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I. INTRODUCTION

Converging developmental studies have emphasized the
significance experience within the uterine environment from as
early as the fetal period for motor and cognitive development
[1]. Notably, these studies have emphasized the importance
of sensory feedback due to spontaneous movements for early
development. It is therefore important to reveal how the fetus’
interaction with the uterine environment guides its develop-
ment in order to deepen our understanding of the underlying
mechanisms for development.

Among all sensory experiences within the uterine environ-
ment, the somatosensory modality plays a central role in early
development. In fact, this modality starts functioning over the
whole body from as early as the 17th gestational age, before
other sensory modalities [2].

Several researchers have suggested the importance of sen-
sory stimulation generated by spontaneous fetal movements for
the formation of the body map in the primary somatosensory
area (S1) [3]. However, there are few studies on the mecha-
nisms of how the S1 map is generated and what components
shape its organization.

In this paper, we argue that uterine environment contributes
to the guidance of the formation of somatosensory represen-
tations. We investigated the relationship between the uterine
environment and the organization of S1 shaped by sensory
information gathered via interaction with the environment.

II. MATERIALS AND METHODS

We ran computer simulations of human fetus models within
and outside uterine environment. This fetus model have bi-
ologically plausible musculoskeletal bodies, a spinal neural
network and a primary somatosensory area.

A. Body Model and Environment Model

We used human fetus models, which undergo 30 gestational
weeks [4] [5] (Fig.1). The model had parameters based on
actual fetus data such as size, mass, moment of inertia of
each body part, joint angle limits, muscle configuration and
force. The human fetus models had 198 muscles in the whole
body excluding the finger and face muscles, and 1500 tactile
sensor cells, whose distribution was based on human two point
discrimination (Fig.1B, Table.I). To simulate tactile sensation,
we used the Merkel cell model. Merkel cells are mechanore-
ceptors which mainly detect continuous pressure. The Merkel
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Fig. 1. Fetus model overview. (A) Fetus model appearance and fetus data.
Blue circle represents uterus and white and red circles represent tactile sensors.
Red one is responsing tactile. (B) Tactile distribution on the fetus model.

TABLE I
THE DISTRIBUTUION OF TACTILE SENSORS ON THE

FETUS MODEL’S LEFT SIDE.

head neck shoulder upper arm lower arm
377 7 14 16 14

hand chest stomach hip thigh calf foot
132 34 48 22 24 15 47

cell model used in this simulation detected continuous pressure
by low-pass filtering the pressure input (< 50 Hz) [6].

Inside the uterus, pressure inputs to the fetus come from its
embryonic and fetal environments. We used the amniotic fluid
and uterine wall models produced by Mori and Kuniyoshi [4].
In our simulations, pressure inputs could be due to (1) physical
contact, (2) the uterine wall, and (3) amniotic fluid resistance.
Pressure due to physical contact between body parts was
distributed according to the tactile sensors distance from the
colliding body part. Pressure due to the uterine membrane
depends on the sensor’s distance from the center of the uterus
and as well as its orientation. Pressure due to amniotic fluid
resistance is calculated by taking the inner product of the
velocity of the body part and directional unit vector of the
tactile sensor. Outside the uterus, the fetus model was only
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subject to pressure due to physical contact between body parts
and the ground.

B. Motion Generation Model

The neural basis for fetal spontaneous whole-body move-
ments is believed to be Central Pattern Generators (CPGs),
which are circuits mediating rhythmic behaviors such as
walking and swimming in the spinal cord or brain stem [7].
We employed the spinobulbar model developed by Kuniyoshi
and Sangawa [8], which includes a CPG model for generating
various whole-body movements. This model receives muscle
length and tension as sensory input, and outputs the degree of
muscle activation as motor command.

C. Somatorsensory Area Model

S1 has a somatotopic representation of the body, which
largely presents the spatial organization of body parts [9].
Similar cortical representations are observed in other primary
sensory areas such as the primary auditory cortex (A1) and the
primary visual cortex (V1). Recently, Terashima and Okada
suggested that A1 and V1 cortical representations can be
explained by the common neural network model [10]. We
applied the neural network model, Topographic Independent
Component Analysis (TICA), to simulate the organization of
the somatosensory map [11].

TICA takes the sensory inputs from tactile sensors and
not only extracts the independent components using Inde-
pendent Components Analysis (ICA), but also constructs a
two-dimensional map in such a way that adjacent elements in
the map have similar sensory representations. In other words,
TICA is a variant of ICA in which the output is a sparse
and topographically organized representation of the sensory
inputs. To construct a two-dimensional map of m elements, an
independent components vector st = [s1t, · · · , sjt, · · · , smt]

T

is calculated as

st = Wxt, (1)

where xt is the vector of sensory inputs from tactile sensors,
and W is the weight matrix. The weight matrix W =
[w1, · · · ,wm]T is estimated using the gradient method, which
maximizes the likelihood function L for the observed time
series of tactile information xt. The likelihood function L is
formulated as follows:

cit =
∑
j

h(i, j) s2jt, (2)

logL(x1, · · · ,xn; w1, · · · ,wm) =
n∑

t=1

m∑
i=1

G(cit), (3)

where h(i, j) is binary filter function for selecting the elements
that neighbor i-th components on topography. This filter makes
sure that adjacent elements in the final map have similar
weight vectors, allowing the map to have a topographical
organization. G(cit) denotes the probability density function
of cit, which we defined as:

G(cit) = log p(cit) = −
√
0.005 + cit. (4)
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Fig. 2. Learned S1 maps. Colors represent each body parts, and white color
represents somatosensory components which could not be categorized into
any specific body part.

By defining the probability density function in the above fash-
ion allowed the resulting map to be sparse. In this experiment,
the dimensions of the resulting two-dimensional topographical
map 30 × 20 elements (m = 600). The map had a torus
configuration (opposite edes were connected) to avoid border
effects.

III. EXPERIMENTS

In order to investigate relationship between the uterine
environment and organization of the S1 model, we conducted
fetus simulations within and outside the uterus, and then built
S1 maps as defined by tactile sensory information. Therefore,
we set the time step of the simulation to 1 ms, and ran the
simulation for 500 s. As for tactile sensors, we used the left-
side of the body. We analyzed (1) whether each component
in the S1 model represent specific five body parts: head, arm,
hand, torso, leg and (2) whether the S1 map is organized so
that adjacent components represent the neighboring body part.

First, we determined which body part was represented by
each tactile component in S1 (Fig.2). If more than half of
the strongest inputs to a given tactile sensor came from one
specific body part, it was categorized as being dominantly
represented by that body part. We calculated the percentage of
components which could not be categorized into any specific
body parts (”white rate” in Fig. 2). The percentages were 11%
and 22% within and outside the uterus, respectively. Figure 3
shows the array of tactile sensors contributing to the body parts
represented in S1. We confirmed that these sensors tended to
be spatially localized to their respective body parts.
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Fig. 3. Examples of cortical reprsentation in S1. Red circle is a tactile cell,
which strongly inputs one component in S1 map.

Second, to evaluate the degree of topography in S1, we
investigated the degree of clustering in S1. The number of
tactile components which had neighboring components also
categorized into the same body part were summed. Results
showed a significant increase in the number of clustered
components in S1 maps created within rather than outside the
uterus. The results showed that such area within uterine envi-
ronment significantly increased compared with those outside
uterus (Mann-Whitney test, p < 0.005).

IV. CONCLUSION

Animals are dynamically coupled to their environments,
with environment shaping the structure of sensory input, and
sensory information determining neural dynamics. In this
paper, we argue that interaction structured by the environment
can guide the formation of somatosensory representations in
human fetuses. To test our hypothesis, we conducted computer
simulations using fetus model and compared the organization
of such representations within and outside uterine environ-
ment. We found that S1 within the uterus had two times
the number of localized body representations than outside the
uterus. Furthermore, the fetus within the uterus is significantly
larger than outside the uterus in terms of somatotopic organi-
zation. Our results suggest that uterine environment possesses
rich regularities that structure tactile information and guide the
organization of the S1 body map.
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