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Abstract. We develop a probabilistic framework for multiway analy-
sis of high dimensional datasets. By exploiting a link between graphical
models and tensor factorization models we can realize any arbitrary ten-
sor factorization structure, and many popular models such as CP or
TUCKER models with Euclidean error and their non-negative variants
with KL error appear as special cases. Due to the duality between ex-
ponential families and Bregman divergences, we can cast the problem as
inference in a model with Gaussian or Poisson components, where tensor
factorisation reduces to a parameter estimation problem. We derive the
generic form of update equations for multiplicative and alternating least
squares. We also propose a straightforward matricisation procedure to
convert element-wise equations into the matrix forms to ease implemen-
tation and parallelisation.
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1 Introduction

Advances in computing power, data acquisition, storage technologies made it
possible to collect and process huge amounts of data in many disciplines. Yet,
in order to extract useful information effective and efficient computational tools
are needed. In this context, matrix factorisation techniques have emerged as
a useful paradigm [10,15]. Clustering, ICA, NMF, LSI, collaborative filtering
and many such methods can be expressed and understood as matrix factorisa-
tion problems. Thinking of a matrix as the basic data structure maps well onto
special purpose hardware (such as a GPU unit) to make algorithms run faster
via parallelisation. Moreover, matrix computations come with a toolbox of well
understood algorithms with precise error analysis, performance guarantees and
extremely efficient standard implementations (e.g., SVD).

A useful method in multiway analysis is tensor factorization (TF) to extract
hidden structure in data that consists of more than two entities. However, since
there are many more natural ways to factorise a multiway array, there exists
a plethora of related models with distinct names discussed in detail in recent
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tutorial reviews [9,1]. A recent book [5] outlined various optimization algorithms
for non-negative TF for alpha and beta divergences. The idea of sparse non-
negative TUCKER was discussed in [12]. Use of the probabilistic approach, then,
for the matrix factorization (PMF) was presented by [13] while probabilistic non-
negative TF came out in [14]. However, all these works focus on isolated models.

The motivation behind this paper is pave the way to a unifying framework in
which any arbitrary TF structure can be realized and the associated inference al-
gorithm can be derived automatically using matrix computation primitives. For
this, we introduce a notation for TF models that closely resembles probabilis-
tic graphical models [7]. We also propose a probabilistic approach to multiway
analysis as this provides a natural framework for model selection and handling
missing values. We focus on using the KL divergence and the Euclidean metric
to cover both unconstrained and non-negative decompositions. Our probabilistic
treatment generalises the statistical treatment of NMF models described in [4,6].

2 Tensor Factorization (TF) Model

Following the established jargon, we call a N-way array X ∈ X I1×I2×···×IN

simply a ’tensor’. Here, In are finite index sets, where in is the corresponding
index. We denote an element of the tensor X(i1, i2, . . . , iN ) ∈ X as Xi1,i2,...,iN .
Similarly, given the index set W = {i1, . . . , iN} we use the notation X(w) to
denote an element of Xi1,i2,...,iN .

We associate with each TF model an undirected graph, where each vertex
corresponds to an index. We let V be the set of vertices V = {v1, . . . vn, . . . , vN}.
Our objective is to estimate a set of tensors Z = {Zα|α = 1 . . . N} such that

minimize d(X||X̂) s.t. X̂(w) =
∑

w̄∈W̄

∏

α

Zα(vα) (1)

where the function d is a suitable error measure, which we define later. Each Zα

is associated with an index set Vα such that V = ∪αVα. Two distinct sets Vα

and Vα′ can have nonempty intersection but they don’t contain each other. We
define a set of ’visible’ indices W ⊆ V and ’invisible’ indices W̄ ⊆ V such that
W ∪ W̄ = V and W ∩ W̄ = ∅.

Example 1 (TUCKER3 Factorization). The TUCKER3 factorization [8,9] aims
to find Zα for α = 1 . . . 4 that solve the following optimization problem where in
our notation, the TUCKER3 model is given by N = 4, V = {p, q, r, i, j, k}, V1 =
{i, p}, V2 = {j, q}, V3 = {k, r}, V4 = {p, q, r} and W = {i, j, k}, W̄ = {p, q, r}.

minimize d(X||X̂) s.t. X̂i,j,k =
∑

p,q,r

Zi,p
1 Zj,q

2 Zk,r
3 Zp,q,r

4 ∀i, j, k (2)

In this paper for the error measure d, we use KL divergence and Euclidean
distance that give rise to two variants that we call as PLTFKL (Probabilistic La-
tent Tensor Factorization) and PLTFEU respectively. Alternatives such as NMF
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with IS divergence also exist in [6]. Due to the duality between the Poisson like-
lihood and KL divergence, and between the Gaussian likelihood and Euclidean
distance [3], solving the TF problem in (1) is equivalent to finding the ML solu-
tion of p(X|Z1:N ) [6].
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Fig. 1. The DAG on the left is the graphical model of PLTF. X is the observed mul-
tiway data and Zα’s are the parameters. The latent tensor S allows us to treat the
problem in a data augmentation setting and apply the EM algorithm. On the other
hand, the factorisation implied by TF models can be visualised using the semantics of
undirected graphical models where cliques (fully connected subgraphs) correspond to
individual factors. The undirected graphs on the right represent CP, TUCKER3 and
PARATUCK2 models in the order. The shaded indices are hidden, i.e., correspond to
the dimensions that are not part of X.

2.1 Probability Model

For PLTF , we write the following generative model such that W ∪W̄ = ∪αVα =
V and for their instantiations (w, w̄) = ∪αvα = v

Λ(v) =

N
∏

α

Zα(vα) model paramaters to estimate (3)

S(w, w̄) ∼ PO(S;Λ(v)) element of latent tensor for PLTFKL (4)

S(w, w̄) ∼ N (S;Λ(v), 1) element of latent tensor for PLTFEU (5)

X(w) =
∑

w̄∈W̄

S(w, w̄) model estimate after augmentation (6)

M(w) =

{

0 X(w) is missing
1 otherwise

mask array (7)

Note that due to reproductivity property of Possion and Gaussian distribu-
tions [11] the observation X(w) has the same type of distribution as S(w, w̄).

Next, PLTF handles the missing data smoothly by the following observation
model [13,4]

p(X|S)p(S|Z1:N ) =
∏

w∈W

∏

w̄∈W̄

(

p(X(w)|S(w, w̄)) p(S(w, w̄)|Z1:N )
)M(w)

(8)
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2.2 PLTFKL Fixed Point Update Equation

We can easily optimise for Zα by an EM algorithm. The loglikelihood LKL is

∑

w∈W

∑

w̄∈W̄

M(w)

(

S(w, w̄) log

(

∏

α

Zα(vα)

)

−

(

∏

α

Zα(vα)

)

− logS(w, w̄)!

)

subject to the constraint X(w) =
∑

w̄ S(w, w̄) whenever M(w) = 1. The E-step
is calculated by identifying the posterior of S as a multinomial distribution [11]
with the following sufficient statistics

〈S(w, w̄)〉 =
X(w)

∏

α Zα(vα)
∑

w̄∈W̄

∏

α Zα(vα)
=

X(w)

X̂(w)

∏

α

Zα(vα) (9)

where X̂(w) is the model estimate as X̂(w) =
∑

w̄∈W̄

∏

α Zα(vα). The M-step is

∂LKL

∂Zα(vα)
= 0 ⇒ Zα(vα) =

∑

v 6∈Vα
M(w) 〈S(w, w̄)〉

∑

v 6∈Vα
M(w)

∏

α′ 6=α Zα′(vα′)
(10)

After substituting (9) in (10) we obtain the following fixed point update for Zα

Zα(vα)← Zα(vα)

∑

v 6∈Vα
M(w)X(w)

X̂(w)

∏

α′ 6=α Zα′(vα′)
∑

v 6∈Vα
M(w)

∏

α′ 6=α Zα′(vα′)
(11)

Definition 1. We define the tensor valued function ∆α(A) : R
|A| → R

|Zα| (as-
sociated with Zα) as

∆α(A) ≡





∑

v 6∈Vα



A(w)
∏

α′ 6=α

Zα′(vα′)







 (12)

∆α(A) is an object the same size of Zα. We also use the notation ∆Zα
(A)

especially when Zα are assigned distinct letters. ∆α(A)(vα) refers to a particular
element of ∆α(A). Using this new definition, we rewrite (11) more compactly as

Zα ← Zα ◦∆α(M ◦X/X̂)/∆α(M) (13)

where ◦ and / stand for element wise multiplication (Hadamard product) and
division respectively. Later we develop the explicit matrix forms of these updates.

2.3 PLTFEU Fixed Point Update Equation

The derivation follows closely Section 2.2 where we merely replace the Poisson
likelihood with that of a Gauissian. The complete data loglikelihood becomes

LEU =
∑

w∈W

∑

w̄∈W̄

M(w)



−
1

2
log(2π)−

1

2

(

S(w, w̄)−
∏

α

Zα(vα)

)2


 (14)
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subject to the constraint X(w) =
∑

w̄ S(w, w̄) for M(w) = 1. The sufficient
statistics of the Gaussian posterior p(S|Z,X) are available in closed form as

〈S(w, w̄)〉 =
N
∏

α

Zα(vα)−
1

K
(X(w)− X̂(w)) (15)

where K is the cardinality i.e. K = |W̄ |. Then, the solution of the M step after
plugging (15) in ∂LEU

∂Zα(vα) and by setting it to zero

∂LEU

∂Zα(vα)
=
∑

v 6∈Vα

M(w)





(

X(w)− X̂(w)
)

∏

α′ 6=α

Zα′(vα′)





= ∆α(M ◦X)−∆α(M ◦ X̂) = 0 (16)

The solution of this fixed point equation leads to two related but different it-
erative schemata: multiplicative updates (MUR) and alternating least squares
(ALS).

PLTFEU Multiplicative Update Rules (MUR). This method is indeed
gradient ascent similar to [10] by setting η(vα) = Zα(vα)/∆α(M ◦ X̂)(vα) as

Zα(vα)← Zα(vα) + η(vα)
∂LEU

∂Zα(vα)
(17)

Then the update rule becomes simply

Zα ← Zα ◦∆α(M ◦X)/∆α(M ◦ X̂) (18)

PLTFEU Alternating Least Squares (ALS). The idea behind ALS is to
obtain a closed form solution for Zα directly from (16)

∆α(M ◦X) = ∆α(M ◦ X̂) (19)

Note that X̂ depends on Zα, see (1). This equation can be solved for Zα by
least squares, as it is linear in Zα. If there is no missing data (M(w) = 1 for all
w), the result is available in closed form. To see this, we write all the tensors in
matrix form and write the solution explicitly using standard matrix algebra.

3 Matricization

Matricization as defined in [8,9] is the operation of converting a multiway array
into a matrix by reordering the column fibers. In this paper we refer to this
definition as ’unfolding’ and refer to matricization as the procedure to convert
an element-wise equation (such as (19)) into a corresponding matrix form. We
use Einstein’s summation convention where repeated indices are added over.
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The conversion rules are given in Table 1. Our notation is best illustrated with
an example: consider a matrix Xi,j with row index i and column index j. If
we assume a column by column memory layout, we refer to the vectorisation
of vecX (vertical concatenation of columns) as Xji; adopting a ’faster index
last’ convention and we drop the commas. Here i is the faster index since when
traversing the elements of the matrix X in sequence i changes more rapidly.
With this, we arrive at the following definition:

Definition 2. Consider a multiway array X ∈ R
I1×...×IL with a generic ele-

ment denoted by Xi1,i2,...,iL . The mode-n unfolding of X is the matrix X(n) ∈

R
In×

∏
k 6=n

Ik with row index in where

X(n) ≡ X
iL...in−1in+1...i2i1
in

(20)

Table 1. Index notation used to unfold a multiway array into the matrix form. Follow-
ing Einstein convention, duplicate indices are summed over. Khatri-Rao product and
mode-n unfolding are implemented in N-way Toolbox [2] as krb() and nshape().

Equivalance Matlab Remark

Xj
i ≡ X X Matrix notation

Xkj
i ≡ X(1) nshape(X, 1) Array (mode-1 unfolding)

Xj
i ≡ (XT )ij X ′ Transpose

vecXj
i ≡ (X)ji X(:) Vectorize

Xj
i Y

p
j ≡ (XY )pi X ∗ Y Matrix product

Xp
i Y

p
j ≡ (X � Y )pij krb(X,Y ) Khatri-Rao product

Xp
i Y

q
j ≡ (X ⊗ Y )pqij kron(X,Y ) Kronecker product

In the following, we illustrate the derivation of the well known TUCKER3
factorization. Alternative models can be derived and implemented similarly. To
save the space we only give derivations for factor A and core tensor G and omit
the others. Further details, model examples and reference implementations in
Matlab can be found from http://www.sibnet.com.tr/pltf.

Example 2 (Derivation of matrix form update rules for the TUCKER3 decom-
position). We compute first the prediction in matrix form

X̂i,j,k =
∑

pqr

Gp,q,rAi,pBj,qCk,r (21)

(X̂(1))
kj
i = (G(1))

rq
p Ap

iB
q
jC

r
k =

(

(AG(1))((C ⊗B)T )
)kj

i
(22)

X̂(1) = AG(1)(C ⊗B)T (23)
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Algorithm 1 Probabilistic Latent Tensor Factorisation.

for epoch = 1 . . . MAXITER do

for α = 1 . . . N do

X̂ ←
∑

w̄∈W̄

∏
α
Zα(Vα)

if KL: Zα ← Zα ◦∆α(M ◦X/X̂)/∆α(M)
if EUC-MUR: Zα ← Zα ◦∆α(M ◦X)/∆α(M ◦ X̂)
if EUC-ALS: Solve ∆α(M ◦X) = ∆α(M ◦

∑
w̄∈W̄

∏
α
Zα(Vα)) for Zα

end for

end for

Now, ∆Zα
for all α can also be represented in matrix form. The functions ∆A

and ∆G are

∆A(X) ≡ (X(1))
kj
i Bq

jC
r
kG

rq
p ≡ X(1)(C ⊗B)GT

(1) (24)

∆G(X) ≡ (X(1))
kj
i Ap

iB
q
jC

r
k ≡ ATX(1)(C ⊗B) (25)

– if KL ((13)) we evaluate ∆α(Q) and ∆α(M) where Q = M ◦ (X/X̂)

A← A ◦
Q(1)(C ⊗B)GT

(1)

M(1)(C ⊗B)GT
(1)

G(1) ← G(1) ◦
(ATQ(1))(C ⊗B)

(ATM(1))(C ⊗B)
(26)

– if EUC-ALS. We solve ∆α(X) = ∆α(X̂) (19) when there are no missing
observations, i.e., M(w) = 1 for all w. We show only the updates for the
core tensor G. The pseudo-inverse of A is denoted by A†. From (25) we have

ATX(1)(C ⊗B) = AT
(

AG(1)(C ⊗B)T
)

(C ⊗B) (27)

G(1) ← A†X(1)

(

(C ⊗B)T
)†

(28)

4 Discussion

The main saving in our framework appears in the computation of ∆α, that is
computationally equivalent to computing expectations under probability distri-
butions that factorise according to a given graph structure. As is the case with
graphical models, this quantity can be computed a-la belief propagation: alge-
braically we distribute the summation over all v /∈ Vα and compute the sum in
stages. For MUR, the intermediate computations carried out when computing
the denominator and numerator can be reused, which leads to further savings
(e.g., see (26)). Perhaps more importantly, PLTF encourages the researchers to
’invent’ new factorization models appropriate to their applications. Pedagog-
ically, the framework guides building new models as well as deriving update
equations for KL and Euclidean cost functions. Indeed, results scattered in the
literature can be derived in a straightforward manner.

Due to space constraints, in this paper we could not detail on model selec-
tion issues, i.e., questions regarding to the dimensions of latent indices and the
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selection of an optimal factorisation structure, guided by data. It turns out, ex-
ploiting the probabilistic interpretation and choosing an appropriate prior, it is
indeed possible to approximate the marginal likelihood p(X) =

∫

dZp(X,Z) for
doing Bayesian model selection, using techniques described in [4].
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