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Abstract

We derive algorithms for generalised tensor factorisafe@fF) by building upon
the well-established theory of Generalised Linear Modér algorithms are
general in the sense that we can compute arbitrary factonmsain a message
passing framework, derived for a broad class of exponefdially distribu-
tions including special cases such as Tweedie’s distohstcorresponding t6-
divergences. By bounding the step size of the Fisher Scaaragion of the GLM,
we obtain general updates for real data and multiplicapdates for non-negative
data. The GTF framework is, then extended easily to addnesgroblems when
multiple observed tensors are factorised simultaneoWghjillustrate our coupled
factorisation approach on synthetic data as well as on agalusiidio restoration
problem.

1 Introduction

A fruitful modelling approach for extracting meaningfufammation from highly structured mul-
tivariate datasets is based on matrix factorisations (MEs¥act, many standard data processing
methods of machine learning and statistics such as clogtesource separation, independent com-
ponents analysis (ICA), honnegative matrix factorisafiNiMF), latent semantic indexing (LSI)
can be expressed and understood as MF problems. These MHsnatgte have well understood
probabilistic interpretations as probabilistic genematinodels. Indeed, many standard algorithms
mentioned above can be derived as maximum likelihood or maxi a-posteriori parameter esti-
mation procedures. It is also possible to do a full Bayesieatinent for model selection [1].

Tensors appear as a natural generalisation of matrix faat@n, when observed data and/or a latent
representation have several semantically meaningfulminas. Before giving a formal definition,
consider the following motivating example

4,9,k 5,7 7,7 7k, JP ~ J,7 r7D,T 74 ~ J," 74,7
X, =~ E 4y Zy Z3 X' = E 4y 2y X3 =~ E Z Z5 (1)
r r r

where X is an observed-way array andX,, X3 are2-way arrays, whileZ, fora = 1...5 are
the laten2-way arrays. Here, th-way arrays are just matrices but this can be easily extetaled
objects having arbitrary number of indices. As the teiaway array’ is awkward, we prefer using
the more convenient tertensor Here,Z, is a shared factor, coupling all models. As the first model
is a CP (Parafac) while the second and the third ones are ME'sall the combined factorization
as CP/MF/MF model. Such models are of interest when one ctinodlifferent 'views’ of the
same piece of information (het&,) under different experimental conditions. Singh and Gardo
[2] focused on a similar problem called asllective matrix factorisatiofCMF) or multi-matrix
factorisation for relational learning but only for matrix factors and ebstions. In addition, their
generalised Bregman divergence minimisation procedsunass matching link and loss functions.
For coupled matrix and tensor factorizatig€MTF), recently [3] proposed a gradient-based all-
at-once optimization method as an alternativalternating least squar€ALS) optimization and



demonstrated their approach for a CP/MF coupled model. |&imodels are used for protein-
protein interactions (PPI) problems in gene regulation [4]

The main motivation of the current paper is to construct aeganand practical framework for
computation of tensor factorisations (TF), by extendirgrell-established theory of Generalised
Linear Models (GLM). Our approach is also partially insgliftey probabilistic graphical models:
our computation procedures for a given factorisation hawataral message passing interpretation.
This provides a structured and efficient approach that esakdry easy development of application
specific custom models, priors or error measures as welbasitiims for joint factorisations where
an arbitrary set of tensors can be factorised simultangow&ll known models of multiway analysis
(Parafac, Tucker [5]) appear as special cases and novellsramlt associated inference algorithms
can be automatically be developed. In [6], the authors take#ar approach to tensor factorisations
as ours, but that work is limited t& L. and Euclidean costs, generalising MF models of [7] to the
tensor case. Itis possible to generalise this line of work-thivergences [8] but none of these works
address the coupled factorisation case and consider oehtiécted class of cost functions.

2 Generalised Linear Models for Matrix/Tensor Factorisation

To set the notation and our approach, we briefly review GLMeviong closely the original notation
of [9, ch 5]. A GLM assumes that a data vectdras conditionally independently drawn components
x; according to an exponential family density

i — b(vi . _ Ob(wi O%b(vi
2 oxp (MTiQ(ﬂ_C(IM)) (21) = 1 = 8(771_ ) var(a) =+ 87(3 L

Here,y; arecanonical parameterandr? is a known dispersion parametér,) is the expectation of
x; andb(+) is the log partition function, enforcing normalization. & banonical parameters are not
directly estimated, instead one assumes a link fungtionthat 'links’ the mean of the distribution
Z; and assumes thgti;) = l;z WhereliT is theith row vector of a known model matrik and

z is the parameter vector to be estimateld, denotes matrix transpose df The model is linear
in the sense that a function of the mean is linear in parameter,g(Z) = Lz . A Linear Model
(LM) is a special case of GLM that assumes normality,d.e~ N (z;; ;,0%) as well as linearity
that implies identity link function ag(s;) = 2; = [, z assuming; are known. Logistic regression
assumes a log linky(2;) = log #; = I, z; herelog #; andz have a linear relationship [9].

The goal in classical GLM is to estimate the parameter vectorhis is typically achieved via
a Gauss-Newton method (Fisher Scoring). The necessargtslige this computation are the log
likelihood, the derivative and the Fisher Information (#ected value of negative of the Fisher
Score). These are easily derived as:

oL 1 . .
L= lwyi —b(w)/7° =Y clwi,7) 5 2 D (@i — @)wigs (@)1 (3)
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wherew is a vector with elements;, D andG are the diagonal matrices &5 = diag(w), G =
diag(gz(2;)) and

. L\t R 0g(#;)
wi = (v(@:)93(22)) 9a(d) = “5 (5)

with v(2;) being thevariance functiorrelated to the observation variance by (gl = 72v(%;).
Via Fisher Scoring, the general update equation in matrimfig written as

ezt (LTDL)ALTDG(:U —3) (6)

Although this formulation is somewhat abstract, it covexggy broad range of model classes that
are used in practice. For example, an important special agears when the variance functions
are in the form ofv(Z) = 7. By settingp = {0, 1,2, 3} these correspond to Gaussian, Poisson,
Exponential/Gamma, and Inverse Gaussian distributiods{df.30], which are special cases of the
exponential family of distributions for anynamed Tweedie’s family [11]. Those fpr= {0, 1, 2},

in turn, correspond to EU, KL and IS cost functions often usedNMF decompositions [12, 7].



2.1 Tensor Factorisations (TF) as GLM's

The key observation for expressing a TF model as a GLM is taotifyethe multilinear structure
and using an alternating optimization approach. To hidentitational complexity, we will give an
example with a simple matrix factorisation model; extens@mtensors will require heavier notation,
but are otherwise conceptually straightforward. Consédet- model

9(X) =212, in scalar g(X)i = Z 707 73T e

whereZ;, Z, andg(X) are matrices of compatible sizes. Indeed, by applyingviéwe operator
(vectorization, stacking columns of a matrix to obtain at@€cto both sides of (7) we obtain two
equivalent representation of the same system

veelg(X)) = (1 ® 71) vee(Z2) = 2222 W) vee(22) =22 @

wherel|; denotes thej| x || identity matrix,@ denotes the Kronecker product [13], anet 7 =

Z. Clearly, this is a GLM wheré/, plays the role of a model matrix and, is the parameter
vector. By alternating betweef; and Z,, we can maximise the log-likelihood iteratively; indeed
this alternating maximisation is standard for solving nxatictorisation problems. In the sequel, we
will show that a much broader range of algorithms can be hedérived in the GLM framework.

vec(Zy) =

2.2 Generalised Tensor Factorisation

We define @ensorA as a multiway array with an index set= {i1, iz, ..., 44|} Where each index
inforn =1...|al runs asi, = 1...li,|. An element of the tensaok is a scalar that we denote
by A(i1,ia,...,4)q)) OF A"-*2-%el Or as a shorthand notation by(v) with v being a particular

configuration.|v| denotes number of all distinct configurations ¥arand e.g. if¥ = {i1,i2} then
|v| = |i1]]i2|. We call the formA (v) aselement-wisgthe notatior] | yields a tensor by enumerating
all the indices, i.e.A = [A%i2~ial] or A = [A(v)]. For any two tensor& andY of compatible
order,X oY is an element-wise multiplication and if not explicitlyessedX /Y is an element-wise
division. 1 is an object of all ones whose order depends on the contexevithie used.

A generalised tensor factorisation problem is specified mylserved tensoX (with possibly
missing entries, to be treated later) antbdection of latent tensor® be estimated?;. | = {Za}
fora=1...|a|, and by an exponential family of form (2). The index sefofs denoted by, and
the index set of eacl, by V,. The set of all model indices i8 = U'Cj‘:‘1 Vo We usev,, (or vp)
to denote a particular configuration of the indicesfor (or X') while v, denoting a configuration
of the complimen®, = V/V,. The goal is to find the latenf,, that maximize the likelihood

p(X|Z1.o) where(X) = X is given via
9(X(v0)) = 3 [ Zalva) ©)

To clarify our notation with an example, we express the CPgfaa) model, defined aﬁi(z‘, J, k)=

> Z1(i,7) Z2(j,7) Z3(k, r). In our notation, we take identity link(X) = X and the index sets
with V = {i,j, k,?‘}, Vo = {i,j, k}, Vo = {7‘}, V) = {Z',T‘}, Vo = {j,T‘} andV; = {k,T‘}. Our
notation deliberately follows that of graphical modelse teader might find it useful to associate
indices with discrete random variables and factors wittbphility tables [14]. Obviously, while a
TF model does not represent a discrete probability meatheealgebraic structure is nevertheless
analogous.

To extend the discussion in Section 2.1 to the tensor caseewd the equivalent of the model
matrix, when updating,,. This is obtained by summing over the product of all remajfactors

Q(X(UO)): Z Za(va) Z H Zor (Var) = Z Za(va)La(0a)

VoMNva VoNUa o/ #a VoMNva

La(oa) = Y [[ Zo(var) with 0, = (vo U va) N (T U 7a)

VoNVa o’ #a



One related quantity tdé,, is the derivative of the tenS@t(X ) wrt the latent tensof,, denoted as
V. and is defined as (following the convention [13, pp 196])

~ 9g(X)
Va = 0Z,

= Tluoroa| ® La with L, € RIvoM7alx[70nval (10)

The importance of.,, is that, all the update rules can be formulated by a produttsabsequent
contraction ofL,, with another tenso) having exactly the same index set of the observed tensor
X. As a notational abstraction, it is useful to formulate thiofving function,

Definition 1. The tensor valued functiofy, (Q) : RI*ol — RIv=| is defined as

2@ =] D Qo) Laloa)® (11)

VoMNVq

with A, (Q) being an object of the same orderds ando, = (vg U v,) N (Tp U 7,). Here, on

the right side, the nonnegative integettenotes the element-wise power, not to be confused with an
index. On the left, it should be interpreted as a parametéredA function. Arguably A function
abstracts away all the tedious reshape and unfolding apesa5]. This abstraction has also an
important practical facet: the computationAfis algebraically (almost) equivalent to computation
of marginal quantities on a factor graph, for which efficier@ssage passing algorithms exist [14].

Example 1. TUCKER3 is defined as\®/* = 3 AWPBICETGrar with V =

{i,j, kp,a,}, Vo = {i, 4k}, Va = {i,p}, Ve = {j,a}, Vo = {k,r}, Vo = {p,q,7}. Then
for the first factorA, the objectd. 4 and A% () are computed as follows

L= Y practrgrar| = (€ e B)GT,| = [(La)] ] (12)
ALQ) = | Q7 (La)y | = [(QL%)]] (13)
5.k

The index sets marginalised out fbr, andA 4 are Vo N V4 = {p,q,r} N {j,q,k,r} = {q,r} and
VoNVa = {i,j,k} 0 {j,q,k,7} = {j, k}. Also we verify the order of the gradieRt4 (10) as
I' ® L4y ; = V% ; that conforms the matrix derivation convention [13, ppJL96

2.3 Iterative Solution for GTF

As we have now established a one to one relationship betwedhdhd GTF objects such as the

observation: = vec X, the mean (and the model estimate vec X, the model matrix, = L,
and the parameter vecter= vec Z,,, we can write directly from (6) as

- - -1 - = X
Tt Zo+ (leva) VIDG(X - X) with V,, = ag(ZX )

(14)

There are at least two ways that this update can further Biethl We may assume an identity
link function, or alternatively we may choose a matchind land lost functions such that they

cancel each other smoothly [2]. In the sequel we considettiigdink g(f() = X that results to
gX(X) = 1. This impliesG to be identity, i.e.G = I. We define a tensd#/, that plays the same
role asw in (5), which becomes simply the precision (inverse varggiunction), i.e. /W = 1/1;(5()
where for the Gaussian, Poisson, Exponential and Inversesem distributions we have simply
W = X—?with p = {0, 1,2, 3} [10, pp 30]. Then, the update (14) is reduced to

. - -1 - =
Tt T+ (VIDVQ) VI D(X - X) (15)
After this simplification we obtain two update rules for GTd¥ hon-negative and real data.

The update (15) can be used to derive multiplicative upddés (MUR) popularised by [15] for the
nonnegative matrix factorisation (NMF). MUR equationswgeshe non-negative parameter updates
as long as starting some non-negative initial values.



Theorem 1. The update equatiofi5)for nonnegative GTF is reduced to multiplicative form as

Zo e 7 0 22W o X) St Za(va) > 0 (16)
AL (WoX)

(Proof sketch) Due to space limitation we leave the full details of the prdoft idea is that inverse
of H = V' DV is identified as step size and by use of the results of the Réirobenious theorem
[16, pp 125] we further bound it as

Zo, 27, 2 (HZ.)(va)

n= _ < _ < sinceq. (H) < max
VDX VTDX Amaz (VTDV) Vo Zo (Vo)

(17)

For the special case of the Tweedie family where the pretisi@a function of the mean % =
X Pforp=1{0,1,2,3} the update (15) is reduced to
Ao(XP0 X)
Ay (X1-P)
For example, to updat&, for the NMF modelX = Z,7,, A, is Ao (Q) = Z] Q. Then for the
Gaussiany = 0) this reduces to NMF-EU a8, + Zy o (Z] X)/(Z] X). For the Poissonp(= 1)
it reduces to NMF-KL a%Z, + Z; o (Z] (X/X))/(Z{ 1) [15].
By dropping the non-negativity requirement we obtain thefeing update equation:
Theorem 2. The update equation for GTF with real data can be expressed as
2 A(Wo (X —X))
)\a/O AE(W)

Zo — Zy 0 (18)

Lo Lo+

With A /0 = [va N o) (19)

(Proof sketch)Again skipping the full details, as part of the proof we 8gt= 1in (17) specifically,
and replacing matrix multiplication o¥ " DV1 by VTle/\a/O completes the proof. Here the
multiplier A, /o is the cardinality arising from the fact that only, ,, elements are non-zero in a row
of VT DV. Note the example fak,, o that if Vo N Vo = {p, ¢} then), o = |p||q| which is number
of all distinct configurations for the index sgt, ¢ }.

Missing datacan be handled easily by dropping the missing data termstfierikelihood [17]. The
net effect of this is the addition of an indicator variabig to the gradien£/9z = 72 ol —
#)miw; gz ()1 with m; = 1if x; is observed otherwise; = 0. Hence we simply define a mask
tensorM having the same order as the observatiorwhere the elememt/ (vg) is 1 if X (vg) is
observed and zero otherwise. In the update equations, walymeplacel” with W o M.

3 Coupled Tensor Factorization

Here we address the problem when multiple observed tedspfor v = 1...|v| are factorised
simultaneously. Each observed tensgr now has a corresponding index 34&t, and a particular
configuration will be denoted by, , = u,.. Next, we define &/| x |a| coupling matrixR where

v )1 X, andZ, connected . B Ry
R = { 0  otherwise Xy (uy) = Z H Za(va) (20)

For the coupled factorisation, we get the following expi@ssas the derivative of the log likelihood

oL . X, (uy)
a7 N v Xl/ v) — Xz/ v v\W ) 55 —7 21
AT D S (20 ) = Ko ) W) 5 5 (21)
whereW, = W (X, (u,)) are the precisions. Then proceeding as in section 2.3 (etting the
Hessian and finding Fisher Information) we arrive at the tgpdae in vector form as

- - -1 N =
Zo = Zo+ (S RVI,DVan) (S ROVI,D.(X, - X)) (22)
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Figure 1: (Left) Coupled factorisation structure wheredh®w indicates the existence of the influ-
ence of latent tensdf,, onto the observed tensdt, . (Right) The CP/MF/MF coupled factorisation
problemin 1.

whereV, , = 9¢(X,)/0Z,. The update equations for the coupled case are quite irgpitve
calculate the\, ,, functions defined as

2, @ = Y Quu)(T] Zawa)™) ] (23)
Uy Ny aFta
for each submodel and add the results:
Lemma 1. Update for non-negative CTF

Zl/ RU,QAQ,V(WV © XV)

RSN (T

(24)

In the special case of a Tweedie family, i.e. for the distitmns whose precision ¥, = X;P, the
update isZ, « Z, o (ZV R¥OA, (X,jp o X,,)) / (ZV R"OA, (X,}*P)).
Lemma 2. General update for CTF

2 ZV RV%O‘AQ,U (WV © (XV - X”))
)\a/O Zy RV7QA2L,V(WV)

Do Zo + (25)

For the special case of the Tweedie family we pliig = X,jp and get the related formula.

4 Experiments
Here we want to solve the CTF problem introduced (1), whichésupled CP/MF/MF problem

Xk S girpirche Xgp =N pitper X4 =Y BitEeT(26)

where we employ the symbalt : E for the latent tensors instead &f,. This factorisation problem
has the followingR matrix with |a| = 5, |v| = 3

11100 X, =Y A'B'C'DYE°
R=|01 01 0] with X, = 3> A'B'COD'E° (27)
01 0 0 1 ngZAOBlCODOEl

We want to use the general update equation (25). This rexdéavation ofAf, () for v = 1 (CP)
andv = 2 (MF) but not forv = 3 since thatA, 3() has the same shape As, »(). Here we show
the computation foBB, i.e. for Z5, which is the common factor

A31(Q) = [Z QU (A ehr) | = Quy(Ct o A%) (28)
ik
52(Q) = lz Q7(DrT)| = QD* (%)




with Q,) beingmode-n unfolding operation that turns a tensor into matrix foh [In addition,
for v = 1 the required scalar values  is |r| here sinc&p NV, = {j,7} N {r} = {r} noting that
value g is the same for = 2,3. The simulated data size for observablegjis= |j| = |k| =
Ip| = |¢| = 30 while the latent dimension is| = 5. The number of iterations 000 with the
Euclidean cost while the experiment produced similar tefat KL cost as shown in Figure 2.

—+—— Orginal
—— Initial
—O— Final

Figure 2: The figure compares the original, the initial ¢stgr) and the final (estimate) factors for
Z.=A,B,C, D, E. Only the first column, i.eZ,(1 : 10,1) is plotted. Note that CP factorisation
is unique up to permutation and scaling [5] while MF factatiisn is not unique, but when coupled
with CP it recovers the original data as shown in the figurer Vigualisation, to find the correct
permutation, for each of,, the matching permutation between the original and estiuedound
by solving anorthogonal Procrustes problefd8, pp 601].

4.1 Audio Experiments

In this section, we illustrate a real data application of approach, where we reconstruct missing
parts of an audio spectrograi(f, ¢), that represents the STFT coefficient magnitude at frequenc
bin f and time framet of a piano piece, see top left panel of Fig.3. This is a diffienatrix
completion problem: as entire time frames (columnsXgfare missing, low rank reconstruction
techniques are likely to be ineffective. Yet such missintadgeatterns arise often in practice, e.g.,
when packets are dropped during digital communication. \Wedevelop here a novel approach,
expressed as a coupled TF model. In particular, the recarigtn will be aided by an approximate
musical score, not necessarily belonging to the playedepand spectra of isolated piano sounds.

Pioneering work of [19] has demonstrated that, when a aymiotsogram of music is decomposed
using NMF asX, (f,t) ~ X(f,t) = >, D(f,1)E(i,t), the computed factor® and E tend to be
semantically meaningful and correlate well with the intg@tnotion of spectral templates (harmonic
profiles of musical notes) and a musical score (reminisckatmano roll representation such as a
MIDI file). However, as time frames are modeled conditiopa&iidependently, it is impossible to
reconstruct audio with this model when entire time framesmissing.

In order to restore the missing parts in the audio, we form dehthat can incorporates musical
information of chords structures and how they evolve in tilneorder to achieve this, we hierarchi-
cally decompose the excitation matiixas a convolution of some basis matrices and their weights:
E(i,t) = >, . B(i,7,k)C(k,t — 7). Here the basis tens@ encapsulates both vertical and tem-
poral information of the notes that are likely to be used inusital piece; the musical piece to
be reconstructed will sharB, possibly played at different times or tempi as modelled:byAfter
replacingE with the decomposed version, we get the following model @qg 3

Xi(f.t) = Y D(f,i)B(i, 7, k)C(k,d)Z(d,t,T) Testfile  (30)
i,7,k,d

Xo(i,n) = > B(i,7,k)G(k,m)Y (m,n,7) MIDIfile  (31)
T,k,m

Xs(f,p) =Y D(f,i)F(i,p)T (i, p) Merged training files  (32)



Here we have introduced new dummy indigkandm, and new (fixed) factor& (d, t, ) = §(d —
t+7)andY (m,n,7) = §(m — n + 7) to express this model in our framework. In eq 32, while
forming X3 we concatenate isolated recordings corresponding toreliffenotes. Besideq is a

0 — 1 matrix, wherel'(i, p) = 1(0) if the note: is played (not played) during the time frameand

F models the time varying amplitudes of the training ddtanatrix for this model is defined as

1 11100 0 0 X1 =Y. D'BC'Z*GOY  FOT?
R={0 1001100 with X, = 3" D°B'CYZ0G Y FOTO (33)
1 0 000 0 1 1 XSZZDIBOCOZOGOYOFITI

Figure 3 illustrates the performance the model, ugifif cost (¥ = X —!) on a30 second piano
recording where th&0% of the data is missing; we get abdidB SNR improvement, gracefully
degrading from 0% to80% missing data: the results are encouraging as quite longppsiof audio
are missing, see bottom right panel of Fig.3.

X2 (Transcription Data) X3 (Isolated Recordings)
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Figure 3: Top row, left to right: Observed matric&s: spectrum of the piano performance, darker
colors imply higher magnitude (missing da@%) are shown white)Xs, a piano roll obtained
from a musical score of the piec&;, spectra of8 isolated notes from a piano. Bottom Row:
Reconstructed(;, the ground truth, and the SNR results with increasing misdata. Here, initial
SNR is computed by substitutifigas missing values.

5 Discussion

This paper establishes a link between GLMs and TFs and prewdjeneral solution for the compu-
tation of arbitrary coupled TFs, using message passingrés. The current treatment focused on
ML estimation; as immediate future work, the probabilistierpretation is to be extended to a full
Bayesian inference with appropriate priors and inferenethods. A powerful aspect, which we
have not been able to summarize here is assigning diffecshfenctions, i.e. distributions, to dif-
ferent observation tensors in a coupled factorization rhaitgs requires only minor modifications
to the update equations. We believe that, as a whole, the G@ftework covers a broad range
of models that can be useful in many different applicaticeaarbeyond audio processing, such as
network analysis, bioinformatics or collaborative filtegi
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