-described DEC modules were used to 
control the ankle, knee and hip joints in a modular way. The 
control parameters were adapted from [20]. Accounting for 

the fact that humans tend to stiffen the knee joints during our 
tests (see below), a high level of passive stiffness was used 
for this joint.      

Two experiments were performed. In the first experiment, 
the agent balanced sinusoidal ±4° support surface tilts (Fig. 
3). In this test, the agent used the gravitational torque 
compensation and the support surface tilt compensation for 
controlling the ankle joint, and these two compensation 
together with the support surface acceleration compensation 
for controlling the knee and the hip joints. Compensation 
gains were set to human-like values (<1). This entailed the 
under-compensation shown in Fig. 3, with the trunk being 
compensated slightly better than the two leg segments.  

In the second experiment, the agent performed a voluntary 
forward trunk lean of 4° (Fig. 4). This experiment tested 
whether the control would produce the human hip-ankle 
coordination, which consists of a compensatory backward 
lean of the leg segments such that the body COM is 
maintained over the ankle joint (see [20]). Additionally, this 

coordination neutralizes most of the coupling torques 
exerted by the trunk bending on the leg segments. The 
voluntary movement is associated with predictions of the 
disturbance estimates, which have unity gain, and are fused 
with the sensory-derived disturbance estimates (see [1]). 
This explains the almost perfect performance in Fig. 4. 
 

VI. CONCLUSION 
Upgrading the DEC concept from using one module in the 

SIP control to the modular control architecture in a multi-

 
Fig. 3. Responses of the simulated four link humanoid agent to 
sinusoidal support surface rotation (0.08 Hz). The combined action of 
the gravitational torque compensation, support tilt compensation and 
support linear acceleration compensation tends to maintain the body 
upright, but this only partially due to human-like compensation gains 
(<1).  
 

 
Fig. 4. Behavior of the four link humanoid agent performing a 
voluntary forward trunk lean in the hip joint. Note that the leg links 
Thigh and Shank are leaning backwards, so that the Body COM 
remains above the ankle joint. This ankle-hip coordination 
automatically arises from the interaction between the hip and  ankle 
control modules and the agent’s biomechanics. 
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DOF system is possible, because the DEC concept allows 
controlling each joint as if it were dealing with a SIP. In 
particular: 
(I) The support surface tilt DEC estimates take the rotation 

of each supporting link as a tilt disturbance for the upper 
links. Controlled is the orientation of the links’ COM 
above the supporting joint with respect to earth vertical.  

(II)  The gravity DEC estimates compensate for the 
gravitational torque produced by the upper links’ total 
COM. 

(III) The support surface linear acceleration DEC estimates 
compensate for the acceleration effect occurring at the 
top of any supporting link. The effect is produced as joint 
torque by the inertial force of all upper links. Noticeably, 
this compensation also includes up-going coupling forces 
effects (concerning down-going coupling forces, see 
[20]). 

(IV) The contact force DEC estimates compensate for the 
evoked torque in the supporting joint, taking into account 
the moment of inertia of the above (supported) links.  

The present concept attributes postural responses to 
unforeseen external disturbances to sensory mechanisms and 
feedback. A sensory network of down- and up-going spinal 
pathways from the brainstem and back to it and to higher 
CNS centers (e.g. cerebellum) carrying vestibular signals 
and receiving spinal proprioceptive input has been 
demonstrated in animal work [22]. Principles of how 
predictions of disturbance estimates, centrally derived and 
fed forward during voluntary movements, may be fused with 
sensor-derived disturbance estimates have been suggested in 
Reference [1]. Thresholding and gain scaling of estimates 
have been attributed to sensory noise in Reference [14]. 

Human movement coordination such as the hip-ankle 
coordination occurring during voluntary trunk bending (Fig. 
4) or balancing of support surface tilt [20] may emerge as 
automatic ‘postural adjustments’ from DEC mechanisms. 
Given moderate disturbances and full foot support, ankle and 
hip responses fulfill the criteria of the human ankle and hip 
strategy (see [17]).  

In a previous study, we compared the DEC concept with 
the classical control approach that uses extended observers 
for disturbance estimation [23]. This solution worked in 
simulations, but had problems to deal with inaccuracies of 
sensors and actuation when implemented into the robot. A 
later solution that included the vestibular system into a 
standard engineering approach was more successful in terms 
of stability, but not in terms of human-like responses [24]. 

Empirically, model simulations and experiments with the 
robot demonstrated stability of the system [20]. A 
mathematical generalized demonstration is beyond the scope 
of the present paper and will be postponed to a specific 
treatment. 

Current work on DEC tries to include visual information 
into the sensory fusions, to combine sagittal and frontal 
plane DEC modules, to deal with the four-bar linkage of 
biped stance (2 legs-ground-pelvis) in the frontal plane, to 
deal with the shifting of body weight between legs during 

walking, and to explore further examples of human 
movement coordination.  
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Abstract—Do we need to explicitly calibrate Brain Machine
Interfaces (BMIs)? Can we start controlling a device without
telling this device how to interpret brain signals? Can we learn
how to communicate with a human user through practical
interaction? It sounds like an ill posed problem, how can we
control a device if such device does not know what our signals
mean? This paper argues and present empirical results showing
that, under specific but realistic conditions, this problem can be
solved. We show that a signal decoder can be learnt automatically
and online by the system under the assumption that both, human
and machine, share the same a priori on the possible signals’
meanings and the possible tasks the user may want the device to
achieve. We present results from online experiments on a Brain
Computer Interface (BCI) and a Human Robot Interaction (HRI)
scenario.

I. MOTIVATION

EEG-based brain-machine interfaces (BMIs) (see [1] for
a review) provide a communication channel between hu-
mans and machines using only brain activity. Since the first
demonstration of brain-controlled devices, research on BMIs
has emerged as one of the most growing research whose
ultimate goal is to endow people with severe motor disabilities
with communication and control capacities. Yet, the practical
promise of this technology remains unfilled with BMIs remain-
ing confined to the laboratory or limited to clinical studies or
home demonstrations that require close technical oversight [2],
[3].

Among the existent signals used to develop a BMI, recent
works have shown that it is possible to decode information
related to human error processing, namely the error-related
potentials [4] appearing for instance when the device action
does not match the user’s expectations. This potential has
been used mainly to improve the BMI decoder [5] and, more
interestingly, as feedback information to solve sequential tasks
[6], [7]. In fact, they can be interpreted as instructions given
by a teacher to a learner under the implicit assumption that the
two agents share a mutual understanding of feedback meaning
(e.g. a decoder that translates raw signals into feedback such
as speech into words).

In practice, BMI solves the meaning problem using an
open-loop calibration procedure to train a decoder in a super-
vised manner. This calibration phase hinders the deployment
of out-of-the-lab applications [1], due to the need of a specific
calibration for each task and session. However, this phase
is required mainly due to the non-stationary nature of the

EEG [8]; the large intra- and inter-subject variability [9], and
variations induced by the task [10].

It is worth noting that this problem can be generalized to
many kind of human-machine interaction (HMI) scenarios. In
modern human-robot collaboration, there is a need for intuitive
interfaces that allow non-technical users to teach robots. A
major obstacle is that of requiring a pre-defined set of instruc-
tion signals. As a result, in the human to robot interaction
(HRI) community, an important part of the work consists of
building classifiers to translate human communicative signals
(speech, gestures, facial expression) to symbolic meanings
understandable by the robot. Such procedure requires a costly
offline gathering of signals. A machine able to automatically
understand such symbols could improve the usability and ease
of use of such interactive system and even make use of invol-
untary signals, e.g. prosody, to better exploit the information
provided by the user.

While research on robot learning from human interaction
has flourished in the last ten years [11], most work has focused
on how to extract statistical task models from human teachers
following a fixed pre-defined teaching protocol. Thus, a usual
assumption is that the learner and the teacher share a mutual
understanding of the meaning of each others’ signals. The
question of how a robot can learn to interpret personalized and
potentially noisy teaching signals, i.e. learn instruction models,
has been much less explored. In a preliminary work [12], we
presented a computational approach addressing this problem
by considering a finite space of symbolic teaching signals
in simulation while bootstrapping the system with known
symbols. Later [13], we released the need for bootstrapping
and allow the teacher to use signals that can be represented
as fixed length feature vectors, which is better suited for HRI
scenarios.

Interestingly, one similar approache have been developed
in the BMI community. For non-invasive P300 signals, Kinder-
mans et al. proposed a method to learn from scratch in closed
loop a decoder by exploiting multiple stimulations and prior
information [14], [15]. However, the approach needed for a
warm-up period.

In this paper we present a different approach to calibration
procedures. We argue that, for some problems, a calibration
procedure is not explicitly needed. The system could learn,
by interacting with the user, both what to do and how to
map brain signals into meaningful instructions. The innovation
of this work is not about new machine learning development
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but resides in a new way to use them. Our method combines
and exploits two sources of information: task constraints and
spacial organization of instruction signals in the feature space.
We report results from a BCI online experiments and a HRI
scenario. The results show that the proposed method is able to
learn good instruction models while solving the task efficiently
without any prior calibration procedure.

II. PROBLEM

This section describes the problem of executing a task
when the instruction signal’s meaning is unknown or uncer-
tain. For practical reasons, we will only refer to feedback
driven BMI scenarios for the description of the problem and
method. Nonetheless, the idea presented here holds for other
HRI scenarios by replacing brain signals with other feedback
instructions (e.g., speech). BMI control based on feedback
signals (illustrated in figure 1) differs from classical brain-
machine interfaces in the sense that the user does not actively
deliver commands to the device, but only delivers feedback
about actions performed by the device. In this setting, the
device needs to actively execute actions to solve the tasks and
to be able to learn an intelligent behavior from the feedback.
This idea can be seen as a shared-control strategy [16], where
both the user and the device help each other to solve a task.

Fig. 1: In this BMI scenario, the user is watching the agent
moving on the screen and assess the agent actions with respect
to its own objective illustrated by the red state.

Essentially, this BMI control follows an iterative sequential
process where, in a particular state s, the device performs an
action a and the user assesses the action using brain signal
e ∈ Rn. These assessments generate error-related potentials,
i.e. signals elicited in the brain when the outcome observed by
the user differs from the expected one [4]. Thus, collected data
are in the form {(ei, si, ai), i = 1, . . . , N}, i.e. a sequence
of states, actions and teaching signals triplets, with N the
number of steps. In a common scenario, the system has been
fed with a classifier, parameterized by θ, that translates brain
signals e into symbolic instructions z that belong to one of
two classes (correct or incorrect assessment), z ∈ {c, w}. The
model parameters θ are in practice learnt using a calibration
procedure. The device then learns from this symbolic feedback.

This control can be exemplified for a reaching task (Fig. 1),
where the user wants to reach a target position unknown by
the system. The device performs several discrete actions (e.g.
moving left or right), and learns from the feedback given by the
user. After several steps, the device knows which is the desired
target and how to reach it. However, the control can become
intractable as the task complexity increases. Furthermore, only
binary feedback is available and there is a large percentage

of misdetected assessments. Given a set of possible tasks Ξ
= {ξ1, . . . , ξT }, with T the number of task hypothesis, it is
possible to speed up the inference by precomputing the agent’s
optimal behavior πξ = p(a|s, ξ) for each task and using the
feedback signal as a likelihood for the task. For instance,
in the previous example, the possible tasks are given by the
number of targets. This way, an error (negative feedback) after
a particular action will decrease the posterior probability of
those targets whose optimal policy agrees with the action.

In this work, we address the problem of removing the need
for calibration. Therefore we do not have access to the negative
or positive nature z ∈ {c, w} of the brain signals e beforehand.
We propose an algorithm that simultaneously calibrates the
feedback decoder and executes in closed loop a sequential task
only known by the user ξ̂ ∈ Ξ . Our method combines and
exploits two sources of information: task constraints, namely
optimal policies πξ, and spatial organization of brain signals
in the feature space. The underlying assumptions are:

1) a finite number of possible task hypothesis, i.e. ξl for
l ∈ 1, . . . , ξT , can be defined 2) the inputs signals have some
hidden labels z corresponding to their meaning 3) the set of
possible meanings is finite, e.g. z ∈ {c, w} 4) given the ground
truth labels ẑ of the signals, a classifier of sufficient accuracy
could be trained to control the device.

These assumptions may look constraining but are actually
common ones in most current BMI scenarios. For example,
consider the case of a robotic arm assistant helping to grasp
objects on a table. Such robotic assistant could be controlled by
a user assessing the robot actions. For instance, the robot could
start reaching for an object having the user validating or not the
decision of the robot. In such scenario, the usual method would
be to start a calibration procedure to map ERP brain signals
into symbolic feedback instructions for the robot (correct and
incorrect). Once enough data are collected, a classifier would
be trained and we could start assessing the robot’s actions using
brain ERP. This simple scenario, which follows a calibration
procedure, already includes all the assumption we defined
earlier. We have 1) a finite set of hypothesis represented by
the finite number of object on the table 2) a user that is told to
assess the robot’s actions 3) a finite set of possible meanings
(correct and incorrect) 4) signals that can be classified as the
calibration procedure was able to generate a usable classifier.

III. METHOD

This section describes our proposed solution to the previ-
ously defined problem of executing a task when the instruc-
tion meaning is unknown or uncertain and under the given
assumption. The main idea is depicted in Fig. 2 for a toy
1D example. The user wants the device to reach the right-
most state. However, neither the target ξ̂ nor the true feedback
labels ẑ are known. The feedback signals e are generated as a
response to the execution of an action a in state s according
to the true unknown task ξ̂ the user wants to solve. The key
point is that these signals are generated from an underlying
model that for binary signals has two different classes. Given
sufficient feedback signals, it is possible to build the underlying
distributions for each possible target. Only the right task will
provide the right meanings (or labels) to each of the feedback
signals (Fig. 2 Left), while the other tasks will gradually mix
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both classes as the task gradually differs more from the original
task (Fig. 2 Middle-Right), up to the point of almost mirroring
the labels when the target is mirrored. In the remainder of this
section we show how this property can be exploited to estimate
the task and the model generating the feedback signals.

Fig. 2: Task-dependent labels for a 1-D grid world. For the
represented example, the arrows indicate for each state what
action should elicit a positive feedback to reach the target
marked with T (i.e., the optimal policies). 2D Gaussian dis-
tributions of binary feedback signals for three possible targets
are shown below. While for the correct target the distributions
shows a large separability (Left), the overlaps increases as the
believed target moves away from the real one (Middle, Right).

Following the literature [17], we will model the EEG
signals using independent multivariate normal distributions for
each class, N (µc,Σc),N (µw,Σw). Here, the model parame-
ters θ account for {µc,Σc, µw,Σw}.

Regarding the tasks, the system has access to a set of task
hypotheses Ξ which includes the task ξ̂ the user wants to
solve1. We do not make any particular assumption on how the
task is represented given that for each particular task ξ we are
able to compute a policy πξ which represents the probability
of choosing a given action a in state s, πξ(s, a) = p(a|s, ξ).
These policies, conditioned on the task, provide meanings to
the signals of an action-state pair (e.g. in a reaching task,
progressing towards the goal will generate correct answers
while moving apart from it will generate wrong ones). We
define Z the function that, given a state s, an action a, and a
task ξ return the probability of the user intended meaning z, i.e.
Z(s, a, ξ) = p(z|s, a, ξ). With

∑
f=c,w p(z = f |s, a, ξ) = 1.

Instead of a binary meaning estimate, we add a noise term to
cope with those situations were the user assessment may be
wrong. For example, the probability that the user, having task
ξ in mind, provides a signal of meaning correct c if the device
execute action a in state s is:

p(z = c|s, a, ξ) =

{
1− α if a = argmaxa πξ(s, a)

α otherwise

with α modeling error rate of the user. In our case, only two
signal meanings are possible, i.e. correct (c) and incorrect (w),
therefore: p(z = w|s, a, ξ) = 1− p(z = c|s, a, ξ)

Following the discussion of Fig. 2, a sensible option to
estimate the task ξ̂ is to measure the coherence of the signal
model θξ computed using the virtual meanings, given by
Z, provided by the target policy. In other words, the best
(ξ, θξ) pair would provide the lowest predictive error (perr)
on the observed signals p(e|s, a, ξ, θ). One possible way of
solving this problem is to maximize the expected predictive

1If this is not the case, the system will find the most suitable task.

classification rate:

ξ̂, θ̂ = argmaxξ,θ Ee (δ(Z(s, a, ξ), Y (e, θξ))) (1)

where δ() being an indicator function. And Y (e, θξ) is the
predicted label z for signal e under the model parameterized by
θξ, i.e. Y (e, θξ) = p(z|e, θξ). With

∑
f=c,w p(z = f |e, θξ) =

1. In practice, it is just the probability of the meaning under the
Gaussian model provided by θξ. For example, the probability
that signal e is of meaning correct (c) under θ can be expressed
as:

p(z = c|e, θ) =
p(e|z = c, θ)p(z = c)∑

k=c,w p(e|z = k, θ)p(z = k)

=
N (e|µc,Σc)p(z = c)∑

k=c,wN (e|µk,Σk)p(z = k)
(2)

In our case, only two signal’s meaning are possible, i.e. correct
(c) and incorrect (w), therefore: p(z = w|e, θ) = 1 − p(z =
c|e, θ).

The expected predictive error can be explicitly written
dependent on the task and decoder model:

Ee (δ(Z(s, a, ξ), Y (e, θ))) =∑
f=c,w

p(z = f |s, a, ξ)p(z = f |e, θ) (3)

Note that the optimization process has been factored using
the fact that given a task ξ, the estimation of θ under the
Gaussian model is trivial. It basically requires to compute the
maximum-likelihood estimate θML

ξ for each task ξ.

Concretely, given a set of task hypothesis Ξ of size T ,
we can assign, for each hypothesis, probabilistic labels to the
signals received from the user (Z). This provides one dataset
of signals with T sets of labels. For each task hypothesis and
given its associated hypothetic label set, we can now compute
the maximum-likelihood model θML. By comparing the fitted
model prediction (Y ) with the initially assigned labels (Z),
we can compute a score, here the expected predictive error,
that account for the coherence of the spacial organization of
brain signals in the feature space with the associated hypothetic
labels. The idea is that only the right task will provide the right
meanings (or labels) to each brain signals, while the other
tasks will gradually mix both classes (Fig. 2). The correct task
should therefore have a lower expected predictive error.

IV. RESULTS

In this section we present online results from a BCI sce-
nario as well as a pick and place HRI scenario to illustrate the
wider potential application of our approach. For the remaining
of this section, we will consider the error rate of the user α
equals to 0.1.

A. BCI Control Task

1) Control task: As illustrated in figure 1, we consider
a 5x5 grid world, where an agent can perform five different
discrete actions: move up, down, left, right, or a target-reached
action. The user goal is to teach the agent to reach one, yet
unknown to it, of the 25 discrete positions which represent the
set of possible tasks. We thus consider that the agent has access
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to 25 different task hypothesis (one with goal location at each
of the cells). We use Markov Decision Processes (MDP) to
represent the problem [18]. From a given task ξ, represented
as a reward function, we can compute the corresponding policy
πξ using, for instance, Value Iteration [18].

2) EEG-based feedback signals: EEG signals were
recorded with a gTec system (2 gUSBamp amplifiers) with
32 electrodes distributed according to the 10/10 international
system, with the ground on FPz and the reference on the left
earlobe. The EEG signals were digitized with a sampling fre-
quency of 256 Hz, common-average-reference (CAR) filtered
and band-pass filtered at [0.5, 10] Hz.

During operation, the role of the users was to assess the
agent actions as good or bad, obtaining this way potentials
associated to correct or erroneous actions. Previous studies
have demonstrated that these signals can be detected online
[4] and even be used as binary feedback signals [6]. Following
these studies, features were extracted from two fronto-central
channels (FCz and Cz) within a time window of [200, 700] ms
(being 0 ms the action onset of the agent) and downsampled
to 32 Hz. This leaded to a vector of 34 features. This feature
vector served as the input for our algorithm

3) Zero-calibration BCI Control with Human Subjects:
This experiment will evaluate the main claim of our algorithm,
that we can identify the task desired by the user even without
an explicit calibration phase and without any knowledge of
the brain signals. The experiments were conducted with four
subjects (aged between 25 and 28). Each subject performed 5
runs of learning from scratch how to reach a target (chosen
randomly).

Figure 3 summarizes the results. The probability of the
correct task (averaged across subjects and tasks) is shown
in Fig 3a. Figure 3b shows the run by run results. We
can conclude that the algorithm is very robust as all the
subjects were able to identify the correct task. There are strong
variations among subjects, but we note that in previous works
the calibration phase used between 300 and 600 examples [6],
[19]. Thus, even for the worst subject, it is still possible to start
controlling the system without calibration and in less iteration
than required by such calibration procedure.

B. HRI Pick and Place scenario

In this section, we illustrate the broad range of possible
application for our approach with a small size pick-and-place
task with a real robot. This robot is going to be programmed
using a natural speech interface whose words have an unknown
meaning and are not transformed into symbols via a voice
recognizer. The interaction between the robot and the human
is a turn taking social behavior, where the robot performs
an action and waits for a feedback instruction signal to
continue. This allows to synchronize a speech wave with its
corresponding pair of state and action.

1) Experimental System: We consider a six d.o.f. robotic
arm and gripper that is able to grasp, transport and release
cubes in four positions. We used a total of three cubes that can
form towers of two cubes. The robot has 4 actions available:
rotate left, rotate right, grasp cube and release cube. The state
space is discrete and defined as the location of each object,

(a)

(b)

Fig. 3: Results from the online BCI experiment for identifying
the task: a) Evolution of the probability of the taught task
averaged for all subjects; b) Evolution of the probability of
the taught task for each subject and run

including being on top of another or in the robot’s hand. So
for a set of 3 objects we have 624 different states. Figure 4
shows the robot grasping the orange cube.

As for the BCI control task, MDP is used to represent the
problem. For this particular representation we assume that the
reward function is sparse and so we can generate possible tasks
by sampling sparse reward functions. In other words the task
is to reach one, yet unknown, of the 624 states of the MDP.

2) Speech processing: We consider speech as the modality
for interacting with the robot. After each action we record the
teaching word pronounced by the user. This data is mapped
into a 20 dimensional feature space using the methodology
described next.

A classical method for representing sounds is the Mel-
Frequency Cepstral Coefficients (MFCC) [20]. It represents
a sound as a time sequence MFCC vectors of dimension 12.
Comparing sounds is done via Dynamic Time Warping (DTW)
between two sequences of feature vectors [21]. This distance
is a measure of similarity that takes into account possible
insertions and deletions in the feature sequence and is adapted
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Fig. 4: Robotic System. A six d.o.f robotic arm and gripper
learning to performing a pick-and-place task with three cubes.

for sounds comparison of different length. Each recorded vocal
signal is represented as its DTW distance to a base of 20 pre-
defined spoken words which are not part of words used by the
teacher.

By empirical test on recorded speech samples, we esti-
mate that a number of 20 bases words were sufficient and
yet a relatively high number of dimensions to deal with a
variety of people and speech. This base of 20 words has
been randomly selected and is composed of the words: Error,
Acquisition, Difficulties, Semantic, Track, Computer, Explored, Distribution,
Century, Reinforcement, Almost, Language, Alone, Kinds, Humans, Axons,
Primitives, Vision, Nature, Building.

It should be made explicit that this is not state of the
art speech processing technics but is not the concern of our
research. This representation allows to represent spoken words
in a relatively low dimensional space with good accuracy.

3) Zero-calibration HRI online pick and place experiment:
This brief experiment demonstrates the transferability of our
approach to other domains. In addition, it briefly illustrates the
ability of our algorithm to reuse acquired knowledge. Once
the robot has understood the first task, we can freeze the
classifier corresponding to the identified task and start learning
a new task faster as this time the signal to meaning mapping
is known.

Fig. 5: Evolution of the probability of the taught task. 1) The
robot learns a task from unlabeled speech feedback. 2) By
freezing the classifier corresponding to the best task estimate,
the user teaches the robot a new task faster.

Fig. 5 shows results from one online interactive session
with a user using speech to teach the robot what configuration
of cube it wanted to the robot to build. In the first run it takes
about 100 iterations for the robot to learn the task. Whereas in
the second run, when reusing knowledge from the first one, the
robot is able to learn a new task faster, in about 30 iterations,
meaning that it has well found the two clusters in our feature
space as well as the mapping to their corresponding meanings.

V. DISCUSSION

For communication to be successful, the human and the
machine need to share some common background which is
usually the meaning of the signals received by the device. In
practice, such signal to meaning mapping is represented by a
specific classifier learnt using a calibration procedure. In this
work we have seen that this signal-to-meaning classifier can
be learnt automatically and online by the system under the
assumption that both, human and machine, share the same a
priori on the possible meanings of the signals and the possible
task the user may want the device to achieve. We presented
a learning algorithm able to associate meaning with unknown
signals by reasoning about their relation to previous signals
and their relation to the environment itself. The intuition for
our method is that the classification of the brain/speech signals
is easier when they are interpreted according to the task desired
by the user. The method thus relies on finding which pair
of classifier-task has the smaller expected prediction error in
the signals. We considered the case of brain signals but of
particular interest is the possibility to use the same system
with other modalities, such as speech. This allows different
users to use the system according to their own preferences,
skills and limitations. Finally, we showed that, once the system
has identified a first task, it can reuse the acquired knowledge
about the user instruction signals for learning of a new task
faster.

An important challenge for such interactive systems is
to deal with non-expert humans. Several studies discuss the
different behaviors naive teachers use when instructing robots
[22], [23]. An important aspect is that the feedback is fre-
quently ambiguous and deviates from the mathematical inter-
pretation of a reward or a sample from a policy. For instance,
in the work of [22] the teachers frequently gave a positive
reward for exploratory actions even if the signal was used by
the learner as a standard reward. Also, even if we can define an
optimal teaching sequence, humans do not necessarily behave
according to those strategies [23]. Such aspects were not
further considered in this work than by modeling the error-
rate of the user.

We believe working without calibration procedure is a
novel challenge that can make human to machine interaction
more practical to use. Future work will consider how the device
can act in order to disambiguate faster the different hypothe-
ses. An important direction is to push this method towards
more advanced robotic scenarios by considering, for example,
continuous state-action spaces, asynchronous interactions and
more complex types of instructions.
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Detection of event-less error related potentials

Jason Omedes, Iñaki Iturrate, Luis Montesano

Abstract—Recent developments in brain-machine interfaces
(BMIs) have proposed the use of error-related potentials as a type
of cognitive information that can provide a reward or feedback to
adapt the BMI during operation, either to directly control devices
or to teach a robot how to solve a task. Due to the nature of
these signals, all the proposed error-based BMIs work under the
assumption that the response is time-locked to the known onset of
the event. However, during the continuous operation of a robot,
there may not exist a clear event that elicits the error potential.
Indeed, it is not clear whether such a potential will appear and
whether it can be detected online. Furthermore, calibrating such
a system is not trivial due to the unknown instant at which
the user detects the error. This paper presents a first study
towards the detection of error potentials from EEG measurements
during continuous trajectories performed by a virtual device. We
present a experimental protocol that allows us to train the decoder
and detect the errors in single trial. Further analyses show that
the brain activity used by the decoder comes from brain areas
involved in error processing.

I. INTRODUCTION

Brain-machine interfaces (BMI) aim to decode brain ac-
tivity to control devices or provide a communication channel
to the user [1]. Recently, several works in BMIs have started
to use cognitive information decoded from the user’s brain
activity in an attempt to improve and extend the capabilities
of this type of systems. The underlying idea is to use and
decode natural brain activity directly related to the task. For
instance, the intention of motion can be used to trigger a
robotic device [2] or to anticipate braking during driving [3].
Or, the perception of an error can be used to correct the output
of the BMI [4] or to adapt the behavior of the system [5].

In this context, error-related potentials (ErrPs) [6] have
gained considerable attention as a cognitive signal that can
be incorporated in BMI systems. Error-related potentials are a
special kind of event-related potential elicited when the actual
outcome of an event differs from the user’s expected one. They
are elicited in different situations: when the user realizes that
he has committed a mistake [7], after the observation of a
mistake committed by another person [8], or even when he
observes a machine commit a mistake [6], [9]. The latter case
is of particular interest for BMIs, and has been used to adapt
the BCI classifier [10] or prevent from executing missclassified
commands [4].

Interestingly, these signals have been associated to the
dopaminergic neural system and, consequently, to human
reinforcement learning processes [11]. Following these con-
nections, error potentials have been used as reward signals
during reinforcement learning in virtual cursors [9] and robotic
arms [12]. Incorporating the assessment of the user opens the
door to develop systems that continuously adapt to the user’s
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Fig. 1. (a) Discrete scenario, where a device performs discrete actions within
a grid to reach a goal location (shadowed in red). (b) Continuous scenario,
where a mobile robot is moving continuously through a maze. The error may
be detected all along the shadowed part of the trajectory.

preferences during operation. Furthermore, in our recent work
we have also used error potentials as feedback during the
online control of cursors [5] and mobile robots [13].

Despite the previous achievements, there are still strong
limitations to use error-related potentials during the control or
the learning of a robotic device. One of the major difficul-
ties, which is shared with all event-related potentials, is that
these signals are a response to an event (either exogenous or
endogenous) that elicits them. Indeed, there is no study in
the literature of error potentials in which the event marking
the onset of the potential is not clearly defined and measured.
Consequently, the works mentioned before have used discrete
worlds (e.g. grids) with instantaneous actions with a clear onset
(see Figure 1a), in which case they can be detected in single
trial [9], [14]. On the other hand, real applications (such as
executing a trajectory with a robotic arm or a mobile robot)
imply the use of continuous actions where the error can appear
at any moment of the trajectory being executed and not only
at the beginning (see Figure 1b). Furthermore, being the error
potential a cognitive process its elicitation will depend on the
subjective evaluation of each user. (i.e., different elicitation
times for each user).

This paper presents the first attempt to detect error poten-
tials during the continuous operation of a device (in our case
a cursor on a screen) when there is no clear event that should
elicit the potential (hence the name of event-less). There are
several challenges. First, it is unclear whether these signals
are actually elicited under continuous actions, and if they are,
whether it is possible to detect them in single trial. Second,
the calibration process is not trivial due to the lack of a clear
onset. We developed an experimental protocol for a target-
reaching task where a device moved continuously while the
user assessed the actions performed by it. Two conditions
were tested. In the first one, the error was clearly marked
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as a sharp turn, while in the second one, the trajectory had
no clear event for the error (event-less). The experimental
results show that it is possible to detect errors in single
trial in the event-less condition using the first condition as
training data to calibrate the BMI. Furthermore, we provide
electrophysiological evidence that supports the fact that the
used brain activity is originated in brain areas related to error
processing.

II. METHODS

A. Data recording

Electroencephalographic (EEG) and electrooculographic
(EOG) activity were recorded using a commercial gTec system
consisting of 32 electrodes distributed according to an extended
10/20 international system (FP1, FP2, F7, F8, F3, F4, T7, T8,
C3, C4, P7, P8, P3, P4, O1, O2, AF3, AF4, FC5, FC6, FC1,
FC2, CP5, CP6, CP1, CP2, Fz, FCz, Cz, CPz, Pz and Oz), with
the ground on FPz and the reference on the left earlobe; for the
EOG, 6 monopolar electrodes were recorded (placed above and
below each eye, and from the outer canthi of the left and right
eyes [15]), with the ground on FPz and the reference on the
left mastoid. The EEG and EOG signals were digitized with a
sampling frequency of 256 Hz, power-line notch filtered, and
band-pass filtered at [1, 10] Hz. The EEG was also common-
average-reference (CAR) filtered. Additionally, the horizontal,
vertical, and radial EOG were computed as in [15] to remove
the EOG from the EEG using a regression algorithm [16]. The
data acquisition and on-line processing was developed under
a self-made BCI platform.

B. Experimental setup

Two healthy subjects (mean age 28 years) participated
in the study recorded in a laboratory of the University of
Zaragoza. Participants were asked to restrict blinks to the
specific resting periods. The experimental setup consisted of a
virtual cursor that had to reach a target position by moving at
a fixed speed towards it. The initial cursor and target positions
of each trial were the same for both subjects. They were
randomly generated forcing a distance of at least 200 pixels
between them. One trial consisted of a trajectory performed by
the device and lasted a maximum of 5 seconds. Trajectories
were correct 70% of the trials. Correct trajectories consisted on
straight lines between the start and goal locations, Figure 2a.
Erroneous trajectories started as the correct ones but changed
direction in a random instant between the 20% and 80% of
the path. Two different conditions were tested: (i) a sharp
change of direction, analog to a typical ERP protocol where
the event onset is present (Figure 2b), and (ii) a smooth
change of direction (i.e. a curved movement always of the same
duration but with different angles, Figure 2c). We denote this
condition as event-less, since the perception of the error is not
clearly defined and depends on the subject assessment. Each
round was composed of 40 trials, with a break of few minutes
between rounds. Six rounds of each condition, alternating
between error types (sharp/smooth), were recorded, obtaining
around 70 erroneous trials per experiment and participant.

C. Electrophysiology analysis of time-locked error potentials

In order to determine whether the error potentials were
present for this protocol, we firstly analyzed the ErrP under

the sharp condition, where the onset for erroneous movements
was clear. Notice that this case resembles the standard error
potentials protocol. The onset of the erroneous event is selected
from the time instant in which the device performs the abrupt
change of direction. On the other hand, correct trials did not
have a specific event. Thus, the onsets of these events were
selected at a random instant of time within the execution of a
correct trial.

For the electrophysiology analysis, the time-locked aver-
aged potentials were computed for the error, non-error and
difference (error minus non-error averages), and averaged for
all participants at channel FCz [17]. Scalp topographies at the
most relevant peaks of these potentials were also computed.
Additionally, the error potentials were also analyzed on the
frequency domain by means of the power spectral density
(PSD). The PSD was computed from each one-second trial
using the Welch’s method with a Hamming window, and a
window overlap of 250 ms. Then, the error, non-error and
difference average PSDs for all participants were computed
at channel FCz. Finally, a source localization analysis was
performed on the obtained signals with sLoreta [18].

D. Feature extraction

Previous studies in standard protocols have mainly detected
error potentials using features from the temporal domain [9],
[14]. This type of features are not so well suited for continuous
detection, since EEG oscillations can easily resemble ErrP
patterns thus resulting in a large number of false positive. Thus,
in this work we combined temporal and frequency features
extracted from the most relevant common spatial patterns
associated (CSPs) to the ErrP. CSPs have been used in the
past for the continuous classification of EEG signals, such as
motor imagery [19] or slow cortical potentials [20]. CSPs were
extracted using the training data (see subsection II-E). The first
two spatial patterns were retained as the most discriminant
activity between erroneous and correct trajectories. For each
chosen spatial pattern, the temporal features were extracted as
the EEG voltages within a time window of [0, 800] ms (being 0
ms the direction change onset) downsampled to 64 Hz, forming
a vector of 78 features. Regarding to frequency features, the
PSD was firstly computed as presented in section II-C. Then,
frequency features were selected as the power values of each
channel from the theta band ([4, 8] Hz) ± 1 Hz, as previous
studies suggested that the error potentials are generated within
this band [21], leading to a vector of 50 features. Finally, both
set of features were concatenated and normalized within the
range [0, 1].

E. Single-trial continuous classification

The previous features were fed into a support vector
machine (SVM) classifier with a radial basis function (RBF)
kernel [22]. To avoid SVM sensitivity to imbalanced datasets,
the minority class (i.e. the error class) was oversampled to
match the number of trials of the majority class (i.e. the non-
error class) [23]. During classification, the classifier output was
the probability that the current EEG data was an error, pe.

For the single-trial classification, both conditions (sharp
and smooth direction changes) were tested. Since the smooth
condition did not have an onset, it was not possible to
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Fig. 2. Designed experimental setup. Starting (S) and goal (G) positions of the device are marked in blue and red respectively. (a) The device performs a
correct movement by executing a movement at continuous speed towards the target. (b)-(c) Erroneous trials where the device changes its direction, either (b)
abruptly, or (c) smoothly. Correct and wrong directions of movements are shadowed in green and red respectively.

extract meaningful information to train the classifier. Thus,
the training-testing sets were composed as follows: for the
sharp condition, we performed a 6-fold cross-validation where
each fold was composed by a complete recorded round. For
the smooth condition, the training set was composed by all
the rounds from the sharp condition, whereas the testing set
were all the rounds from the smooth condition. For both cases,
events used for training were extracted using the onset as
described in section II-C.

Once the classifier was trained, we continuously classified
every 62.50 ms the testing sets using a sliding window of
one-second width. In order to ensure a low false positive rate,
the detection of error events was only considered when pe >
0.8. Additionally, any possible eye activity was automatically
removed by setting to zero the classifier output any time the
EOG signal exceeded 40 µV. For the sliding window, all inter-
trial data was removed since it was considered as a resting
period and the subject could have been performing muscular
activity.

The performance of the computed sliding window was
determined as follows: those erroneous trials where the sliding
window detected an error, as long as the error was detected
after the change of direction (either smooth or abrupt), where
considered as true positives (TP). When the error was not
detected the trial was considered a false negative (FN). Those
correct trials where the classifier did not detect any error were
considered true negatives (TN). When an error was detected
on correct trials, they were considered false positives (FP).
To obtain a more intuitive representation of the performance
achieved, we also displayed the trajectories followed by the
device for each one of the four possible cases. The goal
position of each trial has been repositioned to the center of
the image for a better representation.

F. Post-hoc electrophysiology analysis for the event-less con-
dition

The analysis of Section II-C can only be carried out when
the onset of the error potential is known (i.e. only for sharp
changes). In order to evaluate whether the detection of error
potentials in the event-less condition uses brain activity related
to the error, we performed a post-hoc analysis using the output
of sliding window classifier as an artificial onset of the error

potential. Only correctly detected erroneous trials (i.e. true
positives) were used in the analysis that was identical to that
of Section II-C.

III. RESULTS

A. Electrophysiology time-locked analysis

Figure 4 shows the error, correct and difference grand aver-
ages for channel FCz averaged for the two subjects in temporal
and frequency domain. The difference average is characterized
by a sequence of a positive peak at 150 ms, followed by a
negative peak at 210 ms and two larger positive and negative
peaks at 280 and 400 ms, and finally a positive peak at 600
ms. The topographic interpolation of these peaks can also be
seen on Figure 4, showing how they are localized on fronto-
central scalp areas. These results agree with previous studies
using error potentials under standard conditions (i.e., discrete
device actions) studies [6], [9]. Regarding to the frequency
averages, a power increment in the theta band was observed
for erroneous trials with respect to the correct ones, which
also agrees with previous works [21]. Finally Figure 4, Bottom
shows the source localization results for the most prominent
negative peak (400 ms) of the time-locked difference grand
average. The main activation areas were Brodmann areas 6
and 24 (premotor cortex and ventral anterior cingulate cortex),
which is in accordance with previous works simultaneously
recoding error-related activity and fMRI [24].

B. Classification of time-locked error potentials (condition 1)

Regarding to the results of applying the sliding window,
Figure 3 displays the detection level obtained for both subjects
in a representative round of the sharp experimental condition.
Here, the 40 trials that compose the round are concatenated
removing the inter-trial resting periods. In the shown example,
it can be seen that most of the trials are properly classified.
Also notice that the correctly detected ErrPs are delayed with
respect the onset of the event (the sharp change in direction
of the device). This delay was on average 867.13 ± 99.33
ms after the onset of the erroneous action. This delay was
expected, corresponding to the time needed for the appearance
of the most relevant peaks and the maximum spectral power
activation used as features.
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Subject 1

Subject 2

Events

40 TRIALS

Fig. 3. Representative example of the sliding window results for the sharp condition. The error events are plotted in red indicating a change in direction, while
the probability of detecting an error (pe) for each of the 2 subjects is plotted in blue. Black dots over the probability values indicate the time instant when the
classifier detected an error (pe > 0.8).

Subject 1

Subject 2

Events

40 TRIALS

Fig. 5. Representative example of the sliding window results for the event-less condition. In this case, the error events (plotted in red) indicate the duration of
the turn.

Fig. 4. Electrophysiology results of the experimental condition 1 (sharp
turns). Temporal and frequency averages of error and correct trials plus the
difference (error minus correct) for channel FCz and scalp topographies at the
occurrence of the most relevant peaks for the average of the two subjects.

The performance rates achieved for the entire test set are
depicted in Table I. It can be observed that the number of false
positives was reasonably low, which was the main objective of
setting a high threshold value (pe > 0.8). At the same time the
number of erroneous trials detected as such (true positives),
reached 64%. This value was around 10% less performance
than those obtained with standard protocols using discrete
actions [5], [9].

Finally, Figure 6 displays the trajectories executed by the
device according to their classification. Here, it can be seen
that correct trials are mostly well detected independently of the
direction and distance covered by the device, and only few of
them are detected as erroneous. More interestingly, the number

Detected as CORRECT being CORRECT Detected as CORRECT being ERROR

Detected as ERROR being CORRECT Detected as ERROR being ERROR

Fig. 6. Confusion matrix of the trajectories performed by the device (black)
during the sharp condition. The goal positions have been reprojected to the
center of the image (red). The starting position of the cursor with reference
to the goal is marked in blue.

TABLE I. CONFUSION MATRIX CONTAINING THE PERFORMANCE RATE
FOR THE EXPERIMENT 1

Actual Class
Correct Error

Predicted Class Correct TN = 89.09% FN = 36.00%
Error FP = 10.91% TP = 64.00%

of erroneous trials not detected were higher. This was done this
way since it was preferable to miss the detection of an error
than detect errors where was not intended. Additionally, it can
also be observed that many of these trials detected as correct
end up very close to the actual goal, which lead us to think
that the subjects may have not interpreted them as erroneous.
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Detected as CORRECT being CORRECT

Detected as ERROR being CORRECT

Detected as CORRECT being ERROR

Detected as ERROR being ERROR

Fig. 7. Confusion matrix of the trajectories performed by the device (black)
during the second experimental condition.

C. Classification of the event-less condition

The process to analyze this section is similar to the one
followed in the previous section III-B. Regarding to the results
of applying the sliding window, Figure 5 displays the detection
level obtained for both subjects in a representative round of
the smooth experimental condition. Once again, the 40 trials
composing the round were concatenated after the removal
of the inter-trial resting periods. In the example, it can be
observed that the classification is carried out successfully,
properly detecting most of the events. In this case, it is also
noticeable the presence of a delay for correctly detected ErrPs.
However, since there not exist a clear onset that elicit the error
potential, this delay cannot be computed. Nonetheless, it was
possible to compute the delay of detecting an error after the
curve finished, which was 297.22±213.72 ms on average. The
larger standard deviations obtained indicated that the moment
of error detection had larger trial-to-trial variations. On the
other hand, assuming a similar error delay as the obtained
in the previous case (867.13 ms), the ErrPs always appeared
at random points within the radial movements. Thus, the
potentials were not elicited at the beginning or the end of
the radial turn, but rather depended on when the users became
aware of the error.

The performance rates achieved for the entire test set are
shown in Table II. It can be observed that the number of
false positives was even lower than for the previous case,
which may be caused by the extrapolation between training
and testing data. Surprisingly, the number of erroneous trials
detected as error (true positives), reached 67.33%, which is a
slightly higher that in the previous case.

Finally, Figure 7 displays the trajectories executed by the
device according to their classification. Once again, it can be
seen that correct trials have a similar behavior to the previous
condition, and comparable detection rates are achieved. Once
more, it can be observed that many of the erroneous trials
detected as correct have their trajectories very close to the goal,
which could be due to the subjective user’s interpretation.

TABLE II. CONFUSION MATRIX CONTAINING THE PERFORMANCE
RATE FOR THE EXPERIMENT 2

Actual Class
Correct Error

Predicted Class Correct TN = 97.15% FN = 32.66%
Error FP = 2.85% TP = 67.33%
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Fig. 8. For the event-less condition, temporal and frequency averages of
error and correct trials plus the difference (error-minus-correct) for channel
FCz and scalp topographies at the occurrence of the most relevant peaks for
the average of the two subjects.

D. Post-electrophysiology event-less analysis

Figure 8 shows the grand average of error (as detected
by the sliding window classifier) and correct trials plus the
difference (error minus correct) for channel FCz averaged for
the two subjects, both in temporal and frequency domain.
Notice that the signal is referenced to the instant of time
where the ErrP has been detected. Thus, the peaks analysis
leads to a first positive peak that appears -750 ms before
the detection of the ErrP. This positive peak is analog to the
positive peak that appeared at 150 ms after the onset in the
previous condition. The following observed positive peaks are
found at -570 and -300 ms, while negative peaks are seen at
-640 and -500 ms before the ErrP detection. All these peaks
correspond to the positive peaks located at 280 and 600 ms;
and to the negative peaks found at 210 and 400 ms respectively,
observed in Figure 4. Furthermore, the scalp topographies of
the described peaks had a similar morphology to the ones
observed in the previous condition. Nonetheless, despite the
averages and topographies resembled a similar morphology to
the one obtained in the standard electrophysiology analysis,
the ErrP amplitudes in this case were lower, most likely due
to an inaccurate signal averaging. Regarding the frequency
information of the averaged signals, a slight power increment
in the theta band was present for the erroneous trials. Finally,
Figure 8(Bottom), displays the source localization results at
the most prominent negative peak (-500 ms). The brain activity
corresponding to this peak was located at the Brodmann area 6
and 32 (premotor cortex and dorsal anterior cingulate cortex).
In sum, these results suggest that the error potentials are
elicited within continuous motions performed by a device, even
when there is not a clear event that trigger them.
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IV. CONCLUSIONS AND FUTURE WORK

This paper studies the online detection of error potentials
when the onset of the event that elicits them is unknown. The
results obtained for the proposed experimental protocol show
that the error potentials appear when the user monitors a target
reaching task and that they can be detected in single trial.
Furthermore, the electrophysiology analysis of the recorded
signals indicated that the main components of the error-related
potentials were similar to previous studies and they had their
origin in the anterior cingulate cortex. These promising results
are a first step towards the use of this type of cognitive
information to control or teach robotic devices in realistic
and complex tasks. We have included a preliminary video
of a mobile robot controlled using these signals. There are
plenty of opportunities for future work. First, we are currently
extending the study to more users and more error conditions.
Second, further studies are required to understand whether
the error potential appears every time an error is detected or
the frequency features allow detecting errors even when no
potential is present. Finally, the long term goal is to understand
what cognitive information related to error perception can be
decoded and incorporated in a BMI to control a robotic device
in realistic scenarios.
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Invited Talk I

Is artificial emotion really emotional?

Prof. Minoru Asada

Osaka University, Osaka, Japan

Abstract: Emotion, a driving force to generate different behaviors, is
one of the most fundamental but difficult structures/functions to design for
robots. Starting from primitive emotions, the secondary emotions may be
differentiated from them. During this developmental process, sociality has
an important role to derive the differentiated emotions. In this talk, I argue
how artificial emotion can be more realistic in the social context by showing
some attempts, and discuss the future stories in SFs and comics.

Ugur, E., Oztop, E., Morimoto, J., and Ishii, S. (Eds) Proceedings of
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"Towards a robot-enabled, neuroscience-guided healthy society"
November 3rd, 2013, Tokyo, Japan
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Invited Talk II

Shared body for self and others in the brain

Prof. Akira Murata

Kinki University, Osaka, Japan

Abstract: It has been known that dorsal visual stream of the two vi-
sual pathways, directing to the parietal cortex, is related to visual spatial
perception. However, the parietal cortex is not the terminal station of the
dorsal visual stream, but has strong mutual anatomical connection with the
premotor cortex. The spatial information in the parietal cortex is sent to the
premotor cortex, and then the final goal is visuo-motor control. On the other
hand, on line representation of one’s own body (body schema) is formed in
the sensory-motor process, and this map can dynamically change, depend-
ing on sensory-motor experiences and learning. This network is considered
integration of efference copy/corollary discharge and sensory feedback that
is an essential factor both for sensory motor control and body schema. In
our recent findings, it is suggested that one’s own body schema also provides
basic reference frame for mapping of other’s body. This means that neu-
ronal substrates for monitoring one’s own action is shared with the system
for recognize and understand other’s action. In this lecture, we would dis-
cuss about body schema that is a key to link between sensory-motor control
and high-order cognitive functions; body recognition.
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Invited Talk III

Cognitive Interaction Technology for Helpful Robots

Prof. Helge Ritter

Bielefeld University, Bielefeld, Germany

Abstract: The perceived helpfulness of a robot and, as a result, the well-
being of a human in the presence of the robot, is only partly determined by
the robot’s function alone. An important co-determining factor is the robot’s
interface that determines appearance and social interaction with the human.
This underscores the creation of flexible and human-adapting interfaces as
a key task for the development of robots that are perceived as helpful. We
present ongoing work on the creation of interfaces for supporting cognitive
interaction between robot devices and humans, emphasising the role of touch
and its interplay with vision. Examples include the development of flexible
and 3D-shaped tactile sensors and their use in the context of the analysis and
control of tactile-guided interaction, such as visuo-haptic servoing, as well
as an outlook of how to augment such capabilities with further interfacing
modalities towards systems that can interact with humans in natural and
rich ways.
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Invited Talk IV

Human-derived sensor fusion principles used to control
biped balancing of external disturbances in a humanoid

robot

Prof. Thomas Mergner Neurologische Klinik, Freiburg, Germany

Background: Human sensorimotor control is very complex and current
research still faces problems when it comes to re-embody the hypothesized
control in the form of control models into robots for direct human-robot
comparisons. We simplified the research task by studying reactive (sensor
driven) postural reactions to exactly known external disturbances. Con-
trol of human biped stance during external disturbances lends itself to this
research as a simple sensorimotor prototype.

Material and Methods: System analysis approaches with computer
modeling in back and forth with human experiments was used in: (1) In-
vestigations of human sensory systems, mainly vestibular and joint proprio-
ceptive, using open loop psychophysics of self-motion perception. (2) Inves-
tigations of human postural responses to tilt and translation of the support
surface and to pull stimuli having impact on the body. (3) Modeling of the
human postural data using sensor fusion principle derived from the human
perception and comparing model simulation data with the human postural
data. (4) Re-embodiment of the model into a humanoid robot for direct
human-robot comparisons in the human laboratory.

Results: (1) Psychophysics suggested that human self-motion percep-
tion (a) uses sensory transducer signals to reconstructs the kinematic and
kinetic variables of the body-world interaction and (b) uses then these vari-
ables to reconstructs the external disturbances having impact on the body.
(2) Using these sensor fusion algorithms allowed implementation of the hu-
man postural response findings into a simple sensory feedback model of
human stance control. The model consists of (i) a servo loop for local joint
control and, superimposed on the servo, of (ii) long-latency loops for distur-
bance estimation and compensation. (3) Model simulations delivered data
that resembled the human data. (4) This similarity also applied when the
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model was used to control the robot with its noisy and inaccurate sensors,
etc., and when performing the simulations in the human test bed.

Discussion & Conclusion: The approach of deriving sensor fusion
principles from human self-motion perception and of using these principles to
model human sensor-based postural responses to external disturbances may
help to better understand the human sensorimotor control. Its extension into
a ’neurorobotics’ approach provided a proof of principle of the sensorimotor
control model and demonstrated certain advantages of this control such as
versatility in face of changing disturbance scenarios, high robustness in terms
of fail safe, low loop gain and low passive resistance. Currently the model
and robot are extended to include voluntary movements, control policies
(including fusion of predicted with sensor-derived disturbance estimates),
and a modular architecture for multi-DOF systems.
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Invited Talk V

Motor primitives and central pattern generators: from
biology to robotics

Prof. Auke Ijspeert

EPFL, Lausanne, Switzerland

Abstract: The ability to efficiently move in complex environments is
a fundamental property both for animals and for robots, and the problem
of locomotion and movement control is an area in which neuroscience and
robotics can fruitfully interact. Animal locomotion control is in a large
part based on central pattern generators (CPGs), which are neural net-
works capable of producing complex rhythmic or discrete patterns while
being activated and modulated by relatively simple control signals. These
networks are located in the spinal cord for vertebrate animals. In this talk, I
will present how we model pattern generators of lower vertebrates (lamprey
and salamander) using systems of coupled oscillators, and how we test the
CPG models on board of amphibious robots, in particular a salamander-like
robot capable of swimming and walking. The models and robots were in-
strumental in testing some novel hypotheses concerning the mechanisms of
gait transition, sensory feedback integration, and generation of rich motor
skills in vertebrate animals.
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Invited Talk VI

Mind-Controlled Humanoid Robots and Physical
Embodiment

Prof. Abderrahmane Kheddar

National Institute of Advanced Industrial Science and Technology (AIST),
Ibaraki, Japan

Abstract: This talk will address our ongoing research is robotic embod-
iment and thought-based control of a humanoid robot using brain computer
interface. We efficiently integrate techniques from computer vision and the
task-function based control together with the brain-computer interface into
an immersive and intuitive control application despite the well-known short-
comings of BCI. Our approach is based only on steady state visual evoked
potential patterns. The user is fed back on-line with video stream recorded
from the humanoid embedded camera. Images are then segmented, clus-
tered from which learned objects are recognized. 3D model of recognized
objects are used to superpose their computer graphic representation using
augmented reality techniques. The 3D models flicker at frequencies auto-
matically assigned by our system. Once users attention is ported on a given
object, SSVEP classifier reports it. Based on the affordance concept, the ob-
ject of interests associated task is sent to the stack-of-task controller of the
humanoid robot. This approach is assessed in a user experiment involving
several subjects who successfully controlled the HRP-2 humanoid robot in
a scenario involving both grasping tasks and steering. The user experiences
and the interface performances are presented and give a rich insight into
future research that can be made to improve and extend such interface.
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Invited Talk VII

Robots under Neural Control: How to create a
neuron-based learning & memory system for behaving

machines?

Prof. Florentin Worgotter

University of Goettingen, Goettingen, Germany

Abstract: Since several years we have tried to show the power of im-
plicit, neural control for behaving artificial systems. We were able to demon-
strate reactive as well as adaptive control in our 18DOG hexapode robot
AMOS WD6, which leads to more than 10 different behavioral patterns in
response to the robot’s sensory input signal combination. This as such is a
difficult problem as there are no rules or explicit control-laws present in this
system. Rather, AMOS behaves like many insects by directly responding
appropriately to the requisite variety of its world represented by its many
sensors. This, however is not enough. Even simple insects can learn and
memorize to some degree. Here we specifically show how a working memory
can be implemented using pure neural mechanism directly linked to the be-
havior of the robot. Typical conditioning situation can thereby by learned
and memorized for some time, very similar to, e.g., odor conditioning in
insects.

Ugur, E., Oztop, E., Morimoto, J., and Ishii, S. (Eds) Proceedings of
IROS 2013 Workshop on Neuroscience and Robotics
"Towards a robot-enabled, neuroscience-guided healthy society"
November 3rd, 2013, Tokyo, Japan

41



Invited Talk VIII

Adaptive robot skill synthesis through human
sensorimotor learning

Dr. Jan Babic

Jozef Stefan Institute, Ljubljana, Slovenia

Abstract: In this talk, I will introduce a concept of obtaining complex
robot motions based on the human sensorimotor learning capabilities. The
idea is to include the human in the robot control loop and to consider the
target robotic platform as a tool that can be iteratively controlled by a hu-
man. Provided with an intuitive interface between the human and robot, the
human learns to perform a given task using the robot. The skilled control
of the robot by the human provides data that are used for construction of
autonomous controllers that control the robot independently of the human.
To demonstrate the applicability of the concept, I will present several exam-
ples including statically stable reaching, cooperative dynamic manipulation
skill and adaptive control of exoskelton robots. Besides, I will also explain
how the interfaces built for the robot skill synthesis can be effectively used
in the opposite direction to investigate human motor control mechanisms
employed by the central nervous system during the full body motion.

Ugur, E., Oztop, E., Morimoto, J., and Ishii, S. (Eds) Proceedings of
IROS 2013 Workshop on Neuroscience and Robotics
"Towards a robot-enabled, neuroscience-guided healthy society"
November 3rd, 2013, Tokyo, Japan

42



Invited Talk IX

Brain-Machine-Interface Improves Recovery Time from
Perturbation in Flight Attitude on a Novel Complex

Piloting Task

Dr. Daniel Callan

National Institute of Information and Communications (NICT), Kyoto,
Japan

Abstract: The goal of this research is to develop adaptive automation
that can improve response speed of a pilot’s motor commands to an unex-
pected event by using a brain-machine-interface BMI to decode perceptual-
motor intention. The experiment consisted first of a task in which subjects
piloted an airplane from the first person perspective over the ocean. The
object of the task was to allow the plane to fly straight without moving the
joystick until at some point there may be a perturbation in flight attitude
pushing the nose of the plane toward the water. The presence of a pertur-
bation on a trial was randomly determined. Before each trial the subject
decided whether they were going to respond to a possible perturbation by
pulling back on the control stick or whether they would passively observe the
trial and do nothing in the case of a perturbation. Brain activity during the
task was recorded using magnetoencephalography MEG. Three 10-minute
sessions of the perturbation task over the ocean were conducted. An addi-
tional session was conducted in which the task for the subject was to pilot
an airplane through the Grand Canyon following closely the river below. In
some cases there was a perturbation of the elevator forcing the nose down.
Subjects were required to recover from the perturbation without crashing
and attempting to maintain tracking along the river.

The challenge is to be able to decode motor intention to an unexpected
perturbation while ignoring ongoing motor control related to the tracking
task. Independent component analysis was conducted on trials from the
first two sessions to separate environmental and physiological artifacts from
task related brain activity. For each of the 7 subjects a single independent
component was found that showed an averaged evoked response to the per-
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turbation occurring prior to movement of the control stick. For each trial
RMS amplitude was calculated within two consecutive 40ms windows prior
to the time of the peak of the averaged evoked potential and one 40ms win-
dow after. The three amplitude values served as features to train a decoder
(Least-Squares Probabilistic Classification) to classify between trials of the
first 2 sessions in which the pilot intentionally pulled back on the stick in
response to a perturbation versus passively watching the perturbation. The
spatial filter of the task related independent component and the weights of
the decoder were applied to sessions 3 and 4.

The decoder was able to significantly classify the perturbation trials for
which there was a motor response versus those in which there was only pas-
sive viewing on test session 3 with an average accuracy of 70%. For the
Grand Canyon session the 120ms window of the decoder was incremented
in 8ms steps through each trial and the first occurrence of decoded mo-
tor intention was used as the point at which adaptive automation could be
implemented. Average classification of trials for which there was a pertur-
bation versus no perturbation was 73% with an improvement in response
time by implementation of the adaptive automation of 72ms. This research
demonstrates that a BMI can be used to generalize to more complex novel
tasks and differentiate between motor intention to an unexpected perturba-
tion from that used during normal maneuvering. Adaptive automation can
be used to significantly enhance flight performance without taking control
away from the pilot.
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Invited Talk X

Brain Exoskeleton-Robot Interface for Rehabilitation
Assistance

Dr. Tomoyuki Noda

Advanced Telecommunications Research Institute International (ATR),
Kyoto, Japan

Abstract: I have been working on developing an assistive robot system
with bio-signal interfaces such as Electroencephalogram (EEG) and sur-
face Electromyogram (sEMG), which can contribute to Brain-Machine In-
terface (BMI) rehabilitation. For the BMI rehabilitation, we believe EEG-
Exoskeleton robot system can enhance neuro-connectivity training, where
the exoskeleton robot is connected to the EEG system so that the users can
control the exoskeleton robot by using their brain activities. Our exoskele-
ton platform combines both of pneumatic and electric energy sources to
provide powerful and compliant force-controlled actuation. We consider as-
sisting the stand-up movement which is one of the most frequently appeared
movements in daily life and also a standard movement as rehabilitation train-
ing. The results show that the exoskeleton robot successfully assisted user
standup movements, where the assist system was activated only by user’s
motor imagery.
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Invited Talk XI

A Waypoint-based Framework and Data-driven Decoder
for Brain-Machine Interface in Smart Home Environments

Dr. Motoaki Kawanabe

Advanced Telecommunications Research Institute International (ATR),
Kyoto, Japan

Abstract: The noninvasive brain-machine interface (BMI) is antici-
pated to be an effective tool of communication not only in laboratory settings
but also in our daily livings. The direct communication channel created by
BMI can assist aging societies, the handicapped and improve human welfare.
In this talk we propose and experiment a BMI framework that combines BMI
with a robotic house and autonomous robotic wheelchair. Autonomous nav-
igation is achieved by placing waypoints within the house and, from the user
side, the user performs BMI to give commands to the house and wheelchair.
This waypoint framework can offer essential services to the user with an
effectively improved information-transfer rate. Furthermore, a data-driven
decoder utilizing large databases has been developed to deal with the com-
plex and multi-modal data acquired in the house. Open issues of our system
will also be discussed.
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Invited Talk XII

Brain and body machine interfaces for assistive robot
technology

Joern Vogel

Institute of Robotics and Mechatronics German Aerospace Center (DLR),
Wessling, Germany

Abstract: This talk will address our ongoing research is robotic embod-
iment and thought-based control of a humanoid robot using brain computer
interface. We efficiently integrate techniques from computer vision and the
task-function based control together with the brain-computer interface into
an immersive and intuitive control application despite the well-known short-
comings of BCI. Our approach is based only on steady state visual evoked
potential patterns. The user is fed back on-line with video stream recorded
from the humanoid embedded camera. Images are then segmented, clus-
tered from which learned objects are recognized. 3D model of recognized
objects are used to superpose their computer graphic representation using
augmented reality techniques. The 3D models flicker at frequencies auto-
matically assigned by our system. Once users attention is ported on a given
object, SSVEP classifier reports it. Based on the affordance concept, the ob-
ject of interests associated task is sent to the stack-of-task controller of the
humanoid robot. This approach is assessed in a user experiment involving
several subjects who successfully controlled the HRP-2 humanoid robot in
a scenario involving both grasping tasks and steering. The user experiences
and the interface performances are presented and give a rich insight into
future research that can be made to improve and extend such interface.
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